Reliable and easy-to-use SERS spectroscopy probe using a tapered opto-fluidic photonic crystal fiber
Résumé
Surface enhanced Raman spectroscopy (SERS) is one of the most sensitive biosensing techniques that offers label free detection for a variety of applications. Generally, SERS spectroscopy is performed on nano-functionalized planar substrates with plasmonic structures or colloidal nanoparticles. Recently, photonic crystal fibers (PCFs) have gained great interest for SERS based bio sensing applications due to the immense advantages such as improved sensitivity, flexibility and remote sensing capability that it offers compared to the planar substrates. However, the use of PCF based biosensors demand the alignment of it under a microscope, which can affect the reliability of SERS measurements and could be restrictive for practical end use applications. Herein, we aim to develop a tapered suspended core PCF fiber (Tapered-SuC-PCF) that represents an improvement in coupling efficiency and measurement reliability as well as it opens the way to the development of an easy-to-use bio-sensing probes with a plug and play option with conventional Raman spectrometers. We have fabricated several samples of the optimized tapered-SuC-PCF and demonstrated its superior SERS performance compared to standard SuC-PCF fibers with 2 µm core diameter. An excellent SERS measurement reliability is demonstrated using such a fiber in a plug and play type system demonstrating its versatility for practical end use applications.
Domaines
Sciences de l'ingénieur [physics]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|