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Abstract. Knowledge of continental faunas and floras from the Jurassic–Cretaceous 10 

transition in Gondwana, and especially in Africa, is limited. Here, we report the 11 

discovery of a rare assemblage of plants and aquatic reptiles from the Tithonian–12 

Berriasian interval of the Anoual syncline in southeastern Morocco. Our preliminary 13 

field investigations led to the discovery of a disarticulated skeleton of a goniopholidid 14 

crocodylomorph, of a single fragment of a turtle plate, and of abundant plant 15 

remains, inviting further exploitation of the fossiliferous horizon. This assemblage 16 

indicates a freshwater habitat bordered by a lush moist conifer forest. Its taxonomic 17 

composition shows a strong similarity with better known contemporaneous Laurasian 18 

assemblages and stresses the paucity of coeval Gondwanan assemblages. Our 19 

discovery highlights that peri-Tethys continental assemblages may have shared 20 

common taxa and raises the question whether Laurasian and Gondwanan taxa from 21 

the Jurassic-Cretaceous transition were cosmopolitan, before they diverged later 22 

during the Cretaceous. 23 

Jo
urn

al 
Pre-

pro
of



Keywords: Continental assemblage, Gondwana, Tithonian–Berriasian, Morocco 24 

1. Introduction 25 

Morocco is an important source of fossiliferous continental deposits of the Jurassic 26 

and Cretaceous. More specifically, the Jurassic Red Beds (Haddoumi et al., 1998, 27 

2010) and the so-called “continental intercalaire” with the Cretaceous Kem Kem 28 

beds (Lavocat, 1948; Lapparent, 1951; 1960) significantly contributed to our 29 

knowledge of dinosaur assemblages (see reviews in Cavin et al., 2010; Ibrahim et 30 

al., 2020). However, faunal and floral assemblages of the Jurassic–Cretaceous 31 

transition remain poorly known, making it difficult to assess their evolution over this 32 

period. On the other hand, the much more abundant Mesozoic Laurasian continental 33 

assemblages (Tennant et al., 2017; Allain et al., 2022) provide fossil data that make 34 

it possible to discuss the hypothesis of a major extinction event on continents at the 35 

Jurassic/Cretaceous boundary, albeit with the problem of a still poorly defined 36 

stratigraphic boundary between the Tithonian and Berriasian (Granier, 2020). Until 37 

now, the contribution of Gondwanan assemblages to the extinction event debate 38 

around the indiscriminate Tithonian/Berriasian boundary was virtually absent. Here, 39 

our preliminary report aims to fill this gap and to encourage further field efforts to 40 

elucidate this question. 41 

 Regionally, previous studies have focused on fossiliferous localities from the 42 

Jurassic-Cretaceous transition of the Anoual Syncline (eastern High Atlas, Morocco), 43 

with the Bathonian site of Guelb el Ahmar (Haddoumi et al., 2016; Lasseron et al., 44 

2020) and the indiscriminate Tithonian-Berriasian site of Ksar Metlili, which have 45 

produced rich microvertebrate faunas (Monbaron, 1980; Haddoumi et al., 2016; 46 

Lasseron 2019; Lasseron et al., 2020, 2022). Here, we report in the Anoual Syncline 47 

Jo
urn

al 
Pre-

pro
of



the fossil discoveries from a new locality from the Jurassic-Cretaceous, which 48 

provides new important data, in particular: 1) macro-remains of a single 49 

crocodylomorph individual, highlighting the presence of large tetrapods; 2) an 50 

abundant and exceptional Jurassic-Cretaceous floral assemblage that allows 51 

comparisons with other coeval localities worldwide. This preliminary report aims to 52 

present the geological context of this new and additional Anoual Syncline site and to 53 

discuss on its significance and perspectives as compared to other localities from 54 

Gondwana. 55 

2. Geological settings 56 

The new fossiliferous locality, herein named Guelb Rzoug (GR), crops out on the 57 

northern margin of the eastern High Atlas in the region of Anoual (Figure 1A, B) at 58 

about thirty kilometers to the northeast of the town of Talsint. In this region, Jurassic 59 

and Cretaceous deposits make up most of the sedimentary successions of two 60 

synclines, namely the Anoual and Ksar Jilali synclines. In the Anoual syncline 61 

(Figure 1B), the Red Beds, which are mostly of continental origin, have produced 62 

fossil remains in the new locality GR (Figures 1B–C; Figure 2A), which adds to the 63 

Guelb el Ahmar (GEA) and Ksar Metlili (KM) sites. These Red Beds are intercalated 64 

between the Middle Jurassic marine deposits known as « Formation des Marno-65 

calcaires à Pholadomyes » and the Cretaceous marine deposits of the Cenomanian-66 

Turonian limestones (Figure 1C). In the Anoual syncline, Haddoumi et al. (2008) 67 

differentiated three lithostratigraphic units in the Red Beds (Figure 1B), which are 68 

from base to top: the Anoual Formation (lower Bathonian), the Ksar Metlili Formation 69 

(indiscriminate Tithonian- Berriasian), and the Dekkar Group (?Barremian to 70 

Cenomanian). The Ksar Metlili Formation (~80 m thick) is delimited by two 71 
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unconformities D1 and D2 (Figure 1B). The lithology and sedimentary structures of 72 

the Ksar Metlili Formation and of the lower member of the Anoual Formation (Fig. 73 

2B-C) suggest a flooding plain and/or deltaic depositional environment. This is 74 

consistent with the large fossil tree trunks that are common in these units. 75 

The GR fossil assemblage (Fig. 1B-C), as is the case of KM assemblages 76 

(Haddoumi et al., 2016; Lasseron et al., 2020), is stratigraphically located within the 77 

lower part of the Ksar Metlili Formation, above the D2 unconformity (Fig. 1B-C) and a 78 

marine incursion (Marine or upper Member, Haddoumi et al., 1998, 2008) of the 79 

Anoual Formation. The GEA locality and fossil assemblage are located below this 80 

marine member (Figure 1B, C; Haddoumi et al., 2016; Lasseron et al., 2020). The 81 

GR assemblage is probably of the same age as the KM microvertebrate fauna 82 

(Sigogneau-Russell et al., 1988, 1990; formerly known as “the Anoual fauna” in 83 

Sigogneau-Russell et al., 1998), which has yielded the most diversified African and 84 

Gondwanan Mesozoic mammal assemblage and one of the richest vertebrate 85 

faunas of the Gondwanan Mesozoic (Lasseron, 2019; Lasseron et al., 2020; 2022). 86 

The Ksar Metlili Formation is dated as Berriasian on the basis of calcareous 87 

nannofossils (coccolithophores) (Sigogneau-Russell et al., 1990), or late Tithonian-88 

early Berriasian based on charophytes (Haddoumi et al., 2008; Mojon et al., 2009) 89 

and its microvertebrate association that is the most reminiscent of those known in 90 

the Purbeckian facies (Lasseron et al. 2020, 2022). As a summary, the new GR 91 

locality is identified as part of the Ksar Metlili Formation on the basis of its position 92 

above the D1 and below the D2 unconformities (Figure 1B–C) and a Berriasian or 93 

Tithonian age for the GR locality is proposed on the basis of biostratigraphic 94 

evidence from other co-eval localities of the Anoual Basin. It is expected that in the 95 

near future, the GR assemblage will provide more significant new fossil data to test 96 
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the Tithonian or Berriasian age of the Ksar Metlili Formation and represent a key 97 

new continental locality in the Gondwana (Fig. 1D). 98 

3. Material and methods 99 

Bone fragments and plant remains were discovered at GR by one of us (HA) during 100 

a geological survey in July 2020. Among the first bone fragments to be collected, 101 

some were later identified in May 2022 by JEM and ML as belonging to a 102 

crocodylomorph. In May 2023, a field team including HA, HH, RC and JEM 103 

undertook a geological investigation and a preliminary excavation at GR in order to 104 

retrieve more fossil material in situ and to position the fossiliferous level in a precise 105 

stratigraphic context. The 2020 excavating trench in the fossiliferous level was 106 

refreshed and expanded. The excavation surface was about two square meters. 107 

Cranial and postcranial elements of a single disarticulated crocodylomoph individual 108 

were uncovered. Bones are extremely fragile and needed to be consolidated 109 

immediately using cyanoacrylate. All these remains were carefully excavated and 110 

entrapped in three plaster jackets that will undergo mechanical laboratory 111 

preparation. Plant remains were discovered at different levels in the excavation 112 

trench and several samples were taken just above and just below the fossiliferous 113 

horizon yielding the crocodylomorph remains. All fossiliferous horizons seen in the 114 

trench section were sampled for laboratory processing for microremains extraction. 115 

All the paleontological material recovered from GR is curated at Université 116 

Mohammed Ier Oujda, Morocco (Musée de l’Université d’Oujda) under the acronym 117 

Mo-GR.23. In order to help prevent pillaging, GPS locality information is stored with 118 

the curated material and is available on demand to qualified researchers pending 119 

they provide a valid field permit from the Ministère des Mines of Morocco. 120 
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4. Preliminary description and comparisons 121 

4.1. Crocodylomorph skeleton 122 

Disarticulated postcranial elements are associated with a damaged skull and 123 

mandibles, suggesting that all elements belong to a single individual (Figs. 2B, C, E). 124 

Although heavily damaged, the posterior portion of the skull preserves a connection 125 

with elements of the left mandibular branch, showing a contact between the quadrate 126 

and the articular. In this area, the quadratojugal dorsal surface bears an 127 

ornamentation of deep ovoid cupules, as is often the case in semi-aquatic tetrapods. 128 

An estimation of the skull length is only tentative because further study must await 129 

preparation of the plaster jackets, but according to our field observation, the skull 130 

length exceeds 30 cm in total length. Several vertebral centra were recovered and 131 

the absence of apophyses indicates that they come from the trunk series. All centra 132 

are amphicoelous indicating they belong to a non-eusuchian neosuchian. Several 133 

osteoderms have been collected; they are rectangular in outline, being wider than 134 

long and showing a process or spine on their anterolateral corner (Fig 2C). These 135 

features combined, indicate a goniopholidid or a pholidosaurid affinity for the GR 136 

crocodylomorph. The ornamentation pattern on the external surface of the 137 

osteoderms highly resembles those of goniopholidids but are unlike the 138 

ornamentation made of smaller pits typical of pholidosaurids (Martin et al., 2016c). 139 

For the reasons above, we provisionally assign the GR crocodylomorph to a 140 

goniopholidid, i.e., a group of neosuchian crocodylomorphs with semi-aquatic 141 

adaptations and known from the Jurassic to the Early Cretaceous (e.g., Buffetaut, 142 

1982; Salisbury et al., 1999; Andrade et al., 2011; Martin et al., 2016b).  143 

4.2. Indeterminate turtle bone fragment 144 
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A single bone fragment (Fig. 2D) was discovered in the trench and was likely broken 145 

off during the initial excavation. It is plate-like and slightly concave with smooth 146 

dorsal and ventral surfaces. The preserved piece is too small to preserve sutures. Its 147 

broken edges reveal a compact diploe-structure typical of turtle shell bones with the 148 

cancellous zone sandwiched between a thick external cortex and a thinner internal 149 

cortex (e.g., Scheyer and Sander, 2007). 150 

4.3. Plant remains 151 

The plant association from the GR locality (Fig. 2 F-K) is represented by macrofossil 152 

remains composed of parts of fern fronds and small branches of conifers associated 153 

with indeterminate petrified wood. Despite the poor preservation of most of the floral 154 

assemblage, some morphological details can be observed in some black mineralized 155 

cuticles or imprints. The fern remains belong to Matoniaceae (Fig. 2 F-G) and 156 

Schizaeaceae (Fig. 2H-I). The Matoniaceae remains display an affinity with 157 

Phlebopteris or to the similar genus Piazopteris (Hu and Winship, 2014). Sterile (Fig. 158 

2F) and fertile pinnae (Fig. 2G) are observed. Sori of fertile pinnae are positioned in 159 

single rows on either side of the pinnule midrib and contain approximately 14 160 

sporangia. Pinnules are broadly attached, opposite to sub-opposite, elongated, with 161 

rounded apices and an entire margin. Schizaeaceae (Fig. 2H-I) are represented by 162 

digitate fronds consisting of repeatedly dichotomizing narrow lanceolate segments. 163 

Each segment is branching in its terminal part into narrow strips. These fern remains 164 

are usually associated with small branches of undetermined conifers. Figure 2 (J-K) 165 

shows two samples of compressed leafy terminal branches.  166 

5. Discussion 167 

5.1. Lithology, sedimentology and paleoenvironnement 168 
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During the deposition of the Ksar Metlili Formation (Tithonian-Berriasian), the Anoual 169 

region was a distal alluvial plain located between the African craton to the South and 170 

the Tethys Ocean to the North, in which a diverse continental vertebrate assemblage 171 

was present (Haddoumi et al., 2016; Lasseron et al., 2020, 2022). 172 

 The fossiliferous level of the GR locality occurs within greenish or brownish to 173 

purple argillites bearing yellow ochres stains within a network of tectonic fractures. 174 

These argillites form inframillimeter to millimeter-sized layers with intercalated thin 175 

layers of lignites that sometimes form decimetric lenses rich in fossil wood or other 176 

oxidized plant debris. 177 

 The argilites result from the deposit of a very fine, soft mud at the bottom of a 178 

water body in-between river channels of the flood plain. Occasionally, the 179 

depositional environment was weakly agitated with limited hydrodynamism. This is 180 

illustrated by the limited disarticulation and fragmentation of the crocodile skeleton 181 

and the mixing and concentration of plant remains in the same level. These 182 

sedimentological data indicate that the fossiliferous remains are sub-autochtonous in 183 

this horizon. This is in agreement with the association of sterile and fertile parts of 184 

the fern fronds and of the conifer branches that corroborate this interpretation. The 185 

muddy sediment was probably poorly oxygenated or even anoxic as evidenced by 186 

the preservation of finely detailed carbonized plant imprints. The conifer fossil 187 

remains and the abundance of centimeter-sized to pluri-decimeter-sized fossil wood 188 

suggest the proximity of a conifer forest that thrived near local water bodies and river 189 

channels of the flood plain. Fossil wood of metric size, plant remains and scattered 190 

vertebrate fragments have been identified in channelized sandstones that laterally 191 

limit or cover the fossiliferous argilites of the GR locality.  192 
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 This forest was home to an understory with ferns that probably thrived under a 193 

hot and humid climate. The majority of the Jurassic-Cretaceous ferns are considered 194 

to be elements of moist lush vegetation (Harris, 1961) often occurring near river 195 

banks (Pelzer et al., 1992). Only a few taxa (e.g., Gleichenia [Gleicheniaceae], 196 

Phlebopteris, and Weichselia [Matoniaceae]) can tolerate full sunlight and are able to 197 

adapt to the water-stress related conditions (Konijnenburg-Cittert, 2002; Abbink et 198 

al., 2004; Schrank, 2010). During the Tithonian-Berriasian period, the Anoual region 199 

belonged to an arid climatic zone (Chumakov, 1995; Hay and Floegel, 2012). These 200 

climatic inferences seem to differ from the hot and humid conditions suggested by 201 

the newly reported plant at GR but are partly similar, depending on the resolution, 202 

when compared to recent models of Köppen zones indicating a temperate, humid 203 

subtropical zone but close to the hot steppe during the Berriasian-Valanginian 204 

interval (Burgener et al., 2023). The ferns of GR probably tolerated sunlight and are 205 

able to adapt to the water-stress related conditions (Konijnenburg-Cittert, 2002; 206 

Abbink et al., 2004; Schrank, 2010). 207 

5.2. Paleobiogeographic context of the flora and fauna 208 

The new fern-conifer assemblage from GR locality is the first reported in Morocco. 209 

Only petrified wood (Haddoumi, 1998; Haddoumi et al., 2008) and palynomorphs 210 

and wood fragments (microflora of GEA, Haddoumi et al., 2016) have previously 211 

been reported in the eastern High Atlas. An assemblage of ferns and microphyllous 212 

conifers such as Sphenopteris cf. fittoni and Onychiopsis have been reported from 213 

the sub-unit 1b of the ?Callovian-Barremian in the Dadès Valley (Benvenuti et al., 214 

2017). At the regional scale of North Africa, some fern-conifer assemblages were 215 

reported in Jurassic and Cretaceous strata (Barale, 2007; Barale et al., 2007; Ouaja 216 
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et al., 2002) but floral macroremains from the Jurassic-Cretaceous transition are 217 

virtually unknown, the floral elements of that age range at the Tendaguru site in 218 

Tanzania being known from palynomorphs, cuticles, or seeds (Aberhan et al., 2002).  219 

The latest Jurassic–earliest Cretaceous fossil record of freshwater 220 

crocodylomorphs in Africa is indeed very poor, being restricted to rare atoposaurid 221 

and teleosaurid remains found in the nearby KM site (see references below). In this 222 

regard, and independently from its taxonomic attribution, the new find from the GR 223 

locality is highly important to understand neosuchian evolution in Gondwana. Despite 224 

its unprepared condition, the new crocodile specimen can be preliminary assigned to 225 

the Goniopholididae on the basis of shared features such as amphicoelous 226 

vertebrae, deep-sculptured external ornamentation, and osteoderm morphology. 227 

This will have to be confirmed with further preparation of the collected material 228 

presently encased in plaster jackets. Freshwater crocodylomorphs from the Jurassic 229 

of Africa are virtually unknown despite the presence of continental formations 230 

yielding dinosaurs in the Lower Jurassic Red Beds of Morocco (e.g., Allain and 231 

Aquesbi, 2008). Limited evidence for the presence of crocodylomorphs comes from 232 

the Jurassic-Cretaceous transition of the KM microvertebrate sites near Anoual that 233 

have produced isolated atoposaurid and freshwater teleosaurid teeth as well as 234 

fused premaxillae of cf. Theriosuchus (Lasseron et al., 2020). At a wider continental 235 

scale, the only other mention of Late Jurassic to Early Cretaceous freshwater 236 

neosuchians is from the Saurian beds of Tendaguru in Tanzania (Heinrich et al., 237 

2001). Fossil discoveries in African lowermost Cretaceous strata (Berriasian) are 238 

equally limited and the earliest record known from Lower Cretaceous strata comes 239 

from much younger, Barremian–Aptian deposits, with the derived neosuchian 240 

Brillanceausuchus babouriensis from Cameroon (Michard et al., 1990). The Upper 241 
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Cretaceous continental record of Africa is restricted to that from Egypt (Saber et al. 242 

2019). Older African deposits have yielded a much higher diversity of freshwater 243 

crocodylomorphs from the Aptian–Cenomanian interval in Morocco, Algeria, Libya, 244 

Niger, and Tanzania (e.g., Broin and Taquet, 1961; Larsson and Gado, 2000; 245 

Sereno and Larson, 2009; Martin and Lapparent de Broin, 2016; Nicholl et al., 2022; 246 

Pochat-Cottilloux et al., 2023).  247 

 During the Jurassic–Cretaceous transition, the apex predatory niche in 248 

freshwater ecosystems was occupied by generalist forms of neosuchian 249 

crocodylomorphs. While goniopholidids dominate the Laurasian landscape in Europe 250 

(Andrade et al., 2011; Martin et al., 2016b), North America (Yoshida et al., 2021) and 251 

Asia (Wu et al., 1996; Lauprasert et al., 2007), the crocodylomorph diversity in 252 

Gondwana from coeval formations remains notoriously poor. Notably, the 253 

Gondwanan fossil record from the Jurassic–Cretaceous transition consists solely of 254 

South American forms such as Batrachomimus pastosbonensis from the Upper 255 

Jurassic of Brazil (Montefeltro et al., 2013) and Burkesuchus mallingrandensis from 256 

the Tithonian of Chile (Novas et al., 2021). Thus, the evolutionary history of 257 

continental crocodylomorphs at this time in Africa remains largely unknown. 258 

 This paucity in the fossil record of African vertebrates (Rage and Gheerbrant, 259 

2020) may be attributed to a sampling bias but also to the scarce availability of 260 

freshwater deposits for that time interval. Fossil discoveries from the Jurassic–261 

Cretaceous transition of Africa, such as those from the GR sites, may considerably 262 

renew our understanding of the biogeographic affinities of latest Jurassic–earliest 263 

Cretaceous faunas (e.g., Lasseron et al., 2020). They make it possible to extend the 264 

analysis of the Jurassic-Cretaceous faunal transition to a global level, well beyond 265 

Laurasia to which current discussions are restricted, being based on Purbeckian-266 
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type deposits from Western European assemblages (Tennant et al., 2017; Allain et 267 

al., 2022). Continental Africa has yielded several neosuchians of younger age 268 

(Aptian-Albian), such as Kaprosuchus saharicus or Stolokrosuchus lapparenti 269 

(Larsson and Gado, 2000; Sereno and Larsson, 2009), although of poorly resolved 270 

phylogenetic affinities. The phylogenetic relationships of the new Moroccan 271 

crocodylomorph reported here, either with these African Aptian-Albian taxa or as a 272 

distant lineage of Laurasian goniopholidids, will be clarified after the new found GR 273 

fossils have been prepared and compared in detail. 274 

 275 

5.3. Implications for the Jurassic/Cretaceous boundary 276 

The Jurassic/Cretaceous boundary awaits a clear definition (see review in Granier, 277 

2020). There are currently two opposing views: the Jurassic/Cretaceous boundary 278 

corresponds either to the Tithonian/Berriasian boundary (Wimbledon et al., 2020a, 279 

2020b) or to the Berriasian/Valangianian boundary (Granier, 2019; Enay, 2020; 280 

Granier et al., 2020). The GSSP definition on this boundary has yet to be discussed 281 

(Granier, 2020). 282 

 Recent study on the composition of vertebrate assemblages from Western 283 

Europe did not conclude in support of a biological turnover at the 284 

Tithonian/Berriasian boundary (Allain et al., 2022). In fact, the Berriasian continental 285 

vertebrate faunas of Angeac-Charente and Cherves-de-Cognac show strong afinities 286 

with Late Jurassic vertebrate assemblages but differ in composition from post-287 

Berriasian vertebrate assemblages (Allain et al., 2022; Mazin et al., 2008). Thus, at 288 

least in Western Europe, the continental vertebrate fossil record from the 289 

Jurassic/Cretaceous transition is in favour of the hypothesis placing the 290 

Jurassic/Cretaceous boundary at the Berriasian/Valanginian boundary (Allain et al., 291 
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2022; contra Tennant et al., 2017). This would mean a latest Jurassic age for the 292 

Ksar Metlili Formation faunas such as KM and GR. This would be in agreement with 293 

a Jurassic rather than a Cretaceous affinity of the KM microvertebrate fauna 294 

(Lasseron et al., 2020). 295 

 The future paleontological exploitation of the new GR locality from Anoual 296 

holds interesting perspectives to further test this question, with a new viewpoint from 297 

Gondwanan continental assemblages. The present preliminary study is too 298 

premature to draw definitive conclusions as one will need to assess the composition 299 

of the whole faunal assemblage. In particular, the presence of goniopholidid 300 

crocodylomorphs at the GR site cannot help to place it in relation to Jurassic or 301 

Cretaceous boundary, as the group has been recovered throughout the wide 302 

Kimmeridgian-Albian interval (see Table 1 in Martin et al., 2016). 303 

 304 

6. Conclusions and perspectives 305 

The Jurassic-Cretaceous transition has been interpreted as corresponding to a 306 

dramatic faunal change, either as a possible extinction event (i.e., one of the eight 307 

mass extinctions), or as a more gradual environmental change in a cooling world 308 

(see review in Tennant et al., 2017). Yet, the core of the available fossil data for this 309 

discussion comes from Laurasia. Understanding the evolution of continental biotas 310 

and their paleoenvironment at a global scale during the Jurassic-Cretaceous 311 

transition requires fossil data from the Gondwanan continents. Here, the discovery in 312 

the northern part of Africa of the GR locality, which seems to correspond to this 313 

indiscriminate Tithonian-Berriasian interval, opens for the first time tangible 314 

perspectives for answering these questions on a wide paleogeographical scale. 315 
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Figure Captions 554 

 555 

Figure 1. General context of the new Guelb Rzoug (GR) locality from the 556 

indiscriminate Tithonian-Berriasian interval. A, Geographic situation in northeastern 557 

Morocco showing its localization in the eastern High Atlas; B, regional geological 558 

map of the Anoual syncline showing the GR locality together with previously 559 

identified fossiliferous localities of Ksar Metlili (KM) and Guelb el Ahmar (GEA). D1 560 

and D2 refer to the Bathonian–Tithonian discontinuity and the 561 

Berriasian–?Barremian discontinuity, respectively; C, stratigraphic log of the 562 

Jurassic-Cretaceous Red Bed series showing the horizon corresponding to the GR 563 

locality; D, Global paleogeographic map showing the position of the new GR locality 564 

as part of northern Gondwana. Map after Scotese (2001). [The print version will be in 565 

black and white]. 566 

Jo
urn

al 
Pre-

pro
of



 567 

Figure 2. Presentation of the new indiscriminate Tithonian-Berriasian locality of 568 

Guelb Rzoug (GR) and selected photographs of discovered fossils. A, general view 569 

in the field showing the locality at the base of the Ksar Metlili Fm; B, detail of the 570 

excavation surface showing scattered postcranial elements of the crocodylomorph in 571 

situ; C, detail of one osteoderm in dorsal view (Mo-GR.23-001); D, a sectioned turtle 572 

bone fragment (Mo-GR.23-002); E, a goniopholidid skull (Mo-GR.23-001) in dorsal 573 

view during the excavation - the brush is 15 cm in length; F, sterile pinna of 574 

Matoniaceae (Mo-GR.23-003); G, fertile pinna of Matoniaceae (Mo-GR.23-004); H, 575 

frond of Schizaeaceae (Mo-GR.23-005); I, frond of Schizaeaceae (Mo-GR.23-006); 576 

J, ultimate branch of indeterminate conifer (Mo-GR.23-007); K, ultimate branch of 577 

indeterminate conifer (Mo-GR.23-008). Scale bar for F–K equals 1 cm. 578 

Abbreviations: alp, anterolateral process; c, centrum; mx, maxilla; o, osteoderm; oc, 579 

occipital condyle; q, quadrate; qj, quadratojugal; r, rib [The print version will be in 580 

black and white]. 581 
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Highlights 

-We report on a new fossiliferous locality from the Tithonian-Berriasian interval of 

Morocco 

-This continental assemblage preserves semi-aquatic reptiles and macro-floras 

-this discovery represents a rare addition to the late Jurassic-early Cretaceous 

continental assemblages of Gondwana  

-perspectives on the evolution of continental ecosystems during the Jurassic-

Cretaceous transition are presented 
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