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Name of the street Abbreviation Number of tree bases
Rue Baron le Roy BARO-1 40

BARO-2 19
Boulevard de Bercy BERC-1 22

BERC-2 37
Rue de Charenton CHAR-1 69

CHAR-2 70
Rue Daumesnil DAUM-1 102

DAUM-2 44
DAUM-3 39

Rue Joseph Kessel KESS-1 36
KESS-2 33

Rue Montgallet MONT 48
Rue Pommard POMM-1 17

POMM-2 22
Quai de la Rapée RAPE-1 49

RAPE-2 25
Rue de Bercy RBER-1 22

RBER-2 18
Rue de Reuilly REUI-1 36

REUI-2 42
Rue Taine TAIN-1 33

TAIN-2 29

Table A.1: List of the portions of streets taken into account in this study
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Figure A.1: Map of the study area, adapted from OpenStreetMap. The full street names are listed in
Table A.1.
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Figure A.2: Illustration of the relation between the local extinction risk (as quantified by the LER
metric, and averaged over all streets for each species) and two biological traits for which a borderline
significant correlation was identified: (a) the maximal height (p-value = 0.01918), and (b) the begin-
ning of the flowering period (p-value = 0.061). See Table 1 for more details on the biological traits
and the correlation tests used.
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Name of the plant Monitoring Number of portions List of portions of streets
species in 2013 of streets

Bromus sterilis No 2 BERC-1, KESS-2

Capsella bursa-pastoris Yes 16 BARO-1, BARO-2, BERC-1, BERC-2, CHAR-1, CHAR-2,

DAUM-1, DAUM-2, DAUM-3, KESS-1, KESS-2, POMM-1,

POMM-2, RBER-1, RBER-2, REUI-1

Chenopodium album Yes 4 BARO-1, BERC-1, RAPE-1, REUI-1

Conyza sp. Yes 20 BARO-1, BARO-2, BERC-1, BERC-2, CHAR-1, DAUM-1,

DAUM-2, DAUM-3, KESS-1, KESS-2, MONT, POMM-1,

POMM-2, RAPE-1, RAPE-2, RBER-1, RBER-2, REUI-1,

REUI-2, TAIN-1

Geranium molle No 3 BARO-1, CHAR-1, CHAR-2

Hordeum murinum Yes 16 BARO-1, BARO-2, BERC-1, BERC-2, CHAR-1, CHAR-2,

DAUM-1, DAUM-2, DAUM-3, KESS-1, KESS-2, RAPE-1,

RBER-1, RBER-2, REUI-1, REUI-2

Lactuca serriola Yes 1 BARO-1

Lolium perenne No 4 DAUM-1, DAUM-2, DAUM-3, KESS-2

Parietaria judaica No 2 BARO-1, REUI-2

Plantago lanceolata Yes 1 RAPE-1

Plantago major Yes 5 BARO-1, POMM-2, RAPE-1, REUI-1, REUI-2

Poa annua No 22 BARO-1, BARO-2, BERC-1, BERC-2, CHAR-1, CHAR-2,

DAUM-1, DAUM-2, DAUM-3, KESS-1, KESS-2, MONT,

POMM-1, POMM-2, RAPE-1, RAPE-2, RBER-1, RBER-2,

REUI-1, REUI-2, TAIN-1, TAIN-2

Polygonum aviculare Yes 11 BARO-1, BARO-2, BERC-1, BERC-2, CHAR-1, CHAR-2,

DAUM-1, DAUM-3, RAPE-1, RAPE-2, REUI-1, REUI-2

Senecio inaequidens Yes 2 BARO-1, BERC-2

Senecio vulgaris Yes 6 BARO-2, KESS-1, POMM-1, RAPE-1, RBER-2, REUI-1

Sisymbrium irio Yes 7 BARO-1, BARO-2, BERC-1, BERC-2, DAUM-1, KESS-1,

MONT, REUI-1

Sisymbrium officinale No 2 BARO-1, REUI-1

Sonchus oleraceus No 13 BARO-1, BARO-2, BERC-1, BERC-2, DAUM-1, KESS-1,

KESS-2, MONT, POMM-1, POMM-2, RAPE-1, RAPE-2,

RBER-2

Stellaria media Yes 22 BARO-1, BARO-2, BERC-1, BERC-2, CHAR-1, CHAR-2,

DAUM-1, DAUM-2, DAUM-3, KESS-1, KESS-2, MONT,

POMM-1, POMM-2, RAPE-1, RAPE-2, RBER-1, RBER-2,

REUI-1, REUI-2, TAIN-1, TAIN-2

Taraxacum sp. Yes 19 BARO-1, BARO-2, BERC-1, BERC-2, CHAR-1, CHAR-2,

DAUM-1, DAUM-2, DAUM-3, KESS-1, KESS-2, MONT,

POMM-1, RAPE-1, RAPE-2, RBER-1, RBER-2, REUI-1,

REUI-2

Veronica persica Yes 1 RAPE-1

Table A.2: List of the plant species taken into account in this study. The taxonomic reference used is
the French Flora Reference TAXREF v8.0 (2014). For each species, the portion of streets which were
taken into account in this study were the ones in which the focal species was observed in an average
of at least 10% of the patches per year over the monitoring period (2009-2018 for species monitored
in 2013, 2014-2018 otherwise).
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Estimate Standard error p-value
(Intercept) 0,127 0,161 0,4339
Species Estimate Standard error p-value

Capsella bursa-pastoris -0,111 0,158 0,4852
Chenopodium album 0,706 0,182 0,0002
Conyza sp. -0,093 0,157 0,5525
Geranium molle 0,129 0,195 0,5087
Hordeum murinum -0,118 0,158 0,4554
Lactuca serriola 0,841 0,259 0,0014
Lolium perenne 0,386 0,182 0,0353
Parietaria judaica 0,378 0,214 0,0790
Plantago lanceolata 1,003 0,261 0,0002
Plantago major 0,725 0,179 0,0001
Poa annua -0,146 0,157 0,3521
Polygonum aviculare 0,587 0,162 0,0004
Senecio inaequidens 0,856 0,213 0,0001
Senecio vulgaris 0,054 0,174 0,7590
Sisymbrium irio 0,067 0,167 0,6893
Sisymbrium officinale 0,797 0,212 0,0003
Sonchus oleraceus 0,606 0,160 0,0002
Stellaria media -0,146 0,157 0,3522
Taraxacum sp. -0,145 0,157 0,3574
Veronica persica 0,074 0,261 0,7770
Street Estimate Standard error p-value

BARO-2 0,129 0,086 0,1370
BERC-1 -0,110 0,084 0,1955
BERC-2 0,035 0,085 0,6781
CHAR-1 -0,027 0,092 0,7725
CHAR-2 0,080 0,096 0,4045
DAUM-1 0,002 0,086 0,9791
DAUM-2 0,056 0,097 0,5634
DAUM-3 0,039 0,093 0,6778
KESS-1 0,003 0,089 0,9738
KESS-2 0,038 0,091 0,6794
MONT 0,127 0,101 0,2132
POMM-1 0,060 0,097 0,5340
POMM-2 0,050 0,101 0,6232
RAPE-1 -0,129 0,086 0,1337
RAPE-2 0,053 0,101 0,6042
RBER-1 0,038 0,101 0,7112
RBER-2 -0,006 0,093 0,9509
REUI-1 -0,078 0,081 0,3354
REUI-2 0,049 0,091 0,5911
TAIN-1 0,002 0,132 0,9876
TAIN-2 0,020 0,157 0,9005

Table A.3: Summary of the results of the regression of MaxGER on species and portions of streets. For
the species, estimates are expressed relative to Bromus sterilis. For the streets, estimates are expressed
relative to BARO-1. The species in bold are the ones for which a significantly higher extinction risk
was identified.
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Biological trait p-value
Dispersal mechanism 0.6899
Flowering duration 0.002677
Seed mass 0.5479
Heat preference 0.763
Pollination vector 0.5634
Maximal height 0.004763
Beginning of flowering period 0.00915

Table A.4: Summary of the results of the correlation tests of the global extinction risk (as quantified
by the MaxGER metric and averaged over all streets for each species) with the species traits listed
in Table 1. The biological traits in bold are the ones for which a significant correlation was identified
(when accounting for multiple testing using the Holm-Bonferroni method).
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Estimate Standard error p-value
(Intercept) 0,745 0,091 0,0000
Species Estimate Standard error p-value

Capsella bursa-pastoris -0,053 0,090 0,5552
Chenopodium album 0,009 0,103 0,932
Conyza sp. -0,010 0,089 0,9107
Geranium molle 0,022 0,111 0,8465
Hordeum murinum -0,254 0,090 0,0054
Lactuca serriola 0,124 0,147 0,3993
Lolium perenne 0,078 0,103 0,4508
Parietaria judaica 0,012 0,121 0,9210
Plantago lanceolata 0,065 0,148 0,6599
Plantago major 0,109 0,102 0,2847
Poa annua -0,578 0,089 0,0000
Polygonum aviculare -0,071 0,092 0,4381
Senecio inaequidens 0,062 0,121 0,6096
Senecio vulgaris 0,111 0,099 0,2633
Sisymbrium irio 0,004 0,095 0,9625
Sisymbrium officinale 0,034 0,120 0,7797
Sonchus oleraceus 0,022 0,091 0,8103
Stellaria media -0,110 0,089 0,2164
Taraxacum sp. -0,267 0,089 0,0032
Veronica persica -0,045 0,148 0,7602
Street Estimate Standard error p-value

BARO-2 0,077 0,049 0,1182
BERC-1 -0,045 0,048 0,3518
BERC-2 0,046 0,048 0,3377
CHAR-1 -0,014 0,052 0,7915
CHAR-2 0,076 0,054 0,1635
DAUM-1 0,008 0,049 0,8677
DAUM-2 0,041 0,055 0,4634
DAUM-3 0,033 0,053 0,5351
KESS-1 -0,038 0,051 0,4494
KESS-2 -0,022 0,052 0,6724
MONT 0,082 0,057 0,1544
POMM-1 0,083 0,055 0,1326
POMM-2 0,066 0,057 0,2509
RAPE-1 -0,085 0,049 0,0833
RAPE-2 0,071 0,057 0,2197
RBER-1 0,118 0,057 0,0418
RBER-2 -0,001 0,053 0,9786
REUI-1 -0,046 0,046 0,3121
REUI-2 -0,009 0,052 0,8639
TAIN-1 0,163 0,075 0,0308
TAIN-2 0,229 0,089 0,0109

Table A.5: Summary of the results of the regression of LER on species and portions of streets. For the
species, estimates are expressed relative to Bromus sterilis. For the streets, estimates are expressed
relative to BARO-1. The species in italic are the ones for which a significantly lower LER was identified.
The portions of streets in bold are the ones for which a significantly higher LER was identified.
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Biological trait p-value
Dispersal mechanism 0.2049
Flowering duration 0.2748
Seed mass 0.3375
Heat preference 0.814
Pollination vector 0.3371
Maximal height 0.01918
Beginning of flowering period 0.061

Table A.6: Summary of the results of the correlation tests of the local extinction risk (as quantified
by the LER metric and averaged over all streets for each species) with the species traits listed in
Table 1. No significant correlation was identified when accounting for multiple testing (using the
Holm-Bonferroni method).

Value of Hinf Species
Hinf = 0 Plantago lanceolata

Sisymbrium officinale (*)
Hinf = 1 Chenopodium album

Polygonum aviculare
Senecio inaequidens
Veronica persica

Hinf = 2 Parietaria judaica
Sonchus oleraceus

Hinf = 3 Plantago major
Poa annua

Hinf = 4 Lactuca serriola
Sisymbrium irio
Bromus sterilis
Geranium molle
Lolium perenne

Hinf = 5 \
Hinf = 6 \
Hinf = 7 Conyza

Hordeum murinum
Senecio vulgaris
Taraxacum

Hinf = 8 Capsella bursa-pastoris
Stellaria media

Table A.7: Value of Hinf = min{h ∈ J0, HmaxK : P(H ≤ h|Obs) ≥ 0.05} for each species listed
in Table A.2. The posterior distribution of H was obtained by performing parameter inference simul-
taneously on all portions of streets listed in Table A.2, assuming that only pext and s differed from
one portion of street to another. Species in bold are species for which the absence of a seed bank
was identified (that is, for which P(H = 0|Obs) ≥ 0.95). The asterisk indicates species for which
neither the absence (see above) nor the presence (defined as P(H ≥ 1|Obs) ≥ 0.95) of a seed bank was
identified.
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(a) Distribution of the quotients of the average SMDs inside a street and between streets, grouped by species.
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(b) Distribution of the quotients of the average SMDs inside a street and between streets, grouped by street.

Figure A.3: Comparison of the average Standartised Mean Differences (SMDs) of the posterior distri-
butions of patch extinction probabilities computed between portions of the same streets or of different
streets. The plots correspond to the distribution of the quotients of the mean SMDs inside a street
and between streets, grouped by species (a) or by street (b).
We recall that the SMD measures the difference between two probability distributions. Therefore, a
quotient smaller than one indicates that posterior distributions of patch extinction probabilities are
on average closer between portions of a same street than between portions of different streets, while
a quotient larger than one indicates the opposite.
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B The BOA Process: Mathematical formulation and estimation7

procedure8

B.1 Formal definition of the BOA process9

Formally, the BOA process for a street with N patches observed for T years involves three dependent10

random variables:11

1. The seed age L = (Ln,t)n∈J1,NK,t∈J1,T K ∈ NN×T .12

The random variable Ln,t gives the age of the youngest seeds in patch n at the beginning of13

generation t. These seeds are viable (i.e., they can germinate and grow into plants) if and only14

if their age is below the maximal dormancy duration H.15

2. The extinction events E = (En,t)n∈J1,NK,t∈J1,T K ∈ {0, 1}N×T .16

We have En,t = 1 if an extinction event occurs in patch n during generation t, and En,t = 017

otherwise.18

3. The observations of standing vegetation O = (On,t)n∈J1,NK,t∈J1,T K ∈ {0, 1}N×T .19

We have On,t = 1 if plants are observed in patch n during generation t, after potential patch20

extinction events and before the seed production step, and we have On,t = 0 otherwise.21

At t = 1 (initial condition), each patch is randomly chosen to contain viable seeds with probability22

s ∈ [0, 1]. In that case, the age of the youngest viable seeds is chosen uniformly at random in23

{0, . . . , H}. Then, during each generation t, we follow these five steps.24

1. Germination step: In all patches n such that Ln,t ≤ H (i.e., in all patches containing viable25

seeds), some of the viable seeds germinate and grow into plants.26

2. Extinction step: Each patch containing plants is affected by an extinction event with proba-27

bility pext ∈ [0, 1], independently of other patches. This extinction event kills all the plants in the28

patch. Formally, the random variables (En,t)1≤n≤N are i.i.d. and follow a Bernoulli distribution29

with parameter pext ∈ [0, 1]. The patch n is affected by an extinction event during generation t30

if, and only if En,t = 1.31

3. Observation step: The observer records which patches contain standing vegetation. For each32

patch n, On,t is set to 1 if the patch contain plants, and to 0 otherwise.33

4. Seed production step: For each patch such that On,t = 1, we set

Ln,t+1 = Lmax(1,n−1),t+1 = Lmin(N,n+1),t+1 = 0.

9



For all remaining non-affected patches n′, we set Ln′,t+1 = Ln′,t + 1.34

5. All remaining plants die, for instance due to the action of gardeners.35

The BOA process is thus characterised by three parameters:36

• The initial proportion of occupied patches s ∈ [0, 1],37

• The maximal dormancy duration H ∈ N,38

• The patch extinction probability pext ∈ [0, 1].39

B.2 Bayesian framework used40

B.2.1 Model likelihood41

With the above description of the BOA process, we can now write the probability P(O, L | s, pext, H)42

that the observations O and the seed ages L are produced by the process, given that the true parameters43

are s, pext and H. Let us introduce the shortcut notations Ot = (O1,t, ..., ON,t) and Lt = (L1,t, ..., LN,t).44

As a first remark, note that the age Lt of the seeds at times t > 1 is a deterministic function of

the initial age of the seeds L1 and the previous observations O1, ..., Ot−1. This function defines the

seed production process; it can be written recursively as:

Ln,t+1 =


Ln,t + 1 if Omin(1,n−1),t = On,t = Omax(N,n+1),t = 0

0 otherwise.

As a consequence, we only need to compute the probability P(O, L1 | s, pext, H), since the remaining

values L2, ..., LT are a deterministic function of L1 and O. This probability can be decomposed as:

P(O, L1 | s, pext, H) = P(L1 | s, pext, H) × P(O | L1, s, pext, H).

At time t = 1, under the definition of the process introduced in the previous section, the seeds

L1 are either non viable (which we represent with a seed age equal to H + 1), or viable, with an age

chosen uniformly in {0, . . . , H}. Therefore, for all 1 ≤ n ≤ N , Ln,1 ∈ {0, ..., H + 1} and

P(Ln,1 = ℓ | s, pext, H) =


s

H+1 if ℓ ≤ H

1 − s if ℓ = H + 1.

10



As L1,1, ...LN,1 are independent, we can then compute P(L1 | s, pext, H) as

P(L1 | s, pext, H) = P(L1,1 | s, pext, H) × · · · × P(LN,1 | s, pext, H).

The probability P(O | L1, s, pext, H) can be decomposed under the form

P(O | L1, s, pext, H) =
T∏

t=1
P(Ot | Lt, s, pext, H).

This equation expresses the fact that the random variables Ot only depends on the quantity Lt (which

is itself a function of O1, ..., Ot−1, as described above). Then, each term in this equation can be

expressed separately, as follows:

P(On,t = 1 | Lt, s, pext, H) =


1 − pext if Ln,t ≤ H

0 otherwise.

This equation expresses the fact that plants can only be observed in patch n during generation t45

if 1) Lt ≤ H (i.e., if the youngest seeds present in the patch are viable) and 2) if no extinction46

event occurred (which happens with probability 1 − pext). As On,t is {0, 1}-valued, we also obtain47

P(On,t = 0 | Lt, s, pext, H) as 1 − P(On,t = 1 | Lt, s, pext, H).48

A consequence of the above observation is that conditionally on Lt, the random variables O1,t, ..., ON,t

are independent. Therefore, we can compute P(Ot | Lt, s, pext, H) as

P(Ot | Lt, s, pext, H) = P(O1,t | Lt, s, pext, H) × · · · × P(ON,t | s, pext, H).

We can combine these expressions to obtain the complete likelihood of the model, which is given49

by P(O, L1 | s, pext, H). Note that this quantity is different from the marginal likelihood of the50

observations P(O | s, pext, H). The latter would be ideally the one to use in practice (since L1 is51

unknown), but is unfortunately impossible to compute: formally, it writes as sum over all the (H +2)N52

possible configurations of seed ages at time t = 1, and the number of such configurations grows53

exponentially with N . As a consequence, we need to estimate L1 along with the model parameters54

s, pext, H.55

B.2.2 Bayesian methodology56

Since the observed data only spans a period of ten years, our estimation necessarily comprises a certain57

amount of uncertainty. In the context of complex hierarchical statistical models (of which the model58
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considered here is an example), Maximum Likelihood estimations only give the most likely value for59

s, pext and H, and cannot be used to obtain confidence regions around the estimated values. For this60

reason, methods like the EM are not suited to our study.61

Instead, we propose to work in a Bayesian framework. It consists in determining the posterior

distribution P(s, pext, H | O) of the parameters s, pext, H given the observed data O using Bayes’ rule:

P(s, pext, H | O) = P(O | s, pext, H)P(s, pext, H)
P(O) .

As we will see in the following sections, this formula can be used to draw samples from the distribution

P(s, pext, H | O), even though it may not be computed explicitly in practice. These samples are then

used to approximate the distribution. For instance, if we have M samples (s(m), p
(m)
ext , H(m))1≤m≤M

of the posterior distribution, the expectation of pext given O can be computed with a Monte-Carlo

approximation:

E[pext | O] ≃ p̄ext = 1
M

M∑
m=1

p
(m)
ext .

Similarly, the uncertainty on pext can be measured by computing its posterior variance

Var(pext | O) ≃ 1
M

M∑
m=1

(
p

(m)
ext − p̄ext

)2
.

Prior distribution In a Bayesian framework, the model parameters s, pext and H are considered62

as random variables. In order to apply Bayes’ rule and obtain the posterior distribution that we are63

interested in, their distribution a priori P(s, pext, H) must be defined in a way that reflects our (prior)64

knowledge of the model parameters. In this paper, we do not make any initial assumption on the65

model parameters, and consider the following simple, uninformative prior distributions:66

• The initial proportion of occupied patches s follows a uniform distribution over [0, 1].67

• Similarly, pext also follows a uniform distribution over [0, 1].68

• The maximal dormancy duration H follows a uniform distribution over the set of integers {0, . . . , Hmax}:

P(H) =


1/(Hmax + 1) if H ∈ {0, . . . , Hmax}

0 otherwise.

The pre-defined upper bound on the maximal dormancy duration is a consequence of the fact that with69

a limited number of years of observation, identifying long maximal dormancy durations (compared to70

the length of the observation window) can be an ill-posed problem and lead to identifiability issues.71
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We can then combine the different priors to obtain the complete prior distribution.72

B.2.3 Markov Chain Monte-Carlo sampler73

In order to compute the GER and the MaxGER extinction metrics, we need samples from the posterior

distribution P(pext, H | O). As explained earlier, this distribution takes an intractable form: using the

law of total probabilities it writes as

P(pext, H | O) =
∑

L1∈{0,...,H+1}N

∫ 1

0

P(O, L1, s, pext, H)
P(O) ds ,

which is a sum over an exponential number of terms. We overcome this hurdle by focusing instead on

the posterior distribution of (L1, s, pext, H) given O, which writes as:

P(L1, s, pext, H | O) = P(O, L1, s, pext, H)
P(O) .

Since this probability distribution is known up to a normalising constant, the method presented in74

the next section can be used to draw samples from it. This method will provide us with samples75

(L(m)
1 , s(m), p

(m)
ext , H(m))1≤m≤M , which then give the marginal distribution samples (p(m)

ext , H(m))1≤m≤M76

of the posterior distribution P(pext, H | O) that we are interested in.77

In practice, we will use a Markov Chain Monte Carlo (MCMC) sampler to draw approximate78

samples from the posterior distribution of P(L1, s, pext, H | O). Such methods rely on simple and fast79

iterations which generate a Markov chain whose invariant distribution is the target distribution we wish80

to sample from. After a certain amount of iterations, the samples of the Markov chain are very close81

from being true samples of the target distribution; they can thus be used in Monte-Carlo estimators82

to compute the GER and MaxGER metrics. Note that consecutive MCMC samples are correlated83

by definition, which increases the variance of Monte-Carlo estimations compared with independent84

samples, but does not affect the expectation of the estimator, which is unbiased as the number of85

samples grows large.86

B.2.4 Metropolis-Hastings within Gibbs sampler87

In this section, we detail the MCMC implemented in practice. For an introduction to classical MCMC88

methods, we refer the reader to (Robert and Casella, 2010). In this paper, we use the Metropolis-89

Hastings within Gibbs (MHwG) sampling algorithm, which is designed to draw samples from a general90

probability distribution π(x1, ..., xd) in a high-dimensional space. The general MHwG procedure is91

recalled in Algorithm 1. In the algorithm, x−k denotes the vector x where component k has been92

13



removed: the term π(xk | x−k) thus refers to the conditional distribution of xk given the remaining93

components of x. The algorithm mainly relies on the so-called proposal distributions qm
k : at each step94

m, the distribution qm
k proposes, given the m-th value of x−k, a random candidate for the next value95

of xk. Then, this candidate is accepted as the next value of xk with probability α.96

Algorithm 1: The Metropolis-Hastings within Gibbs algorithm
input : Target distribution π(x1, . . . , xd); number of samples M
Initialize x0

1, . . . , x0
d

for m = 1 to M do
for k = 1 to d do

Sample a candidate variable ym
k from a proposal distribution qm

k .
Define the acceptance ratio α = min

[
1,

qm
k (ym

k )π(xm−1
k

|xm−1
−k

)
qm

k
(xm−1

k
)π(ym

k
|ym

−k
)

]
Sample Bm

k ∼ Bernoulli(α).
If Bm

k = 0, set xm
k = xm−1

k . Otherwise, set xm
k = ym

k .
end

end
return (xm)1≤m≤M

MHwG for the BOA process In this paper, we are interested in the distribution P(L1, s, pext, H | O).97

In the MHwG algorithm, we will thus alternatively be sampling from s, pext, H and the components of98

L1. Since L1 has N components, at each step of the algorithm we only update a single coordinate Ln,199

for a patch n chosen at random. This allows spending more time on sampling the model parameters100

s, pext, H rather than the seed ages Ln,1, which in practice only contribute marginally to the likelihood.101

In order to obtain a complete algorithmic procedure, we need to specify the proposal distributions qm
k102

used at each step.103

• For H: the new value of H is chosen uniformly at random in {0, ..., Hmax}.104

• For Ln,1: the random value is sampled uniformly in {0, . . . , H + 1}. Values between 0 and H105

produce viable seeds, and the value H + 1 produces non-viable seeds.106

• For pext and s: instead of working with pext and s, we represent them as pext = h(ξp) and107

s = h(ξs), with h(x) = (1+exp(−x))−1 ∈]0, 1[ a sigmoid function. In the algorithm, the proposal108

value for ξp at step m is drawn from a Gaussian distribution N (ξm−1
p , σ2

p). Similarly, the proposal109

value for ξs is drawn from a Gaussian distribution N (ξm−1
s , σ2

s). The corresponding values for110

pexp and s are then obtained by applying h. The sigmoid representation allows sampling values111

very close to 0 or 1 as well as more centered values using a common proposal variance σ2
p or σ2

s .112

In the form we just described, the algorithm currently has a practical issue: a change in the value113

of H can change the initial state of some seeds from viable to non-viable, and conversely. Although114
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this is not a problem in itself, we noticed that it hinders the convergence in practice. Our intuition is115

that it is due to the fact that frequent changes in the value of H prevent the distribution of L1 from116

converging, as the viability of the seeds varies not only with the value of Ln,1, but also with H.117

We overcome this issue by defining a duplicate Lh
1 of L1 for each value of h ∈ {0, . . . , Hmax}. For

each h, we impose that Lh
1 ∈ {0, h + 1}; the distribution of L1 given H = h corresponds to Lh

1 . In

other words, by definition:

L1 =
Hmax∑
h=1

1{H=h}Lh
1 .

In practice, at each step of the MHwG algorithm, a random patch n is selected, and the variables118

L0
n,1, . . . , LHmax

n,1 are updated. Theoretically, these variables should be updated using the conditional119

distribution P(Lh
n,1 | s = s(m), pext = p

(m)
ext , H = H(m), O). However, it must be noted that, if h ̸= H(m),120

the value of Lh
1 does not play a role in the distribution of O. In other words, the variables Lh

1 and121

O are independent conditionally on H = H(m), and the conditional distribution of Lh
1 thus simplifies122

to a fixed base distribution over {0, . . . , h + 1}. As a consequence, if h ̸= H(m), the variable Lh
1123

is randomised to a distribution that does not depend on O. In order to bypass this hurdle, we124

change the conditional distribution P(Lh
n,1 | s = s(m), pext = p

(m)
ext , H = H(m), O) in the MHwG to125

P(Lh
n,1 | s = s(m), pext = p

(m)
ext , H = h, O). This modification results in an approximate MHwG126

procedure, which provides significantly better performances than the base algorithm.127

As a last point, the multiple variables L0
1, . . . , LHmax

1 must be modelled by distinct values of s: the128

proportion of viable seeds may vary depending on the value of h. In practice, s is thus replaced with129

a vector (s0, . . . , sHmax) ∈ [0, 1]Hmax+1, and the probability distribution of Lh
1 is defined using sh.130

Remark B.1. The variances σ2
p and σ2

s for the proposal distributions of ξp and ξs are tuned throughout131

the convergence of the MCMC in order to obtain an average proportion of accepted samples around132

30%. Larger variances lead to larger transitions, which are thus rejected more often; smaller variances133

lead to smaller transitions, which are easier to accept.134

B.3 The noisy BOA process135

The noisy BOA process adds a new parameter ε ∈ [0, 1], which controls the probability of what can be

interpreted as external colonisation (but was introduced to model noise in observations). Compared to

the standard BOA process, patches containing non-viable seeds or affected by an extinction event can

now contain plants with probability ε. This only changes the probability P(On,t = 1 | Lt, s, pext, H, ε):
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it now expresses as

P(On,t = 1 | Lt, s, pext, H, ε) =


1 − pext(1 − ε) if Ln,t ≤ H

ε otherwise.

As with s, pext and H, the posterior distribution of the parameter ε can be sampled from with

the MHwG algorithm. As the parameter ε was introduced to provide a buffer against noise in the

dataset rather than to model an actual biological phenomenon, we expect it to take very small values.

Therefore, we take a slack and slab prior distribution for ε, that is to say, a mixture of two uniform

distributions:

ε ∼ 1
2U([0, εm]) + 1

2U([0, εM ]).

In practice, we choose εm ≪ εM , e.g., εm = 1% and εM = 5%. The idea is to obtain a prior distribution136

concentrated around relatively small values, with a spike on very small values.137

We perform Metropolis transitions on the inverse sigmoid of ε, ξε = h−1(ε), with a Gaussian138

proposal with variance a σ2
ε tuned adaptively throughout the MCMC convergence.139

B.4 Handling multiple streets140

Finally, the method introduced in the previous sections seamlessly transposes to the case of observa-

tions of a given species in multiple streets, denoted O1, ..., OK . We assume that for each species, the

maximum dormancy duration H and the noise intensity ε are identical across all streets, but the initial

proportion of occupied patches sk and the extinction probability (pext)k depend the street 1 ≤ k ≤ K.

As in the previous case, we are interested in sampling from the distribution

P((pext)1, . . . , (pext)K , H, ε | O1, . . . , OK),

and, as in the previous case, we tackle this problem by instead sampling from the complete posterior

distribution

P((L1, s, pext)1, . . . , (L1, s, pext)K , H, ε | O1, . . . , OK),

which, up to the normalising constant P(O1, . . . , OK), is proportional to the function

P(O1, . . . , OK , (L1, s, pext)1, . . . , (L1, s, pext)K , H, ε).
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The MHwG can then be transposed to the multiple streets setting, by updating H, ε and the param-141

eters (L1, s, pext)k of each street k at each MHwG step.142

Using multiple streets at the same time allows reducing the uncertainty on the parameters H143

and ε, which benefit from the combination of all the observations; this is verified in our numerical144

experiments (see Supporting Information C.4).145
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C Assessment of the performances of the estimation procedure146

C.1 Parameter sets147

Parameter Values
Number of patches N 50, 100

Number of years of observation T 5, 10
Initial proportion of occupied patches s 0.2, 0.8

Patch extinction probability pext 0.1, 0.2, ..., 0.9
Maximal dormancy duration H 0, 1, 2, 5

Noise intensity ϵ 0.00, 0.01, 0.02, 0.05
Additional parameter sets - H = 0

Patch extinction probability pext pc(0) + x, x = −0.1, −0.08, ..., 0.08, 0.1
Additional parameter sets - H = 1

Patch extinction probability pext pc(1) + x, x = −0.1, −0.08, ..., 0.08, 0.1
Additional parameter sets - H = 2

Patch extinction probability pext pc(2) + x, x = −0.1, −0.08, ..., 0.08, 0.1
Additional parameter sets - H = 5

Patch extinction probability pext pc(5) + x, x = −0.1, −0.08, ..., 0.08, 0.1

Table C.1: Parameter sets used to compare the performances of the MaxGER and GER metrics. For
each parameter set, we simulated 30 BOA processes, and computed the average MaxGER and GER
over the 30 simulated processes.

Parameter Values
Number of patches N 50

Number of years of observation T 10
Initial proportion of occupied patches s 0.2, 0.8

Patch extinction probability pext 0.1, 0.35, 0.55, 0.75
Maximal dormancy duration H 0, 1, 2, 5

Additional parameter - False positives
False positive rate ϵpos 0.00, 0.01, 0.02, 0.05

Additional parameter - False negatives
False negative rate ϵneg 0.00, 0.01, 0.02, 0.05

Additional parameter - External colonization
External colonization rate ϵcol 0.00, 0.01, 0.02, 0.05

Table C.2: Parameter sets used to compare the performances of the MaxGER and GER metrics
on corrupted datasets (containing false positives, false negatives or external colonization). For each
parameter set, we simulated 30 BOA processes and computed the average MaxGER and GER over
the 30 simulated processes.
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Parameter Values
Number of patches N 30, 50

Number of years of observation T 5, 10
Initial proportion of occupied patches s 0.2, 0.8

Patch extinction probability pext 0.1, 0.35, 0.55, 0.75
Maximal dormancy duration H 0, 1, 2, 5

Noise intensity ϵ 0, 0.01, 0.02, 0.05
Number of streets M 1, 2, 5, 10

Table C.3: Parameter sets used to assess the effect of performing the estimation simultaneously on
multiple streets on the quality of the estimation of H. For each parameter set, we generated 30
simulations and performed parameter inference assuming that H and ϵ were constant across streets.

C.2 Comparison of the performances of the GER and MaxGER metrics148

C.2.1 Performances of the GER metric149

The following figures show the evolution of the GER metric as a function of the patch extinction150

probability pext. For each parameter set listed in Table C.1, we simulated 30 datasets and performed151

parameter inference under a noisy BOA process. We then computed the average GER across the 30152

simulations. The black vertical line indicates the critical patch extinction probability pc(H).153
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Figure C.1
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(N, T ) = (50, 10)
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Figure C.2

(N, T ) = (100, 5)
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Figure C.3
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(N, T ) = (100, 10)
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Figure C.4
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C.2.2 Performances of the MaxGER metric154

The following figures show the evolution of the MaxGER metric as a function of the patch extinction155

probability pext. For each parameter set listed in Table C.1, we simulated 30 datasets and performed156

parameter inference under a noisy BOA process. We then computed the average GER across the 30157

simulations. The black vertical line indicates the critical patch extinction probability pc(H).158
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Figure C.5
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(N, T ) = (50, 10)
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Figure C.6

(N, T ) = (100, 5)
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Figure C.7
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(N, T ) = (100, 10)
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C.2.3 Performances of the MaxGER metric on corrupted datasets159

The effect of the introduction of false negatives on the assessment of the MaxGER metric is mostly vis-160

ible when H = 0, for high patch extinction probabilities and when parameter estimation is performed161

under a BOA process without noise.162
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Figure C.9: Effect of the introduction of false negatives on the assessment of the MaxGER metric,
when estimation is performed under a BOA process or a noisy BOA process with ϵmax = 0.1. For each
parameter set listed in Table C.2, we simulated 30 datasets and performed inference under a BOA
process or a noisy BOA process with ϵmax = 0.1. The black vertical line indicates the critical patch
extinction probability pc(H).

The introduction of false positives has a very different outcome depending on whether the estima-163

tion is performed under a BOA or noisy BOA process. This is particularly visible when H = 0 or 1164

and for high patch extinction probabilities.165
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Figure C.10: Effect of the introduction of false positives on the assessment of the MaxGER metric,
when estimation is performed under a BOA process or a noisy BOA process with ϵmax = 0.1. For each
parameter set listed in Table C.2, we simulated 30 datasets and performed inference under a BOA
process or a noisy BOA process with ϵmax = 0.1. The black vertical line indicates the critical patch
extinction probability pc(H).
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The same observation can be made in the presence of low rates of external colonization.166

0.2 0.4 0.6
0.0

0.2

0.4

0.6

0.8

1.0

BO
A

H = 0

0.2 0.4 0.6
0.0

0.2

0.4

0.6

0.8

1.0
H = 1

0.2 0.4 0.6
0.0

0.2

0.4

0.6

0.8

1.0
H = 2

0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0
H = 5

0.2 0.4 0.6
0.0

0.2

0.4

0.6

0.8

1.0

No
isy

 B
OA

H = 0

0.2 0.4 0.6
0.0

0.2

0.4

0.6

0.8

1.0
H = 1

0.2 0.4 0.6
0.0

0.2

0.4

0.6

0.8

1.0
H = 2

0.25 0.50 0.75
0.0

0.2

0.4

0.6

0.8

1.0
H = 5

εcol = 0.0
εcol = 0.01
εcol = 0.02
εcol = 0.05
pc(H)

Figure C.11: Effect of the introduction of external colonization on the assessment of the MaxGER
metric, when estimation is performed under a BOA process or a noisy BOA process with ϵmax = 0.1.
For each parameter set listed in Table C.2, we simulated 30 datasets and performed inference under
a BOA process or a noisy BOA process with ϵmax = 0.1. The black vertical line indicates the critical
patch extinction probability pc(H).

C.3 Performances of the estimation of pext and H167

0.10 0.35 0.55 0.75
0.00

0.05

0.10

0.15

0.20

BO
A

H = 0

0.10 0.35 0.55 0.75
0.00

0.05

0.10

0.15

0.20
H = 1

0.10 0.35 0.55 0.75
0.00

0.05

0.10

0.15

0.20
H = 2

0.10 0.35 0.55 0.75
0.00

0.05

0.10

0.15

0.20
H = 5

0.10 0.35 0.55 0.75
0.00

0.05

0.10

0.15

0.20

No
isy

 B
OA

H = 0

0.10 0.35 0.55 0.75
0.00

0.05

0.10

0.15

0.20
H = 1

0.10 0.35 0.55 0.75
0.00

0.05

0.10

0.15

0.20
H = 2

0.10 0.35 0.55 0.75
0.00

0.05

0.10

0.15

0.20
H = 5

εneg = 0.0
εneg = 0.01
εneg = 0.02
εneg = 0.05

Figure C.12: Root Mean Square Error (RMSE) on the estimation of pext in the presence of false
negatives, when performing parameter inference under a BOA process or a noisy BOA process with
ϵmax = 0.1. For each parameter set listed in Table C.2, we simulated 30 datasets and performed
inference under a BOA process or a noisy BOA process with ϵmax = 0.1.
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Figure C.13: Root Mean Square Error (RMSE) on the estimation of pext in the presence of false
positives, when performing parameter inference under a BOA process or a noisy BOA process with
ϵmax = 0.1. For each parameter set listed in Table C.2, we simulated 30 datasets and performed
inference under a BOA process or a noisy BOA process with ϵmax = 0.1.
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Figure C.14: Root Mean Square Error (RMSE) on the estimation of pext in the presence of external
colonization, when performing parameter inference under a BOA process or a noisy BOA process with
ϵmax = 0.1. For each parameter set listed in Table C.2, we simulated 30 datasets and performed
inference under a BOA process or a noisy BOA process with ϵmax = 0.1.
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Figure C.15: Average value of |Hinf − H| in the presence of false negatives, false positives or external
colonization, when performing parameter inference under a BOA process or a noisy BOA process with
ϵmax = 0.1. For each parameter set listed in Table C.2, we simulated 30 datasets and performed
inference under a BOA process or a noisy BOA process with ϵmax = 0.1.
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C.4 Handling multiple streets168
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Figure C.16: Effect of performing the estimation simultaneously on multiple streets on the quality of
the estimation of H, when the maximal dormancy duration H and the noise intensity ϵ are constant
across streets. The parameter sets used are listed in Table C.3.

References169

Gargominy, O., Tercerie, S., Régnier, C., Ramage, T., Schoelinck, C., Dupont, P., Vandel, E., Daszkiewicz,170

P., & Poncet, L. (2014). Taxref v8. 0, référentiel taxonomique pour la france: Méthodologie,171

mise en oeuvre et diffusion. Rapport SPN, 42, 2014.172

Robert, C., & Casella, G. (2010). Monte Carlo Statistical Methods. Springer.173

29


