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Abstract
Objective: This study was initiated and conducted by several laboratories, 3 of 
the main cosmetic ingredient suppliers and 4 brands of cosmetics in France. Its 
objective is to show the interest and robustness of coupling chemical and genetic 
analyses in the identification of plant species. In this study, the Lavandula genus 
was used.
Methods: In this study, we used two analytical methods. Chemical analysis from 
UHPLC (ultra-high-performance liquid chromatography) and genetic analysis 
from barcoding with genetic markers.
Results: Eleven lavender species were selected (botanically authenticated) and 
analysed. The results show that three chemical compounds (coumaric acid hexo-
side, ferulic acid hexoside and rosmarinic acid) and three genetic markers (RbcL, 
trnH-psbA and ITS) are of interest for the differentiation of species of the genus 
lavandula.
Conclusion: The results show that the combination of complementary analytical 
methods is a relevant system to prove the botanical identification of lavender spe-
cies. This first study, carried out on a plant of interest for cosmetics, demonstrates 
the need for authentication using a tool combining genetic and chemical analysis 
as an advance over traditional investigation methods used alone, in terms of iden-
tification and authentication reliability.

K E Y W O R D S

barcoding, bioinformatics, chemical analysis, lavender, plant authentication

Résumé
Objectif: Cette étude a été lancée et menée par plusieurs laboratoires, trois des 
principaux fournisseurs d’ingrédients cosmétiques et quatre marques de cosmé-
tiques en France. Son objectif est de montrer qu’associer les analyses chimiques 
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INTRODUCTION

Nowadays, the sourcing of plant raw materials is a major 
issue for the cosmetic and nutraceutical industries for dif-
ferent reasons: security, marketing and ethics [1, 2]. It is also 
necessary to evaluate the plant composition to detect other 
contaminating plant species. The control by chemical anal-
ysis to detect potentially harmful compounds resulting from 
harvest conditions (phytosanitary products or plant patho-
gen contents) or other chemical molecules used to decrease 
the cost production is also important [3]. All plant species 
are susceptible to be adulterated. For example, the substitu-
tion of Japanese star anise (Illicium anisatum) can be done 
with Chinese star anise (Illicium verum) [4]. This confusion 
in health drinks can cause neurological and gastrointestinal 
symptoms for infants [5]. Many cases of fraud have been de-
tected in lavender essential oil and honey [6, 7].

Lavandula (L.) species are endemic of different world 
areas/northern Africa, the Mediterranean, south-west 
Asia, Arabia and western Iran [8, 9]. Lavandula genus 
(Lamiaceae) includes 39 species and a multitude of culti-
vars and field varieties exceeding 400 [10–12]. The majority 
of the species in this genus are constituted by small ever-
green shrubs, with aromatic foliage and flowers [13]. Due 
to these particularities, the majority of lavenders are the 
subject of several scientific studies. This plant has great eco-
nomic importance in perfumery and cosmetics, food man-
ufacturing and aromatherapy [14, 15]. To increase the level 

of specific chemical molecules in plants, new cultivars have 
emerged through classical breeding programmes, for in-
stance, fertile Lavandula × intermedia cultivars have been 
generated by crossbreeding of L. angustifolia and L. latifo-
lia [9, 16]. Consequently, the presence of many cultivars 
requires to increase controls. To distinguish them, three 
techniques have been developed, previously the chemical 
identification with HPLC-UV-MS (high-performance liq-
uid chromatography with mass spectrometry) or GC-MS 
(gas chromatography–mass spectrometry) and more re-
cently genetic identification with barcoding [17–19].

European Medicines Agency (EMA) suggests that spe-
cific identification tests for substitute and adulterant detec-
tion must be performed. One can either use a combination 
of separate chromatographic approaches (HPLC with TLC-
densitometry) or combine different approaches into a sin-
gle procedure (HPLC-UV, HPLC-MS or GC-MS) (European 
Medicines Agency, 2006). Concerning the lavender essen-
tial oil, it is mainly obtained from L. angustifolia. This spe-
cies is the most expensive lavender because the quality of its 
essential oil is better compared to other Lavandula species 
[20, 21]. It can be falsified with other oils (lavandin or spike) 
or with synthetic molecules such as linalyl acetate [22]. To 
authenticate the lavender oil, the relative abundance of 
compounds such as linalool, linalyl acetate, borneol, cam-
phor and 1,8-cineole is quantified by GC-MS analysis [23]. 
However, the quality of the essential oil and its chemical 
composition are depending on the geographic region of 

et génétiques dans l’identification des espèces végétales présente un intérêt et est 
une approche solide. Dans cette étude, c’est le genre Lavandula qui a été utilisé.
Méthodes: Dans cette étude, nous avons fait appel à deux méthodes analytiques. 
L’analyse chimique, à partir de la chromatographie en phase liquide à haute per-
formance (ultra-high-performance liquid chromatography, UHPLC), et l’analyse 
génétique en procédant à un codage à barres avec des marqueurs génétiques.
Résultats: Onze espèces de lavande ont été sélectionnées (authentifiées du point 
de vue botanique) et analysées. Les résultats montrent que trois composés chim-
iques (acide coumarique hexoside, acide ferulique hexoside et acide rosmarin-
ique) et trois marqueurs génétiques (RbcL, trnH-psbA et ITS) présentent un 
intérêt pour la différenciation des espèces du genre lavandula.
Conclusion: Les résultats montrent que la combinaison de méthodes analy-
tiques complémentaires est un système pertinent pour prouver l’identification 
végétale des espèces de lavande. Cette première étude, réalisée sur une plante qui 
offre un intérêt pour les cosmétiques, démontre la nécessité de procéder à une au-
thentification à l’aide d’un outil qui conjugue analyse génétique et chimique ; elle 
représente une avancée par rapport aux méthodes d’investigation traditionnelles 
utilisées seules, en termes d’identification et de fiabilité de l’authentification.
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origin [24]. Moreover, their chemical authentication and 
molecule distribution can be phenotypically influenced by 
the environmental conditions which might lead to a prob-
lem in botanical origin identification [25, 26].

More recently, a new method involving genetic analy-
sis has emerged, barcoding analysis [27–30]. This method 
is an approach for species identification using a specific 
part of nuclear, mitochondrial or chloroplastic DNA se-
quences, to identify an organism [27, 31]. Currently, DNA 
barcoding is considered as an efficient technique used to 
identify cases of adulteration and to specifically identify 
the plant species present in a raw material mixture, plant 
or food product [30, 32, 33]. In 2009, the The Consortium 
for the Barcode of Life (CBOL) proposed to identify a 
specific universal genetic region for the identification of 
plant species (e.g. in CBOL Plant Working Group et al., 
2009). However, this project has been hindered by the 
lack of genetic data and the presence of many cultivars 
and hybrids. Currently to identify plant species by bar-
coding analysis, several genes are used, plastid-encoded 
large subunit of RuBisCO (rbcL), maturase-K (matK) or 
plastid intergenic spacer trnH-psbA and the nuclear in-
ternal transcribed spacer (ITS) [34, 35]. Concerning the 
Lavandula genus, the presence of diverse lavender species 
implicates the need for a reliable botanical identification 
system. For lavender, many barcoding analyses used a 
single marker to build the Lavandula genus phylogenetic 
relationships’ tree [36, 37]. Recently, a study has used an-
other type of genetic markers, the single sequences repeat 
markers (SSR) from ESTs (Expressed Sequence Tag) of 
L.  angustifolia and L.  ×  intermedia to discriminate this 
species [38]. But genetic markers seem to be not sufficient 
in differentiation of closely related species because there 
are many conserved regions of the transcribed sequences.

To control the quality of lavender raw materials, it is 
necessary to confirm their identity to ensure the species 
distinction and traceability. In this study, we proposed to 
combine chemical analysis (UHPLC) and genetic analy-
sis (barcoding) to identify different lavender species. This 
study is based on botanically authenticated samples from 
botanical gardens.

MATERIALS AND METHODS

Plant materials

Ten samples of Lavandula (L.): L.  angustifolia (varieties 
White and Blue), L. angustifolia × L. dentata (L. allardi), 
L. canariensis, L. dentata, L. × intermedia (varieties ‘Abrial’ 
and ‘Grosso’), L. latifolia, L. pinnata, L. stoechas and one out-
group species Perovskia atriplicifolia—were collected from 
two French botanical gardens, the “Musée de la lavande 
Ardèche” and the “Musée de la Parfumerie of Grasse.” All 
samples were dried and stored in silica gel at room temper-
ature (22–25°C). Botanical authentication vouchers were 
established by the company Botanicert, Grasse.

DNA barcoding

DNA extraction, amplification and sequencing

Genomic DNA was extracted from dried leaves and stem 
samples (~100 mg) using NucleoMag Plant kit® (Macherey 
nagel®) according to the manufacturer's protocol. The 
quantity and quality of DNA extracts were quantified 
and verified by spectroscopy using a SimpliNano® mi-
crovolume spectrophotometer (GEe HealthCare®). Two 
barcodes regions were chosen in the database “BOLD 
Systems v3” and one barcode primer was designed using 
primer3plus software (Table 1) [39, 40]. rbcl and trnH-
psbA primers have ambiguous nucleotide bases because 
they allow the identification of a large number of plant 
species. All three barcodes were amplified by PCR (poly-
merase chain reaction). The PCR conditions were 95°C 
for 10 min, followed by 35 cycles at 95°C for 30 s, primer 
melting temperature depending on the primers for 30 s 
and 72°C for 1 min, with a final incubation at 72°C for 
7 min. The amplified PCR products were controlled using 
a QIAxcel system (Qiagen®) to be sure that the DNA has 
been amplified and is in a sufficient quantity for sequenc-
ing. Amplified DNA products were directly sequenced 
with standard Sanger sequencing protocols on Applied 

T A B L E  1   Markers and their characteristics

Marker name Genetic region Primer name Sequence (5′−3′)

B1 rbcl rbcLbF AGACCTWTTTGAAGAAGGTTCWGT

rbcLbR TCGGTYAGAGCRGGCATRTGCCA

B2 trnH-psbA psbA3′ f GTTATGCATGAACGTAATGCTC

trnHf_05 CGCGCATGGTGGATTCACAATCC

Lav1 ITS LavF1 CTGCGGAAGGATCATTGT

LavR1 TTGATATGCTTAAACTCAGC
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Biosystems SeqStudio Genetic Analyzer® (Thermo Fisher 
Scientific®).

Genetic data analysis

Geneious® software was used to assemble raw data, 
create a consensus sequence with a combination of 
F and R sequences [41]. All of the sample sequences 
were selected to construct a tree with UPGMA method. 
Bootstrap tests were conducted using 1000 replicates 
to estimate the identification efficacy of phylogenetic 
relationships.

UHPLC analysis

Extraction solvent choice and sample 
preparation

A dried powdered sample test was precisely weighed 
(1  g) and introduced in 10  ml of different solvents: 
H2O, EtOH/H2O (3:7 w/w), EtOH/H2O (3:1 w/w), 
MeOH and DMSO (DiMethyl SulfOxide). Extractions 
were carried out using an ultrasonic extraction at room 
temperature during 10 min. To extract the majority of 
metabolites, the solution was filtered through a cellu-
lose membrane (0.22 µm). EtOH (3:1) was selected as 
extraction solvent because it provides the highest level 
of compounds.

Instrumentation and analytical Conditions

A specific method was developed to provide a good sepa-
ration of the major part of the non-targeted compounds. 
UHPLC-DAD analysis was performed with 1 μl injection in 
Kinetex C18 column (Phenomenex 2.6 μm, 150 × 2.1 mm). 
The following mobile phase was used with a flow rate of 
0.6 ml/min: start with 5% of acetonitrile with 0.01% formic 
acid (B) to 40% for 9  min then 40% to 100% of (B) from 
9 to 15  min and 100% during 5  min, where (A) is 0.01% 
formic acid in water and (B) is acetonitrile with 0.01% 
formic acid. The UV detection was performed by Waters 
ACQUITY® DAD and the absorbance was measured at 
“max plot” (200–450 nm). Mass detection was performed 
by Waters ACQUITY® SQD1 Electro Spray Ionization in 
positive mode, with a source temperature of 150°C, a de-
solvation temperature of 500°C and a capillary voltage of 
3.5 kV. Two voltage cones were used simultaneously (10 
and 40  V). For peak identification, different analytical 
standards were used through comparison with retention 
time and mass spectra.

RESULTS

UHPLC analysis

Chemical marker identification and selection

The ethanol extract constituents of the lavender samples 
were determined by UHPLC-UV-MS. EtOH (3:1) was se-
lected as extraction solvent because it provides the highest 
level of non-target compounds. Chromatogram analysis 
detected 99 major compounds present in the samples (Data 
S1). Comparison of chromatograms of the different sam-
ples (triplicate analysis for each compound) allowed to 
identify 7 compounds with significant peak area values in 
at least one of lavender analysed samples (Figure 1). Four 
compounds belonged to the hydroxycinnamic acid family, 
compound n°8 (coumaric acid hexoside), compound n°14 
(ferulic acid hexoside), compound n°21 (a molecule derived 
from coumaric acid) and compound n°53 (rosmarinic acid). 
Two others compounds belonged to the family of phenyl-
propanes, compound n°15 (glucoside of hydroxycinnamic 
acid) and compound n°16 (derivative from cinnamic acid). 
Finally, the last compound was part of the flavone family, 
compound n°37 (luteoline-7-O-glucuronide).

Chemical profile

Figure 1 shows the chromatography profiles of the sam-
ples. The set of molecules identified is presented in Data 
S1. Among the 99 compounds measured by the analyses of 
the 11 samples, metabolites, which have the highest mo-
lecular weight (Data S1), were identified.

Different and similar profiles are shown in Figure 1. 
The samples of Lavandula angustifolia (cv. “White” and 
cv. “Blue”) and Lavandula  ×  intermedia (cv. “Abrial” 
and cv. “Grosso”) have very similar chemical profiles. 
These samples showed two main peaks at retention times 
of 3.23  min and 4.10  min (blue rectangle). Samples of 
Lavandula allardi, Lavandula dentata and Lavandula lati-
folia showed quite similar chemical profiles. They had the 
particularity of presenting important peaks at retention 
times of 4.31 and 6.52 min (green rectangle). The chemical 
profiles of the samples of Lavandula pinnata (orange rect-
angle), Lavandula stoechas (purple rectangle), Perovskia 
atriplicifolia (pink rectangle) and Lavandula canariensis 
(red rectangle) appeared to be unique.

Cluster identification

The two important peaks for samples of Lavandula 
angustifolia (cv. “White” and cv. “Blue”) and 
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Lavandula × intermedia (cv. “Abrial” and cv. “Grosso”) 
corresponded to coumaric acid hexoside (compound 8, 
retention time 3.23 min) and ferulic acid hexoside (com-
pound 14, retention time 4.10 min). The presence of these 
molecules was the first selection criterion. These samples 
constituted cluster 1 (Table 2). In this cluster, species 
Lavandula angustifolia cv. “Blue” and Lavandula  ×  in-
termedia cv. ‘‘Grosso’’ presented very similar profiles. 
They both presented a high proportion of rosmarinic 
acid (compound 53, retention time 6.52 min) (criterion 
2), two molecules derived from cinnamic acid (hydroxy-
cinnamic acid glucoside (retention time 4.31 min, com-
pound 15) and one unknown substance which is not 
present in the database (retention time 4.40  min, com-
pound 16)) (criterion 3) compared to the other two spe-
cies in this cluster.

The species Lavandula allardi, dentata and latifolia 
also showed similar chemical profiles. They were the clus-
ter 2 (Table 1). They presented criterion 2, that is a high 
proportion of rosmarinic acid, but also criterion 3, which 
is the presence of two molecules derived from cinnamic 
acid. In this cluster, the species Lavandula dentata also 
presented coumaric acid hexoside (compound 8, retention 
time 3.23 min) and ferulic acid hexoside unlike the other 
two species.

The species Lavandula pinnata, Lavandula stoechas 
cv. “Pedunculata,” canariensis and Perovskia atriplicifolia 
presented no traces of the two molecules derived from 
cinnamic acid (criterion 4). This criterion was character-
istic of cluster 3 (Table 1). The species Lavandula stoechas 
cv. Pedunculata, canariensis and Perovskia atriplicifolia 
were the only species which show depsides (compound 
51 (6.45 min), 55 (6.66 min), 56 (6.71 min), 57 (7.08 min), 
59 (7.16 min), 66 (7.56 min), 73 (8.27 min), 74 (8.46 min) 
and 77 (9.07 min)), characteristic of cluster 4. The species 
Lavandula stoechas cv. “Pedunculata” presented linalyl 
acetate (12.79 min, compound 93). This criterion differ-
entiates it from the other samples and classifies it in clus-
ter 5. Perovskia atriplicifolia is the only species studied 
which presents diterpenes 94 (12.85 min), 95 (12.85 min) 
and 96 (13.28 min)) characteristic molecules of cluster 6.

DNA barcoding analysis

Bold DNA barcoding markers results

From the literature, two potential genetic markers (rbcl 
(RuBisCo large subunit) (B1) and trnH-psbA (B2)) were 
selected in the BOLD Database (Barcode of Life Data 

F I G U R E  1   UHPLC-DAD 
chromatograms of 11 Lavander samples. 
The blue, green, yellow, purple, pink 
and red rectangles correspond to the 
representative molecules of cluster 1, 2, 3, 
4 and 5 respectively [Colour figure can be 
viewed at wileyonlinelibrary.com]
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System). All samples were successfully amplified from 
total DNA and sequenced. Sequence analysis showed 
the same length between samples for each marker, re-
spectively, rbcl had 690 bp and trnH-psbA had 273 bp. To 
analyse the result, an alignment was performed to iden-
tify the discriminated species. Moreover, a phylogenetic 
tree was constructed based on the compilation of rbcl and 
Trnh-psba (Figure 2). The UPGMA tree, which was car-
ried out with the rbcl and trnH-psbA markers, showed that 
4 species can be fully differentiated, Lavandula pinnata, 
Lavandula stoechas cv. “Pedunculata,” Perovskia atriplici-
folia and Lavandula canariensis.

This tree also revealed three differentiated clusters 
(A, B and C). These clusters gather samples that have 
the same genetic sequences for each genetic marker 
studied. The first cluster, A, included Lavandula an-
gustifolia (white variety) and two lavandin (Lavandula 
x intermedia cv. “Abrial” and Lavandula ×  intermedia 
cv. “Grosso”). The second cluster, B, was composed of 
Lavandula angustifolia cv. “Blue” and Lavandula lati-
folia. The third cluster, C, included Lavandula allardi 
and Lavandula dentata.

Specific Lavander DNA barcoding 
marker results

To identify more lavender species, a specific marker for the 
genus Lavandula was created. This marker was located in 
the ITS (Internal transcribed spacer) locus (Lav marker). 

This marker was created thanks to GenBank® database 
chloroplast sequences of genus Lavandula. All 11  sam-
ples were successfully amplified and sequenced with 
this marker. The Lav marker presented a size of 490 bp. 
To identify the species differentiated with this marker, a 
UPGMA phylogenetic tree was created (Figure 3). This tree 
was built using chimeric genetic sequences. It showed that 
5  species can be fully differentiated, Lavandula pinnata, 
Lavandula stoechas cv. “Pedunculata,” Perovskia atriplici-
folia, Lavandula canariensis and Lavandula latifolia. As in 
Figure 2, two new clusters, D and E, could be identified. 
They gather samples that have the same genetic sequences 
for the ITS marker. Clusters D includes Lavandula angus-
tifolia cv. “White,” Lavandula angustifolia cv. “Blue” and 
the two lavandins (Lavandula  ×  intermedia cv. "Abrial" 
and Lavandula × intermedia cv. "Grosso"). Cluster E was 
composed of Lavandula allardi and Lavandula dentata.

Compiling all the results from these three markers led 
to a new phylogenetic tree (Figure 4) that allowed differ-
entiation of 6 lavender species:

Lavandula pinnata, Lavandula stoechas cv. “Pedunculata,” 
Perovskia atriplicifolia, Lavandula canariensis, Lavandula 
latifolia and Lavandula angustifolia cv. “Blue.”

The tree also showed two groups two samples groups 
with identical sequences for the three markers used:

The first group F included Lavandula angustifolia cv. 
“White” and the two lavandins (Lavandula x intermedia 
cv. "Abrial" and Lavandula x intermedia cv. "Grosso").

The second cluster, G, was composed of Lavandula al-
lardi and Lavandula dentata.

Samples Cluster

Criteria

1 2 3 4 5 6 7

Lavandula angustifolia cv. “White” 1 x x

Lavandula angustifolia cv. “Blue” x x x x

Lavandula × intermedia cv. “Abrial” x x

Lavandula × intermedia cv. “Grosso” x x x x

Lavandula allardi 2 x x

Lavandula dentata x x x

Lavandula latifolia x x

Lavandula pinnata 3 x x

Lavandula canariensis 4 x x x

Lavandula stoechas cv. “Pedunculata” 5 x x x x

Perovskia atriplicifolia 6 x x x x

Note: Each criterion was selected by major presence or absence of compounds. The “x” validates the 
criterion. The samples were classified into each cluster according to the following criteria. Criteria 
1: compounds 8 (Coumaric acid hexoside) and 14 (Ferulic acid hexoside) major presence, Criteria 
2: Compound 53 (rosmarinic acid) major presence, Criteria 3: presence of compounds 15 (hydroxy 
hydrocinnamic acid glucoside) and 16 (cinnamic acid derivative), Criteria 4: absence of compounds 15 
and 16, Criteria 5: presence of depsides family, Criteria 6: presence of compound 93 (Linalyl acetate), 
Criteria 7: presence of diterpenes family.

T A B L E  2   Criteria for differentiating 
samples
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DISCUSSION

The aim of this study was the development of new method 
to authenticate lavender species in order to solve adultera-
tion issues in lavender use. To do so, we combined chemi-
cal analysis (UHPLC) and genetic analysis (barcoding) 
that allowed to differentiate 6 lavender species.

Chemical analysis

Chemical analysis enables us to identify 6  clusters and 
give first elements to differentiate several species of the 
genus Lavandula. Cluster 1 is characterized by the pres-
ence of compounds 8 and 14 as an important part in the 
discrimination of these group species. However, these 

F I G U R E  2   Phylogenetic tree of plant 
samples with rbcl and trnH-psbA genetic 
markers. Phylogenetic tree built with 
chimeric sequences of rbcl and trnH-psbA 
genetic markers results using Geneious® 
software with UPGMA method. Branch 
support was based on 1000 bootstrap 
replicates and is shown at the nodes. The 
bar represents 0.004 substitutions per site

F I G U R E  3   Phylogenetic tree of 
plant samples with Lav genetic marker. 
Phylogenetic tree built with compilation 
of rbcl and trnH-psbA markers genetic 
data using Geneious® software with 
UPGMA method. Branch support was 
based on 1000 bootstrap replicates and is 
shown at the nodes. The bar represents 
0.004 substitutions per site
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compounds being volatile, they may be absent or irrel-
evant in older samples. For instance, it is well known 
that the quantity of coumaric acid (compound n° 8) can 
fluctuate according to the stage of development and time 
[42]. This compound is also involved in stress resistance 
mechanisms in plants, which can result in significant 
concentration fluctuations [43]. In addition, coumaric 
acid and ferulic acid hexoside may also take their origin 
from biotic stress response [44].

In this cluster, Lavandula angustifolia cv. “White” and 
Lavandula x intermedia cv. “Abrial” could also be differ-
entiated. Indeed, the ratio of rosmarinic acid is close to 
the background noise or absent in these samples. In order 
to confirm this molecule as a marker of differentiation, a 
study of several development stages of each species would 
be necessary to conclude [45].

Rosmarinic acid is a member of the depsides family. 
Depsides produce phenolic acid which is furthermore 
studied by many research centres because of its proven 
antioxidant properties, immunostimulant, anti-tumour, 
anti-inflammatory and anti-aggregation properties [46–
48]. In this study, a majority of depsides is observed in 
Lavandula stoechas cv. “Pedunculata,” canariensis and 
Perovskia atriplicifolia. The presence of these molecules 
constitutes criterion 5 and allows us the differentiation of 
these species. Their presence is confirmed by recent liter-
ature, Lamiaceae family seems to be a rich source of plant 
species containing large quantities of depsides [49, 50].

Concerning criterion 3 identification, the presence of 
cinnamic acid-derived molecules could be a good iden-
tification marker. Indeed, cinnamic acid derivatives are 
already known as plant authentication markers [51]. To 
confirm it, these markers will require quantification and 
analysis of multiple samples [52].

Compounds from different families may be present 
and may be related to contamination, adulteration or sig-
nificant species differences. This is the case of the species 
Perovskia atriplicifolia, also called "Russian sage," which 
is closer to the species of Salvia sp. than other species 
of Lavandula sp. The presence of diterpenes is signifi-
cantly different and excludes this sample from the panel. 
The Lavandula stoechas species also contains other com-
pounds of this family (flavanone and terpene derivatives: 
compounds 48 and 69).

This chemical method allows us to identify molecules 
of interest in different lavender species. The presence or 
absence of some of them gives the keys to group the an-
alysed samples in different clusters. In our study, couma-
ric acid hexoside, ferulic acid hexoside and rosmarinic 
acid are very interesting compounds and can be used as 
first elements to differentiate several species of the genus 
Lavandula and also to give clues for the identification of 
related species, especially those present in groups 1 and 
2. However, phytochemical similarities between several 
samples and uncertainties related to natural variability 
(specific growth stages and conditions) did not allow a 

F I G U R E  4   Phylogenetic tree of plant 
samples with a chimeric construction of 
all genetic marker results. Phylogenetic 
tree built with all genetic markers (BOLD 
markers and new specific designed 
marker) results using Geneious® software 
with UPGMA method and the bootstrap 
values from 1000 replicates. The bar 
represents 0.006 substitutions per site
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sure authentication of these species. These distinctions 
in the composition of secondary metabolites could be 
due to genetic modifications linked to the adaptation of 
these plant species to their environment. To confirm these 
results, further chemical analyses are necessary. In our 
study, we used genetic analysis to confirm and complete 
these results.

Genetic analysis

In this study, we have shown that barcoding tool allows 
to identify 5 species of lavender and to discriminate with 
certainty two fine lavender at variety taxonomy level. 
Lavandula allardi and dentata species are in the same 
group. Lavandula allardi is the result of a genetic-cross 
between Lavandula angustifolia and Lavandula dentata 
species which explains this result. This result is confirmed 
by [7]. It shows that the barcoding technique allows to 
eliminate the variation due to the natural variability or the 
stage of maturity of the plant. However, in our study we 
go further, differentiating two fine lavender (Lavandula 
angustifolia) varieties, blue and white from each other. 
Results also show a group including L.  angustifolia cv. 
“White” variety and both lavandin that is the result of 
genetic-cross with fine lavender [53]. These results are 
also confirmed by [54]. This result shows that the barcod-
ing technique can in some cases allow us identification at 
the level of variety taxonomy. For further variety identi-
fication, microsatellite and snp markers will be needed. 
Our results allow us to go further with a set of three mark-
ers to analyse other lavender species. We used two BOLD 
DNA barcode primers for flowering plants, RbcL and 
trnH-psbA, and we built specific ITS primer for this study 
[55, 56]. The ITS marker was designed specifically for 
this study and works specifically on those species of the 
genus Lavandula but it can also work on other botanical 
genera. These 3 markers distinguish Lavandula pinnata, 
Lavandula stoechas cv. “Pedunculata,” Lavandula ca-
nariensis and the outgroup Perovskia atriplicifolia. These 
data provide new information on the distinction of genus 
Lavandula species. We show that these three markers 
(RbcL, trnH-psbA and ITS) are important to differentiate 
the species of the genus lavandula. So it is important to 
use several genetic markers to obtain an accurate identi-
fication of the species taxonomic rank. Indeed, it will be 
necessary to identify another genetic marker to differen-
tiate species in groups F and G. The species included in 
these groups, are very close from genetic, chemical and 
morphological points of view.

The creation of specific barcoding markers or microsat-
ellite or snp genetic markers could give the possibility to 
assign at the species level as confirmed by several scientific 

reports [57, 58]. However, morphological differences be-
tween species could result from post-transcriptional mod-
ifications [59, 60]. In this case, a simple transcriptional 
analysis or an additional chemical analysis to quantify the 
presence of specific metabolites could differentiate them.

Association of chemical analysis and 
genetic analysis

This study provides initial insights into the benefits of 
compiling genetic and chemical analyses in plant species 
authentication domain, as currently only chemical analy-
ses are mandatory [3]. However, we know that there are 
limitations when only chemical authentication analyses 
are used, for specific raw materials or commercial prod-
ucts. Indeed, the results depend on the stage of devel-
opment of the plant and the organ analysed [61, 62]. In 
addition, some molecules can be degraded in the time and 
cause different analysis results.

It is therefore sometimes difficult to obtain reproduc-
ible results between samples over time. On the other hand, 
the genetic approach does not depend on the stage of de-
velopment of the plant or on the harvest conditions. Our 
study shows that genetic analysis allows us to make spe-
cific taxonomic identifications down to the variety level.

However, genetic analysis has some limitations on the 
identification of species or varieties. Indeed, some vari-
eties or closely related species have adapted to particular 
environments (post-transcriptional or translational mod-
ification) [59, 60]. This is the case of marine species that 
have adapted their metabolism to extreme saline condi-
tions [63]. In this case, chemical analysis can provide addi-
tional information by identifying specific metabolites [64]. 
In order to ensure reliable results and to avoid misidenti-
fications, it is important to combine genetic and chemical 
analyses [65–67]. Our study shows that the combination 
of both methods is a robust tool that will be important 
to develop in the future for taxonomic identification. 
However, it is important to note that in some cases only a 
genetic analysis is necessary as it is powerful and feasible 
with small amounts of material and gives reproducible re-
sults over time [68, 69]. We also show that genetic analysis 
allows us to obtain a precise taxonomic identification, up 
to the level of the variety. Therefore with these analytical 
methods, it is possible to control, maintain and improve 
the security of natural supply resources.

CONCLUSIONS

Currently, plant authentication is of major importance 
to guarantee their origin and therefore their quality, 
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traceability and transparency. We have set up an analyti-
cal system to discriminate between Lavandula species, 
which shows the role of genetic analysis. These analyses 
will address the challenges of authentication and trace-
ability and ensure accurate and scientific confirmation of 
plant identity in materials from multiple sources.
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