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Sickle cell disease and [-thalassemia affect the production of the adult 3-
hemoglobin chain. The clinical severity is lessened by mutations that cause

fetal y-globin expression in adult life (i.e., the hereditary persistence of fetal
hemoglobin). Mutations clustering ~200 nucleotides upstream of the HBG
transcriptional start sites either reduce binding of the LRF repressor or recruit
the KLF1 activator. Here, we use base editing to generate a variety of mutations
in the —200 region of the HBG promoters, including potent combinations of
four to eight y-globin-inducing mutations. Editing of patient hematopoietic
stem/progenitor cells is safe, leads to fetal hemoglobin reactivation and res-
cues the pathological phenotype. Creation of a KLF1 activator binding site is
the most potent strategy — even in long-term repopulating hematopoietic
stem/progenitor cells. Compared with a Cas9-nuclease approach, base editing
avoids the generation of insertions, deletions and large genomic rearrange-
ments and results in higher y-globin levels. Our results demonstrate that base

editing of HBG promoters is a safe, universal strategy for treating [3-
hemoglobinopathies.

Sickle cell disease (SCD) and B-thalassemia are both genetic diseases
caused by mutations in the B-globin locus. In SCD, a point mutation in
the HBB gene leads to the formation of the sickle B5-globin chain, which
causes the polymerization of sickle hemoglobin (HbS), red blood cell
(RBC) sickling, anemia, and organ damage'’. In B-thalassemia, the
partial or total absence of B-globin chains (B* and B°, respectively)
leads to the precipitation of noncoupled a-globin chains, apoptosis of
erythroid precursors, ineffective erythropoiesis, and anemia®>~. Gene
therapy approaches based on the transplantation of autologous,
genetically modified hematopoietic stem cells (HSCs) have been
investigated as a treatment option for patients lacking a compatible
donor for allogeneic HSC transplantation®.

The severity of both SCD and [B-thalassemia is lessened by the
hereditary persistence of fetal hemoglobin (HbF) in adulthood
(HPFH)". This persistence is due to mutations located 200 to 115

nucleotides upstream of the transcription start sites of the identical
HBGI and HBG2 y-globin promoters. HPFH mutations either generate
de novo DNA motifs recognized by transcriptional activators (e.g.,
KLF1)* or disrupt binding sites (BS) for transcriptional repressors
(e.g., LRF and BCL11A)". A comparison of HPFH mutations in the —200
region to identify the nucleotide change associated with the highest
level of HbF expression (e.g., mutations disrupting the LRF BS vs
mutation creating the KLF1 BS) has never been carried out. CRISPR-
Cas9-nuclease strategies have been used to disrupt the LRF and BCL11A
repressor BS via the non-homologous end-joining (NHEJ)-mediated
generation of insertions/deletions (InDels) that mimic HPFH mutations
and reactivate HbF expression'> ™. Unfortunately, targeting the two
identical y-globin promoters can generate a 4.9-kb deletion that
encompasses the HBG2 gene and thus reduce overall HbF expression'.
Furthermore, CRISPR-Cas9-nuclease cannot be used to introduce
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HPFH mutations creating an activator BS via homology-directed repair
(HDR)®, a pathway poorly active in human HSCs"™.

HSCs are highly sensitive to DNA double-strand breaks (DSBs)*°—
especially in the case of multiple on-target events or concomitant on-
target and off-target events. Even when highly specific single guide
RNAs (sgRNAs) are used, the Cas9-sgRNA treatment of human HSPCs
induces a DNA damage response (DDR) that can lead to apoptosis™*.
CRISPR-Cas9 can cause p53-dependent cell toxicity and cell cycle
arrest, resulting in the selection of cells with a dysfunctional p53
pathway®. Furthermore, the generation of several on-target DSBs,
simultaneous on-target, and off-target DSBs, or even a single on-target
DSB can lead to genomic deletions, inversions or translocations,
chromosome loss, and chromothripsis®* . Hence, the development of
efficacious and safe treatment strategies for B-hemoglobinopathies
based on precise base editing (rather than DSB-induced DNA repair) is
highly desirable. Cytidine and adenine base editors (CBEs and ABEs)
are composed of a Cas9 nickase and a deaminase that converts C-to-T
and A-to-G?, respectively. Base-editing approaches enable precise
DNA repair with little or no DSB creation and thus rule out DSB-
induced cytotoxicity and genomic rearrangements. Importantly, base
editing results in homogeneous, predictable base changes, whereas
NHEJ gives heterogeneous, unpredictable mutations. Recently, base-
editing approaches targeting the HBG promoters showed some evi-
dence of HbF reactivation in healthy donors’ or B-thalassemic cells®.

Here, we used CBEs and ABEs to dissect the —200 region of the
HBG1/2 promoters and to identify critical base conversions that induce

changes in transcription factor occupancy (i.e., by creating a KLF1
activator BS and/or disrupting the LRF repressor BS) and lead to
therapeutically relevant HbF levels.

Results

Generation of HPFH and HPFH-like mutations in erythroid

cell lines

The majority of HPFH mutations in the —200 region of the HBG pro-
moters reduce the binding of the LRF repressor by disrupting its BS**",
In the LRF BS, a total of eight Cs can be converted to T by CBEs; this
creates not only HPFH mutations but also additional HPFH-like muta-
tions that might impair LRF binding (Fig. 1a). In the same region, the
-198 T > C HPFH mutation creates a de novo BS for the KLF1 activator’
and probably disrupts the LRF BS* (Fig. 1a). ABEs can be used to pre-
cisely reproduce the —198 T > C HPFH mutation or to modify both the
-198 and -199 central Ts in the LRF BS****,

In K562 and HUDEP-2 erythroid cell lines, we identified the
most efficient combinations of BEs and sgRNAs generating the fol-
lowing profiles: (i) LRF 8C (up to 8 Cs converted to Ts), using CBE-
SpRY; (ii) LRF 4C (4 Cs converted to Ts), using CBE-SpRY; (iii) KLF1
(=198 T > C), using ABEmax, and (iv) LRF 2T (-198 and -199 T >C),
using ABES8e (Fig. 1a, Supplementary Figs. 1, 2, and Supplementary
Note 1). DSB-induced InDels were essentially absent (Supplemen-
tary Fig. le, Supplementary Fig. 2d, and Supplementary Note 2),
whereas the 4.9-kb deletion (resulting from the simultaneous clea-
vage of the identical HBGI/2 promoters) was infrequent and
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Fig. 1| LRF BS disruption and KLF1BS creation in the HBG1/2 promoters in K562
cells. a Schematic representation of the -globin locus on chromosome 11,
depicting the 5’ hypersensitive sites of the locus control region (5’ LCR HSs; gray
boxes), HBE1, HBG2, HBG1, HBD, and HBB genes (colored boxes), the HBG2 and
HBGI promoters (white boxes) and the 3’ hypersensitive to DNase I site (3'HS). The
sequence of the HBG2 and HBG1 identical promoters, from -212 to -179 nucleotides
upstream of the HBG transcription start sites, is shown below. Red and green ovals
indicate LRF repressor and KLF1 activator. HPFH mutations identified in the HBG1
and/or HBG2 promoters are highlighted by black arrows, and HPFH mutations that
can be reproduced by ABEs or CBEs are highlighted in green and red, respectively.
The percentage of HbF expression in heterozygous HPFH carriers and carriers of
SCD (*) or B-thalassemia (**) is indicated in brackets. The sequence of LRF BS upon
generation of the LRF 4C, LRF 8C, LRF 2T, and KLF1 profiles is presented, and

modified bases are highlighted in red and green. b ChIP-qPCR analysis of LRF at
HBGI/2 promoters in edited and control (mock-transfected) K562 cells. ChIP was
performed using an antibody against LRF. HBG prom pair of primers was used to
amplify the HBG1/2 promoters. DEFBI22 served as a negative control. Data were
normalized to the values observed at the KLFI locus (positive control). Data are
expressed as mean + SEM (n = 3 biologically independent experiments) (left panel).
C-G to T-A or A-T to G-C base-editing efficiency of the input and the LRF immu-
noprecipitated fractions was calculated by the EditR software in samples subjected
to Sanger sequencing. Data are expressed as mean + SEM (n = 3 biologically inde-
pendent experiments) (right panel). *P = 0.0140; **P=0.0040 (two-way ANOVA
with Dunnett correction for multiple comparisons). Source data are provided as a
Source Data file.
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occurred in ABEmax- and ABE8e-treated samples (Supplementary
Figs. 1e and 2d).

Chromatin immunoprecipitation (ChIP)-qPCR experiments in
K562 cells showed that the LRF 8C profile and (to a lesser extent) the
LRF 4C profile were associated with lower occupancy of the HBG
promoters by LRF (Fig. 1b). Disruption of the LRF BS (using ABES8e) also

reduced LRF binding (LRF 2T; Fig. 1b). Lastly, generation of a KLF1 BS
impaired LRF binding— probably by altering the LRF binding motif
and/or recruiting KLF1 and thus displacing LRF from the HBG pro-
moters (Fig. 1b). As expected, the frequency of base-edited HBG pro-
moters was lower in LRF-immunoprecipitated samples than in the
input DNA (Fig. 1b). It is noteworthy that a base-editing frequency of
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Fig. 2| LRF BS disruption and KLF1 BS creation in the HBG1/2 promoters of SCD
HSPC-derived erythroblasts. a Experimental protocol used for base-editing
experiments in non-mobilized SCD HSPCs. A BE-, a sgRNA- and a GFP- (optional for
enzyme plasmids that do not contain a GFP cassette) expressing plasmid were co-
transfected in SCD HSPCs and 18 h post-transfection GFP* cells were FACS-sorted
based on GFP medium (med) and high (high) expression. b C-G to T-A or A-T to G-C
base-editing efficiency, calculated by the EditR software in samples subjected to
Sanger sequencing. The LRF 4C editing profile was obtained by pooling data from
CBE-NRCH-, CBE-SpG- and CBE-SpRY- treated samples. Data are expressed as
mean + SEM (n =12 (LRF 4C), n =4 (LRF 8C), n =4 (LRF 2T med), n =4 (LRF 2T high),
n=3 (KLF1 med), n=4 (KLF1 high) biologically independent experiments, 4
donors). ¢ Frequency of InDels, measured by TIDE analysis for control, base- and
Cas9-edited samples subjected to Sanger sequencing. The insertion or deletion of a
C (#1 nt) in the homopoly-C stretch of the LRF 2T profile was separated from the
overall frequency of InDels, as it was considered a sequencing error (Supplemen-
tary Note 2). Data are expressed as mean + SEM (n =12 (control), n=12 (LRF 4C),
n=4 (LRF 8C), n=4 (LRF 2T med), n =4 (LRF 2T high), n =3 (KLF1 med), n =3 (KLF1
high, n=3 (Cas9 med), n=3 (Cas9 high) biologically independent experiments).
****P < 0.0001 (ordinary one-way ANOVA with Dunnett correction for multiple
comparisons). d Frequency of the 4.9-kb deletion, measured by ddPCR, for base-
and Cas9-edited samples. Data are expressed as mean + SEM (n = 8 (control), n =12
(LRF 4C), n=5 (LRF 8C), n=3 (LRF 2T med), n=3 (LRF 2T high), n =3 (KLF1 med),
n=3 (KLF1 high), n =3 (Cas9 med), n=4 (Cas9 high) biologically independent
experiments). *P = 0.0125 (ordinary one-way ANOVA with Dunnett correction for
multiple comparisons). e Analysis of HbF and HbS by cation-exchange HPLC in SCD
patient RBCs. We calculated the percentage of each Hb type over the total Hb
tetramers. The base-editing efficiency is indicated for each sample in the lower part
of the panel. Data are expressed as single values or as mean + SEM (n = 4 (control),
n=6 (LRF 4C), n=2 (LRF 8C), n=2 (LRF 2T med), n=1 (LRF 2T high), n=1 (KLF1
med), n=1(KLF1 high), n =1 (Cas9 med), n = 2 (Cas9 high) biologically independent
experiments, 2 donors). *P=0.0141 for LRF 4C, or P=0.0380 for LRF 8C;

P < (0.0001 (two-way ANOVA with Dunnett correction for multiple compar-
isons). f Flow cytometry histograms showing the percentage of HbF- and HbS-
expressing cells in GYPA*&" population for unstained (GYPA stained only), control
(transfected with TE buffer for donor 1 and transfected with TE buffer or with CBE-
SpRY plasmid and a sgRNA targeting the unrelated AAVSI locus for donor 2) and
edited samples. g Time-course measurement of the frequency of non-sickle cells
upon O, deprivation in control (transfected with TE buffer for donor 1 and trans-
fected with TE buffer or with CBE-SpRY plasmid and a sgRNA targeting the unre-
lated AAVSI locus for donor 2) and edited samples. Data are expressed as single
values or as mean + SEM (n =2 (control), n=3 (LRF 4C), n=1(LRF 8C), n=1 (LRF 2T
med), n=1 (LRF 2T high), n=1 (KLF1 med), n =1 (KLF1 high), n=1 (Cas9 high)
biologically independent experiments, 2 donors). h Correlation between HBG
mRNA relative expression and base-editing efficiency in single BFU-E colonies (1
donor). HBG mRNA expression was normalized to HBA1/2 mRNA and expressed as
a percentage of the total HBB + HBG mRNA. Base-editing efficiency was calculated
by the CRISPRESSO 2 software in samples subjected to NGS. Colonies highlighted
by a black outline carried InDels. *P < 0.05; **P < 0.01; **P < 0.001; ***P < 0.0001
(KLF1: R*=0.7299, Y=0.8896*X + 31.37, P < 0.0001 non-zero slope significance;
LRF 2T: R?=0.8574, Y=0.5977*X +25.07, P< 0.0001 non-zero slope significance;
LRF 8C: R*=0.6102, Y =0.4824*X +23.77, P < 0.0001 non-zero slope significance;
LRF 4C: R*=0.1678, Y=0.2529*X + 30.52, P= 0.0522 non-zero slope significance;
Multiple ¢ test). BFU-Es edited at the AAVSI locus were used as negative controls.
i Frequency of InDels, measured by the CRISPRESSO 2 software, for edited or
control (AAVS]) single BFU-E colonies (KLF1n=17; LRF 2T n=17; LRF 8C n=11; LRF
4C n=15; AAVS1 n =8; 1 donor). j Frequency of the 4.9-kb deletion, measured by
ddPCR, for edited or control (AAVSI) single BFU-E colonies (KLF1 n=11; LRF 2T
n=11; LRF 8C n=9; LRF 4C n=15; AAVS n=8; 1 donor). k Frequency of chromo-
some 11 loss, as indicated by the ratio of CARS (p arm) and PODLI (q arm), mea-
sured by ddPCR, for edited or control (AAVS]) single BFU-E colonies (KLF1 n=16;
LRF 2T n=15; LRF 8C n=10; LRF 4C n=14; AAVS1 n=9; 1 donor). Source data are
provided as a Source Data file.

~50% was sufficient to reduce LRF binding to the same extent as in
Cas9-nuclease-treated samples harboring >90% of edited alleles.

HDF reactivation after base editing of SCD HSPCs

In order to gauge the therapeutic potential of our base-editing stra-
tegies, we transfected primary human SCD HSPCs with plasmids
encoding GFP and the BEs-sgRNA combinations that had performed
best in K562 and HUDEP-2 cells. To compare our strategy with Cas9-
nuclease-mediated disruption of the LRF BS, we used plasmids
expressing a Cas9-nuclease and a sgRNA (-197) inducing InDels in the
-200 region; these reduce LRF binding and reactivate HbF. After
transfection, GFP"&" and GFP™™ cells were sorted (using FACS) to
obtain populations with various editing efficiencies (Fig. 2a).

GFP"e" samples treated with CBEs (CBE-NCRH, CBE-SpG, or CBY-
SpRY) and LRF_bs_3 sgRNA displayed an editing efficiency of
22.0% + 2.6 (LRF 4C profile; Fig. 2b). The LRF 8C profile was generated
using CBE-SpRY and LRF_bs_2 sgRNA with an efficiency of 25.5% + 3.6
(Fig. 2b). GFP™dm populations transfected with CBEs were not edited.
Samples carrying the LRF 2T (ABES8e-treated) profile or the KLF1
(ABEmax-treated) profile showed higher efficiencies in both GFpmedium
and GFP"&" bulk populations (respectively, 56.5% + 4.4 and 76.0% + 1.4
for LRF 2T, and 41.0% +1.2 to 52.3% + 2.7 for KLF1; Fig. 2b). Sanger
sequencing confirmed the absence of InDels, except in Cas9-treated
cells (Fig. 2c). The 4.9-kb deletion was detected in Cas9- and ABESe-
treated cells but occurred at a low frequency in the remaining samples
(Fig. 2d). NGS sequencing confirmed the Sanger sequencing data, and
evidenced the simultaneous C > T conversions in samples carrying the
LRF 4C and LRF 8C profiles, the simultaneous dual A > G conversion in
the LRF 2T profile, and the precise creation of a KLF1 BS in the KLF1
profile (Supplementary Fig. 4a-d). Cells treated with ABES8e mainly
showed an LRF 2T profile, although a small proportion of the HBG
promoters (11.3% of all base-editing events) carried a KLF1BS. Similarly,
in cells treated with ABEmax (KLF1 profile), a small proportion of HBG
promoters harbored the LRF 2T profile (7.1% of all base-editing events)

(Supplementary Fig. 4d). As expected®, Cas9 generated InDels in the
LRF BS (Supplementary Fig. 4b—d). Lastly, the NGS data confirmed the
high level of product purity for all the BEs (Supplementary Fig. 4e).

We next differentiated selected cultures from two SCD donors
into RBCs. The erythroid differentiation was similar in the various
groups, as measured by flow cytometry analysis of enucleated cells and
early and late erythroid markers (Supplementary Fig. 5a-e). CBE-
treated samples bearing the LRF 4C or LRF 8C profile showed a low
level of HbF reactivation (measured using CE-HPLC), as expected from
the low observed base-editing efficiency (Fig. 2e). ABE-treated samples
(harboring either a KLF1BS or the LRF 2T profile) expressed higher HbF
levels. Although Cas9-treated samples presented the highest editing
efficiency, they showed intermediate HbF levels (Fig. 2e). Similar
results were observed for mRNA expression (using RT-qPCR) and
single globin chain expression (using RP-HPLC) (Supplementary
Fig. 6a, b). Creation of a KLF1 BS was associated with high HbF
expression - even at a low base-editing efficiency (39%; Fig. 2e). Flow
cytometry evidenced an elevated frequency of HbF-expressing cells in
both the CBE- and ABE-treated samples. The frequency of HbS-
expressing cells was lower in ABE-treated samples bearing the KLF1 or
LRF 2T profile and (to a lesser extent) in Cas9-nuclease-treated samples
compared to controls (Fig. 2f).

To evaluate the effect of HbF reactivation on the sickling pheno-
type, we incubated RBCs under hypoxic conditions that induce HbS
polymerization. After a 60-min incubation, samples from donor
1 showed high proportions of non-sickle cells for all treated samples
(52.5%, 58.4%, 75.5% and 68.2% for LRF 4C, LRF 8C, LRF 2T, and Cas9-
treated samples, respectively, versus 23.2% for the control sample);
these values were in line with the corresponding HbF levels and base-
editing efficiencies. Samples from donor 2 showed high proportions of
corrected cells in the KLF1- and LRF 2T"¢"bearing samples only (73.6%,
77.9%, 82.9%, and 51.2% for KLF1™, KLF1"€" LRF 2T"&" and Cas9-
treated samples, respectively, versus 14.7% for the control sample;
Fig. 2g). These results emphasized the high therapeutic potential of the
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ABE-mediated strategies and the need to exceed thresholds for base-
editing efficiency and HbF expression when using CBEs to modify the
Cs in the LRF BS.

HDbF reactivation in single-erythroid progenitors
Sorted GFP™™ and GFP"&" SCD HSPCs were plated on a semi-solid
medium that allows erythroid and granulocyte/monocyte

differentiation at the clonal level (CFC assay). The numbers of ery-
throid (BFU-E) colonies and granulocyte/monocyte (CFU-GM) colonies
were lower in plasmid-transfected samples than in mock-transfected
samples (Supplementary Fig. 7a). The base-editing efficiencies and
InDel profiles in the BFU-E and CFU-GM pools were similar to those
measured in liquid erythroid cultures (Supplementary Fig. 7b-d).
Significant y-globin reactivation was observed in ABE-treated samples
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Fig. 3 | RNA-mediated base editing in SCD HPSCs. a Experimental protocol used
for base-editing experiments using BE mRNAs in SCD HSPCs (2 plerixafor-
mobilized donors and 1 non-mobilized donor). A BE mRNA and a chemically
modified sgRNA were co-transfected in SCD HSPCs. Cells were differentiated into
mature RBCs or underwent a CFC assay. b-e C-G to T-A (b, ¢) or A-T to G-C (d, e)
base-editing efficiency, calculated by the EditR software in samples subjected to
Sanger sequencing at early (Day 6) or late (Day 13) time points during the in vitro
erythroid differentiation protocol. Data are expressed as mean + SEM (n = 3 biolo-
gically independent experiments, 3 donors). f Frequency of InDels, measured by
TIDE analysis, for control, base- and Cas9- edited samples. Data are expressed as
mean + SEM (n =3 biologically independent experiments). ***P < 0.0001 (ordinary
one-way ANOVA with Dunnett correction for multiple comparisons). g Frequency
of the 4.9-kb deletion, measured by ddPCR, for control, base- and Cas9- edited
samples. Data are expressed as mean + SEM (n =3 biologically independent
experiments). ***P < 0.0001 (ordinary one-way ANOVA with Dunnett correction for
multiple comparisons). h CFC frequency for control and edited samples. Data are
expressed as mean + SEM (n = 3 biologically independent experiments, 3 donors).
No statistical differences were observed between control and edited samples (two-
way ANOVA). i RT-qPCR analysis of 3%- and y-globin mRNA levels in SCD patient
erythroblasts at day 13 of erythroid differentiation. B%- and y-globin mRNA
expression was normalized to a-globin mRNA and expressed as a percentage of the
B%-+y- globins mRNA. Data are expressed as mean = SEM (n = 3 biologically inde-
pendent experiments, 3 donors). *P=0.0058; **P=0.0003; ***P < 0.0001 (two-
way ANOVA with Dunnett correction for multiple comparisons). j Expression of °y-,

Ay-, Yy +2y)-globin chains measured by RP-HPLC in SCD patient RBCs. y-globin
expression was normalized to a-globin. Data are expressed as mean + SEM (n=3
biologically independent experiments, 3 donors). *P=0.0133 for LRF 4C, or
P=0.0257 for LRF 8C; **P=0.0002; ***P < 0.0001 (two-way ANOVA with Dunnett
correction for multiple comparisons). k Analysis of HbF and HbS by cation-
exchange HPLC in SCD patient RBCs. We calculated the percentage of each Hb type
over the total Hb tetramers. Data are expressed as mean + SEM (n = 3 biologically
independent experiments, 3 donors). **P=0.0013; **P=0.0003; ***P < 0.0001
(two-way ANOVA with Dunnett correction for multiple comparisons). 1 Flow cyto-
metry histograms showing the percentage of HbF- and HbS-expressing cells in
GYPA' population for unstained (GYPA stained only), control (untreated, or
transfected with TE buffer, or transfected with a BE mRNA only, or transfected with
a BE mRNA and a sgRNA targeting the unrelated AAVSI locus) and edited samples.
m Frequency of HbF- and HbS- expressing cells in GYPA® population for unstained,
control and edited samples. Data are expressed as mean + SEM (n =3 biologically
independent experiments, 3 donors). *P = 0.0105; **P = 0.0046 for LRF 8C and KLF1,
or P=0.0011 for LRF 2T; **P=0.0006 (two-way ANOVA with Dunnett correction
for multiple comparisons). n Frequency of sickling cells upon O, deprivation in
control and edited samples. Data are expressed as single values or as mean + SEM
(n =3 biologically independent experiments, 3 donors). o Representative photo-
micrographs of SCD patient RBCs under hypoxia conditions. Red arrows indicate
sickling RBCs, and green arrows indicate normal RBCs. Source data are provided as
a Source Data file.

but only a mild increase in CBE-treated samples—probably because of
the low editing efficiency (Supplementary Fig. 7e, f). To accurately
compare the efficacy of the various editing approaches, we measured
y-globin expression at the clonal level in BFU-Es. We observed a posi-
tive correlation between base-editing efficiency and y-globin expres-
sion in all groups. Deviation of the base-editing efficiency from the
expected 25% intervals (corresponding to one, two, three or four edi-
ted promoters) and the presence of BFU-E mosaics for HBG mutations
indicated editing over several progenitor divisions, as reported
previously'. Generation of a KLF1 BS was the most potent event for y-
globin reactivation (Fig. 2h). LRF 8C and LRF 2T samples showed
similar y-globin levels, which were higher than those in LRF 4C samples
(Fig. 2h). As observed in liquid erythroid cultures, NGS analysis showed
that in all the colonies treated with ABE8e, in a small fraction of HBG
promoters only one of the 2 Ts was converted to C, thus generating a
KLF1 BS (Supplementary Fig. 8), which probably contributes to HbF
reactivation. Almost all treated colonies (96.7%) showed no InDels
(Fig. 2i). The 4.9-kb deletion was detected in LRF 2T, KLF1, and LRF 4C
colonies, although the frequency was relatively low (Fig. 2j). As
expected (given the DSB-free nature of base editing), we did not detect
loss of the p arm of chromosome 11 (i.e., loss caused by DSBs at the
HBB locus) (Fig. 2k)*.

RNA delivery of BEs in HSPCs rescues the sickling phenotype
With a view to developing a clinically relevant, selection-free sys-
tem for delivering the base-editing machinery, we next sought to
optimize an efficient, minimally toxic method for RNA transfec-
tion. To increase the base-editing efficiency of the CBEs (which
were less efficient than ABEs in plasmid-transfected HSPCs, Fig. 2),
we optimized the plasmid encoding the CBE-SpRY-GFP fusion
protein (capable of generating both 4C and 8C profiles) for in vitro
transcription (Supplementary Fig. 9a). We inserted a T7 promoter
followed by a G (to allow efficient capping (CapO) of the mRNA and
to enhance translation), two copies of the 3’ untranslated region
(UTR) of the HBB gene (to increase the mRNA half-life and protein
levels®*°), and a poly-A sequence after the 3° UTR (to further
stabilize the mRNA)?. Lastly, we used uridine depletion to reduce
the CBE mRNA’s immunogenicity. In K562 cells, the optimized
construct (CBE-SpRY-OPT1) outperformed the original plasmid
with regard to GFP expression and base-editing efficiency (Sup-
plementary Fig. 9b-d).

In vitro transcribed CBE-SpRY-OPT1, ABEmax, and ABES8e mRNAs
were transfected along with chemically modified sgRNAs into SCD
HSPCs (Fig. 3a). CBE-SpRY mRNA was co-transfected with LRF_bs_1 or
LRF_bs_2 sgRNA to generate the LRF 4C or LRF 8C editing profiles,
respectively. ABEmax and ABE8e coupled with KLF1_bs_1 sgRNA were
used to generate the KLF1 and LRF 2T editing profiles, respectively. In
parallel, we applied a delivery method currently used in the clinic*®, i.e.,
the transfection of a ribonucleoprotein (RNP) complex containing
Cas9 and the -197 sgRNA".

In liquid erythroid cultures, we generated LRF 4C, LRF 8C, LRF 2T,
and KLF1 profiles with efficiencies of 36.7%+6.2, 45.3%+8.1,
49.7% +10.5, and 48.0% + 2.9, respectively, on day 6 (Fig. 3b—e). Much
the same frequencies were observed on day 13, indicating that base-
edited cells were not selected against during erythroid differentiation.
Sanger sequencing revealed InDels in Cas9-treated samples only
(79.3% + 2.3) (Fig. 3f). The frequency of the 4.9-kb deletion was negli-
gible in RNA-transfected, base-edited samples (Fig. 3g). Deep sequen-
cing of the HBG1/2 promoters confirmed the editing profiles observed
with Sanger sequencing and the high product purity (Supplemen-
tary Fig. 10).

The RNA-transfected and control samples did not differ sig-
nificantly in the number of BFU-Es and CFU-GMs; this finding con-
firmed the safety of our RNA-based protocol with regard to progenitor
viability (Fig. 3h). Base-editing efficiencies tended to be higher in the
BFU-E pools than in the CFU-GM pools (Supplementary Fig. 11a). The
Indel efficiency was negligible in base-edited colonies, and only some
of the ABEmax-treated samples had the 4.9-kb deletion (Supplemen-
tary Fig. 11b, ¢).

Next, we differentiated RNA-transfected SCD HSPCs into mature
RBCs. The enucleation rate and the expression of erythroid markers
were similar in control vs. edited cells (Supplementary Fig. 12a-e). RT-
gPCR, RP-HPLC, and CE-HPLC measurements showed strong HbF
reactivation and clinically relevant expression in all samples and
especially in those carrying the KLF1 profile (71.3% + 6.1) (Fig. 3i-k). The
LRF 4 C, LRF 8 C, LRF 2 T, and Cas9-treated samples all had similar HbF
levels (Fig. 3i-k), although genome editing efficiency was lower in base-
edited samples. Flow cytometry measurements confirmed the pre-
sence of HbF reactivation in all the edited samples. For LRF 2T and
KLF1, we also observed a lower frequency of HbS-expressing cells
(Fig. 31, m) compared to controls. Similar results were observed for
pooled BFU-E colonies (Supplementary Fig. 11d, e).
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All the samples showed significantly lower frequencies
of sickle cells (relative to controls) and thus produced
enough HbF to inhibit Hb polymerization (Fig. 3n and Supple-
mentary Fig. 12f). The generation of a KLF1 BS was even able to
correct the sickling phenotype in the hard-to-correct RBCs from
donor 3.

D20 D20

Base editing of the HBG promoters rescues the p-thalassemic
phenotype

Using RNA transfection, we delivered base editors to HSPCs obtained
from two B°/B" B-thalassemia patients. Given the small number of
available cells, we selected ABEmax/KLF1_bs 1 sgRNA to create the
KLF1 profile (which had given the greatest HbF reactivation in SCD
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Fig. 4 | RNA-mediated base editing in B-thalassemia HSPCs. a, b C-G to T-A (a) or
A-T to G-C (b) base-editing efficiency, calculated by the EditR software in f3-
thalassemic erythroblasts subjected to Sanger sequencing. Data are expressed as
mean + SEM (n =2 biologically independent experiments, peripheral blood-
derived non-mobilized HSPCs from 2 donors harboring the CD39/IVS1-110 G > A
and CD 8/9 + G/IVS1-110 G > A mutations, respectively). ¢ Frequency of InDels,
measured by TIDE analysis, for base-edited samples subjected to Sanger sequen-
cing. Data are expressed as mean + SEM (n = 2 biologically independent experi-
ments). d CFC frequency for control (transfected with TE buffer) and base-edited
samples. Data are expressed as mean + SEM (n = 2 biologically independent
experiments, 2 donors). No statistical differences were observed between control
and edited samples (two-way ANOVA). e RT-qPCR analysis of B-like globin mRNA
levels in B-thalassemia patient erythroblasts at day 13 of erythroid differentiation.
B-like globin mRNA expression was normalized to a-globin mRNA. Data are
expressed as mean + SEM (n =2 biologically independent experiments, 2 donors).
*P=0.0270; **P < 0.0001 (two-way ANOVA with Dunnett correction for multiple
comparisons). f Analysis of HbF, HbA and HbA, by cation-exchange HPLC in 3-
thalassemia patient RBCs. We calculated the percentage of each Hb type over the
total Hb tetramers. Data are expressed as mean + SEM (n =2 biologically inde-
pendent experiments, 2 donors). ****P < 0.0001 (two-way ANOVA with Dunnett
correction for multiple comparisons). g Frequency of HbF-expressing cells in the
GYPA'" population for control and edited samples, as measured by flow cytometry.
Data are expressed as mean + SEM (n =4 biologically independent experiments, 2
donors). *P=0.0098 for LRF 8C, or P=0.0033 for KLF1 (ordinary one-way ANOVA
with Dunnett correction for multiple comparisons). Representative flow cytometry
histograms showing HbF* cells in GYPA" populations for control and base-edited
samples are presented below the graph. h Expression of B-, 8-, y-, y- and y- (°y- +
*y-) globin chains measured by RP-HPLC in B-thalassemia patient RBCs. B-like
globin expression was normalized to a-globin. The ratio o/non-a globins is
reported on top of the graph. Data are expressed as mean + SEM (n = 2 biologically
independent experiments, 2 donors). *P=0.0148 (two-way ANOVA with Dunnett
correction for multiple comparisons). i Analysis of a-globin precipitates by cation-
exchange HPLC in B-thalassemia patient RBCs. We calculated the proportion of a-
globin precipitates over the total Hb tetramers. Data are expressed as mean + SEM
(n=2 biologically independent experiments, 2 donors). **P=0.0009 for LRF 8C,
or P=0.0004 for KLF1 (one-way ANOVA with Dunnett correction for multiple
comparisons).j Frequency of enucleated cells at day 6, 9,13, 16, and 20 of erythroid
differentiation, as measured by flow cytometry analysis of DRAQ5 nuclear staining
in control and edited samples. Data are expressed as mean + SEM (n = 2 biologically
independent experiments, 2 donors). Representative flow cytometry histograms

showing the DRAQS cell population for unstained, control, and edited samples are
presented below the graph. **P=0.0003; ***P < 0.0001 (two-way ANOVA with
Dunnett correction for multiple comparisons). k Cell size of enucleated cells
(DRAQS) at day 13, 16, and 20 of erythroid differentiation, as measured by flow
cytometry using the median of forward scatter (FSC) intensity, and normalized to
HD RBCs. Data are expressed as mean = SEM (n = 2 biologically independent
experiments, 2 donors). Representative flow cytometry contour plots showing the
FSC of DRAQS' cell population for control and edited samples are reported below
the graph. **P=0.0033 for D13, or P=0.0021 for D16, or P=0.0034 for D20;
P < (0.0001 (two-way ANOVA with Dunnett correction for multiple compar-
isons). I-n Frequency of CD36" (I), CD71" (m) and GYPA" (n) cells at day 6, 9,13, 16,
and 20 of erythroid differentiation, as measured by flow cytometry analysis of
CD36, CD71, and GYPA erythroid markers. Data are expressed as mean + SEM (n =2
biologically independent experiments, 2 donors). Representative flow cytometry
histograms showing the CD36" (1), CD71" (m) and GYPA" (n) cell populations for
unstained, control, and edited samples are presented below the graph. *P=0.0241
for CD36/D16, or P=0.0190 for CD36/D20, or P=0.0307 for CD71; **P=0.0072 for
CD36, or P=0.0020 for CD71/LRF 8C, or P=0.0028 for CD71/KLF1; **P=0.0002;
P < 0.0001 (two-way ANOVA with Dunnett correction for multiple compar-
isons). o Frequency of a4-Integrin®, BAND3" and a4-Integrin’/BAND3" in 7AAD/
GYPA' cells at day 6, 9, 13, 16, and 20 of erythroid differentiation, as measured by
flow cytometry analysis of a4-Integrin and BAND3 erythroid markers. Data are
expressed as mean + SEM (n =2 biologically independent experiments, 2 donors).
Representative flow cytometry contour plots showing the a4-Integrin, BAND3"
and a4-Integrin’/BAND3" cell populations for unstained, control, and edited sam-
ples are reported below the graph. p Frequency of apoptotic cells (Annexin V*-
cells) in control and edited samples at day 13 of erythroid differentiation, as
measured by flow cytometry. Data are expressed as mean + SEM (n = 2 biologically
independent experiments, 2 donors). Representative flow cytometry contour plots
showing the Annexin V* cell populations for unstained, control, and edited samples
are reported on the right side of the graph. **P=0.0094 for LRF 8C, or P=0.0014
for KLF1 (one-way ANOVA with Dunnett correction for multiple comparisons).

q Frequency of ROS-containing cells (DCFDA" cells) in control and edited samples
at day 20 of erythroid differentiation, as measured by flow cytometry analysis in
DRAQ' and DRAQ cells. Data are expressed as mean + SEM (n = 2 biologically
independent experiments, 2 donors). Representative flow cytometry contour plots
showing the DCFDA’ cell populations for unstained, control, and edited enucleated
samples are reported on the right side of the graph. Source data are provided as a
Source Data file.

samples) and CBE-SpRY/LRF_bs_2 sgRNA to create the LRF 8C profile
(which contained more HPFH- and HPFH-like mutations than LRF 4C
and LRF 2T).

We observed efficiencies of 47.5% + 4.5 and 69.0% + 2.0 in LRF 8C
and KLF1 liquid erythroid cultures, respectively, and only few InDels
(Fig. 4a-c). The total number of BFU-E and CFU-GM was similar in the
edited populations and in control samples (Fig. 4d). The editing effi-
ciency in BFU-E was similar to that observed in the liquid erythroid
cultures but was lower in CFU-GM (Supplementary Fig. 13a). We
observed low InDel and 4.9-kb deletion frequencies only in ABEmax-
treated KLF1 BFU-E and CFU-GM pools (Supplementary Fig. 13b, c).
HbF reactivation was observed (using HPLC) in both LRF 8C and KLF1
BFU-E samples (Supplementary Fig. 13d, e).

In liquid erythroid cultures, we observed strong y-globin reacti-
vation, (as assessed by RT-qPCR, HPLC, and flow cytometry) for both
LRF 8C and KLF1 (Fig. 4e-h). Levels of a-globin precipitates (a hallmark
of B-thalassemia) were substantially lower in LRF 8C samples and were
null in KLF1 samples (Fig. 4i). The ratio between « and non-a globins
reached normal levels (Fig. 4h).

The delayed enucleation process observed in control samples
(due to ineffective erythropoiesis) was rescued in the edited samples
(Fig. 4j). Moreover, enucleated cells were larger in treated samples
than in control (-thalassemic cells (Fig. 4k). The delayed erythroid
differentiation typical of thalassemic cells had been corrected, as
evaluated by the CD36 and CD71 expression profiles: at the end of the
differentiation process, both of these erythroid markers were found to

be correctly downregulated in samples derived from edited HSPCs
(Fig. 41, m). The a4-integrin, GYPA, and BAND3 erythroid markers had
similar expression profiles during differentiation in all the samples
(Fig. 4n, o). In parallel, we observed a low frequency of apoptotic cells
in samples carrying the LRF 8C or KLF1 profile, relative to controls
(Fig. 4p). The production of reactive oxygen species (ROS, as evaluated
by flow cytometry) typically observed in -thalassemic cells was much
lower in KLF1 samples than in controls (Fig. 4q).

Immune and DNA damage response in HSPCs

To minimize the immunogenicity of the CBE-SpRY mRNA, we
exchanged the nucleotide that follows the T7 promoter (G > A); this
allows alternative capping (Capl) and reduces the likelihood of an
innate immune response® (Supplementary Fig. 9a). The CBE-SpRY-
OPT2 plasmid was similar to CBE-SpRY-OPT1 with regard to GFP
expression and base-editing efficiency in K562 cells (Supplementary
Fig. 9b-d). The CBE-SpRY-OPT2 plasmid was transcribed in vitro using
Capl analog and 5-methoxyuridine (to completely eliminate uridines
from the transcript®**° and further reduce the immunogenic potential)
and purified using a silica membrane.

Mobilized healthy donor (HD) HSPCs were transfected with CBE-
SpRY-OPT1 mRNA (uridine-depleted and capped with a CapO ana-
log), CBE-SpRY-OPT2 mRNA (uridine-depleted, 5-methoxyuridine,
and capped with a Capl analog), or unmodified ABEmax mRNA (non-
uridine-depleted and capped with a CapO analog). CBE-SpRY mRNA
was co-transfected with the LRF_bs_2 sgRNA (LRF 8C profile) and
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First, we assessed the immune response to our RNAs by measur-

ing the expression of genes activated by RNA stimuli. Twelve and 24 h

and 4.9-kb deletions only in ABEmax- and Cas9-treated samples
after transfection, we did not detect any immune responses in either

(Fig. 5¢, d).
control or base-edited samples - even those treated with non-modified

gRNA (KLF1 profile). The base-

editing efficiencies increased over time and reached maximum levels

6 days post-transfection (49.0% + 3.0, 54.3% + 3.5 and 47.3% + 4.9 for

CBE-SpRY-OPT1, CBE-SpRY-OPT2 and ABEmayx, respectively; Fig. 5a,
b). In parallel, we used Cas9 RNP complexes that generate Indels in

the —200 region. InDels were observed only in Cas9-treated samples,
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Fig. 5| DNA damage and immune responses in HSPCs upon RNA-mediated base
editing and RNP-mediated Cas9 treatment. a C-G to T-A or A-T to G-C base-
editing efficiency, calculated by the EditR software in mobilized HD HSPC samples
subjected to Sanger sequencing 6 days post-transfection. Data are expressed as
mean + SEM (n = 3 biologically independent experiments, 3 donors).b C-G to T-A or
A-T to G-C base-editing efficiency, calculated by the EditR software in mobilized HD
HSPC samples subjected to Sanger sequencing 12h-, 24h-, 48h-, and 6 days post-
transfection. Data are expressed as mean + SEM (n = 2-3 biologically independent
experiments, 2-3 donors). ¢ Frequency of InDels, measured by TIDE analysis, for
control, base- and Cas9-edited samples. Data are expressed as mean + SEM (n=3
biologically independent experiments, 3 donors). **P=0.0005 (ordinary one-way
ANOVA with Dunnett correction for multiple comparisons). d Frequency of the 4.9-
kb deletion, measured by ddPCR, for control, base- and Cas9- edited samples. Data
are expressed as mean + SEM (n =3 biologically independent experiments, 3

donors). ***P < 0.0001 (ordinary one-way ANOVA with Dunnett correction for
multiple comparisons). e RT-qPCR analysis of genes activated by RNA stimuli, 24 h
post-transfection in HD HSPCs. TNF-a, IL-6, IL-12, IFN-a, IFN-B, TLR7, TLRS, RIG-
mRNA expression was normalized to GAPDH mRNA. LPS-activated macrophages
were used as a positive control. Data are expressed as mean + SEM (n =3 biologi-
cally independent experiments, 3 donors). ***P < 0.0001 (ordinary one-way
ANOVA with Dunnett correction for multiple comparisons). f RT-qPCR analysis of
CDKNI (p21), 24, 48 and 72 h post-transfection in HD HSPCs. CDKNI mRNA
expression was normalized to GAPDH mRNA. Data are expressed as mean + SEM
(n =3 biologically independent experiments, 3 donors). *P=0.0292 for 24 h, or
P=0.0259 for 48 h, or P=0.0131for 72 h; **P = 0.0019; ***P < 0.0001 (ordinary one-
way ANOVA with Dunnett correction for multiple comparisons). Source data are
provided as a Source Data file.

ABE mRNA constructs (Fig. 5e and Supplementary Fig. 14). We then
measured the expression of CDKNI (p21) as a readout of p53-induced
DDR. CDKNI was upregulated in Cas9- and CBE-SpRY-treated HSPCs
48 h after treatment but not in ABEmax-treated samples (Fig. 5f).

Base editing in HSPCs induces few transcriptomic changes

To examine the effect of base editing on the overall gene expression
profile, we performed RNA-seq of control and edited HD HSPCs
transfected with CBE-SpRY/LRF_ bs 2 (LRF 8C profile), ABEmax/
KLF1_bs_1 (KLF1 profile) or Cas9 RNP 48 h after transfection. Overall, we
observed few differentially expressed genes (DEGs) (Fig. 6a). There
were 37 DEGs in Cas9-treated samples, 13 in CBE-SpRY-OPT2-treated
cells bearing the LRF 8C profile, and 3 in KLF1 samples transfected with
ABEmax (Fig. 6b).

The genes dysregulated in CRISPR-Cas9-treated HSPCs (CDKNIA,
MIR34AHG, DDB2, ZMAT3, BAX, BBC3, and RPS27L) were involved in
DDR and/or apoptosis. Genes upregulated in both Cas9- and CBE-
treated samples included p53 targets (CDKNIA and MIR34AHG) and
PLXNB2, which was shown to be involved in HSC self-renewal and
proliferation in the mouse*. Other genes that were specifically upre-
gulated in CBE-treated samples (THBS1, PPM1F, and VWF) have roles in
apoptosis and HSC biology***. Downregulated genes in CBE-treated
samples include FN3K, which protects and not protect cells from oxi-
dative stress via NRF2 deglycation*®*". Interestingly, only globin genes
were differentially expressed in ABEmax-treated cells: HBG upregula-
tion was accompanied by a decreased synthesis of the adult HBB and
HBD transcripts (Fig. 6b).

To assess the potential off-target activity of BEs, we further ana-
lyzed RNA-seq data from control and edited HD HSPCs. A similar
number of C>T or A>G variants were observed in all the samples,
independently of specific treatment; hence, no RNA deamination
caused by CBE-SpRY or ABEmax expression was detected (Fig. 6¢).

DNA off-target activity of BEs

We assessed the off-target activity of all the sgRNAs via the genome-
wide, unbiased identification of DSBs enabled by sequencing (GUIDE-
seq) in HEK293T cells. The Cas9-SpRY or Cas9-nuclease was combined
with LRF_bs_3 sgRNA (LRF 4C profile), LRF_bs_2 sgRNA (LRF 8C profile),
or KLF1_bs_1sgRNA (KLF1 and the LRF 2T profiles). Only a few of the top
20 off-targets mapped to exons, and so a major impact on protein
expression was unlikely (Fig. 7a-c).

In erythroblasts derived from RNA-transfected SCD HSPCs, NGS
of the top 10 sites and the off-targets located in exons did not reveal
substantial DNA off-target activity in most cases (Fig. 7d-f). Off-target
activity was observed in an exon only for the KLF1_bs_1 sgRNA in LRF
2 T samples (OT15-CES4A; 9.01% + 1.8) but was present at background
levels in KLF1 samples. We detected a low level of off-target activity in
an intron in LRF 4 C samples (OT1-EHBPI; 2.8% + 0.5). KLF1_bs_1 sgRNA
also showed some off-target activity at an intronic site; this activity was
significantly lower for ABEmax than for ABE8e (OT4-/TPRI: 54.0% + 3.1

in LRF 2T samples and 22.6% + 2.3 in KLF1 samples). It is noteworthy
that base editing at the OT4 site creates a SNP (rs760488983; T >C)
that is reportedly not associated with any clinical manifestations.
Lastly, we observed off-target activity in LRF 8C samples in an inter-
genic region (OTL: 48.6% +4.9) that, however, did not map to reg-
ulatory regions active in hematopoietic cells (Supplementary Fig. 15a).
Importantly, few or no indels were detected at the on-target sites or at
the vast majority of off-target sites (Supplementary Fig. 15b-d). The
RNA-seq data showed that off-target activity did not affect the
expression of targeted genes in HSPCs (Fig. 6b).

Lastly, in CBE-SpRY-treated LRF 8C samples and ABEmax-treated
KLF1 samples, whole-exome sequencing (WES) analysis showed that
for each donor, 99.9% of single-nucleotide variants were shared
between untreated and edited samples, indicating no detectable
sgRNA-dependent or sgRNA-independent off-target activity in
exons (Fig. 7g).

Base editing of the HBG promoters in repopulating HSCs

To evaluate the ability of BEs to target the HBG promoters in repo-
pulating HSCs, we xenotransplanted HD or SCD HSPCs transfected
with CBE-SpRY-OPT2 mRNA and LRF_bs_2 sgRNA (LRF 8C) or with
ABEmax mRNA and KLF1_bs 1 sgRNA (KLF1) into immunodeficient
NBSGW mice (Fig. 8a). Sixteen to 20 weeks post-transplantation, no
differences were observed between edited and control HSPCs with
regard to engraftment and differentiation potential, as measured by
the frequency of human CD45" cells in the hematopoietic tissues and
the expression of lineage-specific markers (Fig. 8b and Supplementary
Fig. 16). Human CD45" bone marrow cells were isolated and subjected
to a CFC assay. Mock and edited samples had similar clonogenic
potentials, although the latter was slightly lower in CBE-treated
cells (Fig. 8c).

The base-editing efficiency in human bone marrow cells was
10.5% + 5.4 for LRF 8C and 25.7% + 6.6 for KLF1 (Fig. 8d). Similar results
were typically observed in spleen, blood, and bone marrow BFU-E and
CFU-GM pools (Fig. 8d). Despite the lower efficiency, the editing pro-
file of engrafted populations was similar to that of the input cells
(Fig. 8d, e). InDels were absent or scarce in engrafted cells (Fig. 8f). The
4.9-kb deletion was detected in around 50% of the mice (Fig. 8g and
Supplementary Fig. 17). It is noteworthy that in KLF1 samples, off-
target activity at OT4 was detected in both input and engrafted
populations (Fig. 8h). The mean OT4 editing efficiency was similar in
in vivo samples and input cells; however, the fact that value varied
markedly from one sample to another in vivo (between O and 40%)
ruled out a selective advantage of cells harboring off-target
events (Fig. 8h).

In KLF1 samples, 71.4% of bone marrow-derived single BFU-E
harbored at least one edited HBG promoter, while OT4 editing was
observed in ~45% of colonies (mostly in those with edited HBG pro-
moters) (Fig. 8i). Chromosome arm loss was not detected in the edited
colonies (Fig. 8j). Lastly, BFU-E harboring a KLF1 BS showed elevated y-
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Fig. 6 | Transcriptomic analysis of HD HSPCs after RNA-mediated base editing
and RNP-mediated Cas9 treatment. a RNA-seq analysis was performed 48 h after
transfection. Mean-difference plots show differentially expressed genes of edited
samples over control samples. Genes that are not statistically significant (false dis-
covery rate [FDR] > 0.05) differentially expressed are depicted by black dots. Genes
that are statistically significant (FDR < 0.05) upregulated or downregulated are
depicted by red and blue dots, respectively. The enzyme used and the profile

generated are indicated on top of each plot. b Expression of statistically significant
(FDR < 0.05) upregulated or downregulated genes, as measured by the log2-fold
change of FPKM of edited samples over control samples. Data are expressed as
mean + SEM (n = 3 biologically independent experiments, 3 donors). ¢ Strip plots
showing the variant allele frequency of A > G mutations or C>T mutations in RNA
observed in HSPCs obtained from three different HD. The total number of mutations
are indicated above each sample. Source data are provided as a Source Data file.
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globin expression levels, which were positively correlated with the
number of edited promoters (Fig. 8k, I).

Discussion

Clinical trials based on the lentivirus-mediated, permanent integration
of a B-like globin gene or a BCL11A-downregulating microRNA have
given promising results. However, lentivirus-based gene therapy only
partially corrects the clinical phenotype of patients with severe p-tha-
lassemia, and HbS levels still remain high in patients with SCD because
the therapeutic transgene is not expressed sufficiently*®*°. Further-
more, the use of these strategies is limited by the potential occurrence
of insertional mutagenesis associated with lentiviral vectors.

Nuclease-based genome editing strategies have been developed
for the treatment of B-hemoglobinopathies. Direct gene correction via
HDR is poorly efficient in bona fide HSCs™. Attempts to reactivate HbF
through the CRISPR-Cas9-nuclease-mediated disruption of the y-
globin genes’ cis-regulatory elements (by mimicking HPFH muta-
tions) have provided proof of efficacy in preclinical studies'. Nuclease-
based reactivation of HbF through disruption of the y-globin genes’
trans-regulatory elements has already been tested in the clinic, with
promising results®*. However, safety concerns with regard to harmful
DSBs and large genomic rearrangements in HSCs are still present® %,

Base editing has therefore been used to generate HPFH
mutations™*? in HD cells or reduce the levels of the HbF repressor
BCL11A™ in cells from patients with B-hemoglobinopathies. Editing the
BCL11A BS in the HBG promoters was moderately efficient, with fre-
quencies of 7-22%"". In contrast (and despite a degree of cytotoxi-
city), two cycles of electroporation led to BCL11A editing rates of ~90%
and therapeutically relevant HbF levels (~30%) in SCD RBCs; full cor-
rection of the B'-thalassemic phenotype was achieved by combining
BCL1IA editing with correction of the disease-causing mutation®.
Gaudelli et al. used ABEs to install the —198 T > C HPFH mutation or to
simultaneously install the —198 and -199 mutations in HD HSPCs and
provided proof of concept for HbF reactivation®. Nevertheless, the
therapeutic potential and safety of these strategies had not been
assessed in patient HSPCs. Furthermore, ABEs and CBEs targeting the
-200 region of the HBG promoters and the specific HPFH or HPFH-like
mutations induced in primary cells had not been compared.

In this study, we used precise base editing to dissect the difficult-
to-target LRF BS in the —200 region of the HBG promoters. Firstly, we
screened sgRNAs and BEs in erythroid cell lines, in order to identify the
most efficient combinations creating various editing profiles. In par-
ticular, we inserted a variety of HPFH and HPFH-like mutations creating
the LRF 4C, LRF 8C, LRF 2T and KLF1 profiles. Interestingly, all the
mutations (including the —198 T > C HPFH mutation that generates a
KLF1 activator BS) led to weaker LRF binding. Editing both C stretches
(LRF 8C profile) led to a more pronounced weakening in LRF binding
and higher HbF levels, relative to the LRF 4C profile. This finding is line
with the results of a recent study in which both C-stretches were
important for LRF binding®. As the -198 or the -199 nucleotides
contribute only moderately to LRF binding®, the generation of a KLF1
activator BS might weaken LRF binding mainly through transcription
factor competition, i.e., displacement of LRF by KLF1. Creation of a
KLF1 BS gave the highest HbF levels; this finding indicates that removal
of the LRF repressor is enough to reactivate HBG genes but that
recruitment of an activator results in higher gene expression levels.
Conversion of both -198 or -199 nucleotides (LRF 2T profile) also
reduced LRF occupancy, suggesting that combinatorial editing can
affect LRF binding. Furthermore, generation of a KLF1 BS in a fraction
of HBG promoters in the LRF 2T samples might also have contributed
to diminished LRF binding and to HbF reactivation.

Cas9-treated samples showed lower LRF binding, and the HbF
levels were similar to those observed in LRF 2T, LRF 8C and LRF 4C
samples. However, these levels were achieved with a frequency of
edited promoters that was significantly higher than in base-edited

samples. ®y-globin expression (due to loss of the HBG2 gene) was lower
in Cas9-treated samples than in base-edited samples (Fig. 3j). Indeed,
the frequency of the 4.9-kb deletion was substantially lower in base-
edited samples than in Cas9-treated samples. Even ABEmax-
transfected cells (a small proportion of which had lost HBG2 genes)
did not show an imbalance between “y and *y chains (Fig. 3j). Notably,
Cas9-treated samples showed InDels mostly in the second stretch of
Cs, thus affecting only nucleotides that are modified in the LRF 4C
samples that gave the lowest level of HbF reactivation. Furthermore,
some Cas9-induced InDels might have affected neighboring regulatory
elements. According to a recent study, the -190 GATA motif (proximal
to the —200 region) recruits an activator when HPFH mutations are
present, and GATAL1 binding is essential for HbF reactivation®’. The
disruption of this motif in Cas9-treated samples might prevent the
recruitment of GATAL Indeed, deep sequencing of the HBGI/2 pro-
moters revealed the presence of deletions (albeit at low frequencies)
affecting the -190 GATA motif. Overall, Cas9-mediated editing is
therefore less predictable and less accurate than base editing, which
allows the precise introduction of well-defined HPFH mutations in the
-200 region of the HBG promoters.

Importantly, our base-editing strategies induced high levels of
HbF expression and rescued both the SCD and f-thalassemic cell
phenotypes. The thresholds of HbF expression needed to ameliorate
the clinical manifestations of SCD have been defined as 70% of HbF-
expressing cells and HbF accounting for 30% of the total quantity of
hemoglobins®***. In vitro, base-edited samples derived from SCD
HSPCs and carrying the four editing profiles (with a frequency of
40-50%), exceeded this threshold; in particular, KLF1 samples
expressing 70% of their hemoglobin as HbF. Accordingly, the patho-
logical SCD cell phenotype was effectively reverted. Disruption of the
LRF repressor BS or (more potently) the creation of a KLF1 activator BS
reactivated HbF and rescued the (3-thalassemic phenotype in erythroid
cells differentiated from HSPCs collected from patients with B%/B*
thalassemia. The high HbF levels induced by the generation of a KLF1
BS might be sufficient to correct the phenotype of B%/p° thalassemic
cells lacking residual -globin expression.

The clinically approved methods of delivering genome editing
tools to HSPCs include RNP or RNA transfection®. Unfortunately, we
did not succeed in producing BE RNPs capable of editing the genome
of HSPCs because of the low concentration and protein precipitation.
Other researchers have recently reported that BE RNPs do not effec-
tively edit primary HSPCs or T cells, as compared to BE mRNAs/
sgRNA***", To develop a clinically relevant protocol for delivering the
base-editing system to HSPCs*®, we therefore produced BE mRNAs and
coupled them with chemically modified sgRNAs. This combination
achieved efficient, selection-free base editing in SCD and f3-thalassemic
HSPCs; this was even true for CBEs that were inefficient with plasmid
transfection. Our RNA-mediated base-editing protocol neither affec-
ted HSPC viability and differentiation nor induced an innate immune
response in HSPCs.

Importantly, the near-total absence of indels mitigates concerns
related to the targeting of four different genomic regions (e.g., a risk of
large genomic rearrangements, due to multiple DSBs). However, low
levels of the 4.9-kb deletion between the two identical HBG1/2 pro-
moters were detected in base-edited samples—primarily in samples
transfected with ABES8e or ABEmax. It is noteworthy that these base
editors generate 4.9-kb deletions but no InDels as we have shown
previously for Cas9 nickase that generates precise editing with no DSB
formation®’. We hypothesize that the generation of two nicks in cis by
an sgRNA induces the 4.9-kb deletion via strand displacement. This
process might be facilitated by the homology of HBGI and HBG2.
Importantly, deletions were occasionally observed in RNA-transfected
samples and did not affect the HBG1/2 globin ratio. Lastly, the persis-
tence of ABEmax-induced deletions in vivo suggests that HSCs har-
boring a 4.9 kb deletion were not at a particular disadvantage.
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Furthermore, we confirmed that Cas9-nuclease-mediated DSB
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control samples did not differ significantly with regard to the

formation in HSPCs is associated with activation of the p53 pathway.
In contrast, our base-editing strategies (i.e., the LRF 8C and KLF1
profiles generated by CBE-SpRY and ABEmax, respectively) induced
a lower or null DDR in HSPCs and thus offered a safer way to
genetically manipulate HSPCs. HSPCs edited with ABEmax and

overall gene expression profile. Despite the absence of DSB-induced
InDel formation, several genes in CBE-treated HSPCs were never-
theless dysregulated; some of these genes were involved in apop-
tosis and HSC biology. Accordingly, the base-editing efficiency was
lower in repopulating HSCs treated with CBE-SpRY than in HSCs
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Fig. 7 | sgRNA-dependent DNA off-target activity of the base-editing system.
a-c sgRNA-dependent off-target DNA sites, as evaluated by GUIDE-seq analysis, of
LRF bs_3 (LRF 4C) (a), LRF_bs_2 (LRF 8C) (b), and KLFL bs 1 (LRF 2T and KLF1) (c)
sgRNAs in HEK293T cells. sgRNAs were coupled with a Cas9-nuclease corre-
sponding to the Cas9 nickase included in the base editor (Cas9-SpRY for LRF_bs_3
and LRF_bs_2 sgRNAs, and Cas9 for KLF1_bs_1 sgRNA). The protospacer targeted by
each sgRNA and the PAM are reported on top of each panel, followed by the off-
target sites and their mismatches with the on-target (highlighted in color). The
number of sequencing reads, the chromosomal coordinates (Human GRCh37/
hgl9), and the site of each off-target are reported. d-f Frequency of C-G to T-A

(d and e) or A-T to G-C (f) base-editing conversion at on-target and off-target (OT)
sites, for control and LRF 4C (d), LRF 8C (e), LRF 2T (f), and KLF1 (f) samples, as
measured by targeted NGS sequencing. Data are expressed as individual values and
median (n =3 biologically independent experiments, 3 donors). *P=0.0107 for

d, or P=0.0299 for f; **P=0.0022; ***P< 0.0001 (two-way ANOVA with Sidak

(d and f) or Tukey (f) correction for multiple comparisons). g Venn diagrams
showing the overlapping of C>T or A > G single-nucleotide variants in exons, in
control (Ctr), CBE-SpRY-OPT2-, or ABEmax- treated HSPCs obtained from three
different HD. Source data are provided as a Source Data file.

treated with ABEmax; hence, CBEs might have induced some toxi-
city in vivo or might be less efficient with bona fide HSCs. In con-
trast, we obtained evidence of (i) editing in a large proportion of
repopulating HSCs edited with ABEmax, and (ii) HbF reactivation in
the HSCs’ erythroid progeny. These results emphasize the impor-
tance of choosing the right base editor for HSC-based therapeutic
strategies. In fact, to date, only ABES8e-NRCH** and A3A(N57)-BE3*
(a CBE containing a different deaminase) have shown their effec-
tiveness in human repopulating HSCs. The delivery of the CBEs and
ABEs used in the present study to clinically relevant HSPCs could be
further optimized with regard to the promoter editing frequency
invitro (e.g., in both BFU-E and CFU-GM), the base-editing efficiency
in repopulating HSCs, and the fitness of the edited HSCs. By way of
an example, we could use recently developed ABEs that are more
efficient than ABEmax*>“°. However, given the selective advantage
of corrected erythroid precursors and RBCs, the creation of a KLF1
BS might be enough to strongly reactivate HbF and correct both
SCD and B-thalassemia phenotypes in vivo.

Lastly, we comprehensively assessed the off-target activity of
our base-editing systems in primary HSPCs. In particular, in the
present study we have analyzed sgRNA-independent off-target RNA
activity of CBE-SpRY and ABEmax in primary human HSPCs. Inter-
estingly, transient mRNA delivery of CBEs and ABEs did not lead to
greater deamination of the cellular transcriptome, as it is typically
observed upon plasmid delivery®**®'. Hence, the base editors used
here appear to be safe in clinically relevant cells. Furthermore, the
WES data did not reveal sgRNA-independent off-target activity
within exons in CBE-SpRY-treated (LRF 8C) and ABEmax-treated
(KLF1) samples. However, the limited WES coverage prevented us
from identifying infrequent events. A few sgRNA-dependent DNA
off-target edits in primary cells were observed for CBEs and ABEs,
although there was no impact on gene expression and no occur-
rence of InDels potentially associated with large genomic rearran-
gements. The fact that off-target DNA activity was lower for ABEmax
than for the highly processive and highly efficient ABE8e suggests
that the former is the safer of the two’®. The observation of ABEmax-
mediated sgRNA-dependent off-target activity was observed also
in vivo, suggesting that it does not have a detrimental effect on HSC
engraftment and differentiation. Furthermore, the use of a high-
fidelity Cas9 nickase and PAM-restricted BEs (e.g., CBE-NCRH
instead of CBE-SpRY) or the RNP-based delivery of the base-
editing system might substantially reduce sgRNA-dependent DNA
off-target activity*%%,

In conclusion, our present results provided proof of concept
for base-editing treatment strategies for both SCD and f-
thalassemia. This universally applicable therapeutic strategy does
not depend on the specific disease-causing mutation, and thus does
not require the mutation-specific CRISPR-Cas9 tools, as described
previously®*®. The translation of our approach into the clinic will
require (i) optimization of genome editing in a sufficiently large
number of HSCs that would allow effective reconstitution of the
bone marrow and production of normal RBCs, and (ii) the estab-
lishment of a large-scale transfection protocol with clinical-grade
reagents.

Methods

Cell line culture

The human fetal erythroleukemia cell line K562 was obtained com-
mercially (ATCC). The human umbilical cord-derived erythroid pro-
genitor HUDEP-2 cell line was obtained by the Cell Engineering Division
of RIKEN BRC Cell Bank (Ibaraki, Japan)®*. K562 cells were maintained
in RPMI 1640 (Lonza) containing glutamine and supplemented with
10% fetal bovine serum (Lonza), 2mM Hepes (Life Technologies),
100nM sodium pyruvate (Life Technologies), and penicillin and
streptomycin (Life Technologies). HUDEP-2 cells were cultured in
StemSpan SFEM (Stem Cell Technologies), supplemented with 1 pg/mL
doxycycline (Sigma), 10°M dexamethasone (Sigma), 100 ng/mL
human stem-cell factor (SCF) (Peprotech), 31U/mL erythropoietin
(Necker Hospital Pharmacy), r-glutamine (Life Technologies), and
penicillin/streptomycin.

HSPC purification and culture

We obtained human granulocyte colony-stimulating factor (G-CSF)-
mobilized peripheral blood CD34" HSPCs from healthy donors, human
non-mobilized and plerixafor-mobilized peripheral blood CD34* HSPCs
from SCD patients, and human non-mobilized peripheral blood CD34"
HSPCs from [-thalassemia patients. SCD and [-thalassemic samples
eligible for research purposes were obtained from the “Hopital Necker-
Enfants malades” Hospital (Paris, France). Healthy donors were either
obtained from the “Hopital Necker-Enfants malades” Hospital (Paris,
France) or purchased by Caltag. Written informed consent was obtained
from all adult subjects. All experiments were performed in accordance
with the Declaration of Helsinki. The study was approved by the
regional investigational review board (reference: DC 2014-2272, CPP lle-
de-France Il “Hopital Necker-Enfants malades”). HSPCs were purified by
immunomagnetic selection with AutoMACS (Miltenyi Biotec) after
immunostaining with the CD34 MicroBead Kit (Miltenyi Biotec). Forty-
eight hours before transfection, CD34" cells were thawed and cultured
at a concentration of 5 x 10° cells/ml in the “HSPC medium” containing
StemSpan (STEMCELL Technologies) supplemented with penicillin/
streptomycin (Gibco), 250 nM StemRegeninl (STEMCELL Technolo-
gies), and the following recombinant human cytokines (PeproTech):
human stem-cell factor (SCF) (300 ng/ml), Flt-3L (300 ng/ml), throm-
bopoietin (TPO) (100 ng/ml), and interleukin-3 (IL-3) (60 ng/ml).

Plasmids

Plasmids used in this study include:
pCMV_ABEmax_P2A_GFP (Addgene #112101)
pCMV_AncBE4max_P2A_GFP (Addgene #112100)
SaKKH-ABEmax (Addgene #119815)
pBT374 (Addgene #125615)
pBT372 (Addgene #125613)
pMJ920 (Addgene #42234)
ABE8e (Addgene #138489)
pCMV-BE4max-NRCH (Addgene #136920)
pCMV-BE4max-NRRH (Addgene #136918)
pCAG-CBE4max-SpG-P2A-EGFP (RTW4552) (Addgene #139998)
pCAG-CBE4max-SpRY-P2A-EGFP (RTWS5133) (Addgene #139999)
pCMV-T7-SpRY-P2A-EGFP (RTW4830) (Addgene #139989).
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The AncBE4max NAA plasmid was created by replacing the
sequence encoding the PAM interaction domain of the SpCas9 nickase
(SpCas9n) with the one of the SmaCas9°*. The sequence encoding the
SmacCas9 domain was codon optimized by using the Genscript codon
optimization software and obtained by gene synthesis (Genscript). The
SaKKH-AncBE4max plasmid was created by combining the sequences
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encoding the deaminase domain from the AncBE4max plasmid
(Addgene #112094) and the SaKKH-Cas9 nickase from the SaKKH-
ABEmax plasmid (Addgene #119815).

A DNA fragment (3’'UTR + poly-A) containing two copies of the 3’
untranslated region (UTR) of the HBB gene and a poly-A sequence of
96 adenines were purchased by Genscript. Similarly, another DNA
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Fig. 8 | RNA-mediated base editing of the -200 region of HBG promoters in
repopulating HSCs. a Experimental protocol of HSPC xenotransplantation in
NBSGW mice. G-CSF-mobilized HD HSPCs or non-mobilized SCD HSPCs were
subjected to RNA-mediated base editing. A BE mRNA and a chemically modified
sgRNA were co-transfected in HSPCs and cells were xenotransplanted into NBSGW
immunodeficient mice. b Engraftment of human cells in NBSGW mice transplanted
with control (mock-transfected, transfected with CBE or ABE mRNA alone) and
edited (LRF 8C or KLF1) mobilized HD or SCD HSPCs [HD: n =4 (mock, CBE mRNA,
LRF 8C, ABE mRNA), n =3 (KLF1) mice per group; SCD: n =3 (mock), n=2 (LRF 8C),
n=>5 (KLF1) mice per group] 16 to 20 weeks post-transplantation. Engraftment is
represented as a percentage of human CD45" cells in the total murine and human
CD45' cell population, in bone marrow (BM), spleen, thymus, and peripheral blood.
Each data point represents an individual mouse. Data are expressed as mean + SEM.
¢ Human hematopoietic progenitor content in BM human CD45" cells derived from
mice transplanted with control and edited HSPCs [HD: n=4 (mock), n=3 (CBE),
n=4 (LRF 8C), n=3 (ABE), n =2 (KLF1) mice per group; SCD: n =5 (mock), n =1 (LRF
8C), n=2 (KLF1) mice per group]. We plotted the percentage of human CD45" cells
giving rise to BFU-E and CFU-GM. Data are expressed as mean + SEM.d C-G to T-A or
A-T to G-C base-editing efficiency, calculated by the EditR software, in input, bone
marrow-, spleen-, BFU-E-, CFU-GM-, and peripheral blood-derived HD and SCD
human samples subjected to Sanger sequencing. Data are expressed as mean + SEM
[HD-LRF 8 C: n =3 (Input) biologically independent experiments, n =4 (bone mar-
row and blood), n=3 (spleen, BFU-E, CFU-GM) mice per group; HD-KLF1: n=3
(Input) biologically independent experiments, n =3 (bone marrow and spleen),
n=2 (BFU-E, CFU-GM and Blood) mice per group; SCD-LRF 8C: n =2 (Input) bio-
logically independent experiments, n =2 (bone marrow, spleen and blood), n=1
(BFU-E and CFU-GM) mice per group; SCD-KLF1: n =2 (Input) biologically inde-
pendent experiments, n = 6 (bone marrow and spleen), n =2 (BFU-E and CFU-GM),
n=5 (Blood) mice per group]. The frequency of base editing in input cells was
calculated in cells cultured in the HSPC medium (pointing-up triangle), in liquid
erythroid cultures (rhombus), BFU-E (square) and CFU-GM (pointing-down trian-
gle) colonies. Each data point (circle) represents an individual mouse. HD/LRF8C:
**P=0.021 for bone marrow, or P=0.0094 for spleen, or P=0.0037 for BFU-E, or
P=0.0059 for CFU-GM, or P = 0.0042 for Blood. HD/KLFL: *P = 0.0136; **P= 0.0065;
**P=0.0009. SCD/LRF8C: **P=0.0056 for Bone marrow, or P=0.012 for BFU-E;
***P=0.0004 for Spleen, or P=0.0010 for CFU-GM, or P=0.0001 for Blood. SCD/
KLF1: *P=0.0040; **P=0.0009; ***P < 0.0001 (two-way ANOVA with Dunnett
correction for multiple comparisons). e Base-editing profile for LRF 8C and

KLF1 samples, calculated using EditR software, in input, bone marrow-, spleen- and
peripheral blood-derived human samples subjected to Sanger sequencing. Data are
expressed as mean + SEM [LRF 8C: n =35 (Input) biologically independent experi-
ments, n=6 (bone marrow and blood), n =5 (spleen and CFU-GM), n =4 (BFU-E)

mice per group; KLF1: n=5 (Input) biologically independent experiments, n=9
(Bone Marrow and Spleen), n =8 (Blood) n=4 (BFU-E and CFU-GM) mice per
group]. f Frequency of InDels, measured by TIDE analysis, in input, bone marrow-,
spleen- and peripheral blood-derived human samples subjected to Sanger
sequencing. Data are expressed as mean + SEM [Input: n=7 (Control), n=5 (LRF 8C
and KLF1) biologically independent experiments; Bone Marrow: n =11 (Control),
n=6 (LRF 8C), n=9 (KLF1) mice per group; Spleen: n=11 (Control), n=5 (LRF 8C),
n=9 (KLF1) mice per group; Blood: n =11 (Control), n = 4 (LRF 8C), n = 8 (KLF1) mice
per group; BFU-E: n=9 (Control), n =4 (LRF 8C), n =4 (KLF1) mice per group; CFU-
GM: n=10 (Control), n=5 (LRF 8C), n=4 (KLF1) mice per group]. g Frequency of
the 4.9-kb deletion, measured by ddPCR, in input samples (left panel). Frequency of
mice that bear the 4.9-kb deletion in bone marrow-derived human CD45" cells
(right panel). Data are expressed as mean + SEM (n =11 (control), n=5 (LRF 8C and
KLF1) biologically independent experiments for left panel and n=6-9 mice per
group for right panel). **P=0.0002 (ordinary one-way ANOVA with Dunnett cor-
rection for multiple comparisons). h A-T to G-C base-editing efficiency at on- and
off-target sites, calculated by the EditR software, in input, bone marrow- and
spleen-derived HD and SCD human samples subjected to Sanger sequencing. Data
are expressed as mean + SEM [ctr: n = 3 biologically independent experiments;
Input: n =3 (HD), n =2 (SCD) biologically independent experiments; BM: n =3 (HD),
n=6(0ON), n=5(0T4) mice per group]. ns P=0.5920 for HD, or P> 0.9999 for SCD;
*P=0.0104; *P=0.0033 (two-way ANOVA with Dunnett correction for multiple
comparisons). i Base editing in single BFU-E colonies derived from engrafting HD
HSPCs, calculated by the EditR software. We plotted the frequency of BFU-E with O,
1,2, 3, or 4 edited HBG promoters, the frequency of BFU-E with 0,1 or 2 edited OT4
alleles and the frequency of BFU-E edited only at HBG promoters or OT4 or at both
HBG promoters and OT4 (n = 42 BFU-E obtained from 2 different mice). j Frequency
of chromosome 11 loss, as indicated by the ratio of CARS (p arm) and PODLI (q arm),
measured by ddPCR, for edited or control (AAVS]) single BFU-E colonies (KLF1

n =29 biologically independent colonies; AAVSI n = 6 biologically independent
colonies; 1 donor). k RT-qPCR analysis of B-like globin mRNA levels in bone marrow-
derived BFU-E. B-like globins mRNA expression was normalized to a-globin mRNA.
Data are expressed as mean + SEM [n =7 (Mock), n=3 (ABE mRNA), n=4 (KLF1)
biologically independent experiments; HD (black circles) and SCD (empty circles)
samples]. ***P < 0.0001 (two-way ANOVA with Sidak correction for multiple com-
parisons). I Correlation between y-globin mRNA relative expression and base-
editing efficiency in bone marrow-derived single BFU-E (n = 69). y-globin mRNA
expression was normalized to a-globin mRNA and expressed as a percentage of the
total B- and y- globin mRNA. Base-editing efficiency was calculated by the EditR
software in samples subjected to Sanger sequencing (R? = 0.4263,

Y=0.5328*X +51.81, P< 0.0001 non-zero slope significance; simple linear regres-
sion). Source data are provided as a Source Data file.

fragment containing the uridine-depleted coding sequence of pCAG-
CBE4max-SpRY-P2A-EGFP was created (CBE-SpRY_U-delp).

The CBE-SpRY-OPT plasmids were created by inserting the
3JUTR +poly-A fragment in the pCAG-CBE4max-SpRY-P2A-EGFP
(Addgene #140003) plasmid, and by replacing the CBE4max-SpRY
coding sequence with the CBE-SpRY_U-delp fragment. CBE-SpRY-OPT1
and CBE-SpRY-OPT2 plasmids contain a T7 promoter followed by a G
and A nt, respectively, allowing alternative capping.

Plasmids are available upon request.

sgRNA design

We manually designed sgRNAs targeting the —200 region of the HBGI/2
promoters and an unrelated genomic site (AAVS1) (Supplementary
Table 1). To generate the sgRNA expression plasmid, oligonucleotides
were annealed to create the sgRNA protospacer and the duplexes were
ligated into the Bbs I-digested MA128 plasmid (provided by M. Amen-
dola, Genethon, France). Plasmids are available upon request. For RNA-
mediated base editing we used chemically modified synthetic sgRNAs
harboring 2’-O-methyl analogs and 3’-phosphorothioate nonhydrolyz-
able linkages at the first three 5" and 3’ nucleotides (Synthego).

mRNA in vitro transcription
In total, 10 pg of BE-expressing plasmids were digested overnight with
20 Units of a restriction enzyme that cleaves once after the poly-A tail

or after the stop codon, for constructs with or without a poly-A tail,
respectively. The linearized plasmids were purified using a PCR pur-
ification kit (QIAGEN) and were eluted in 30 pl of DNase/RNase-free
water. In all, 1 g of linearized plasmid was used as a template for the
in vitro transcription (ivt) reaction (MEGAscript, Ambion). The ivt
protocol was modified as follows. The GTP nucleotide solution was
used at a final concentration of 3.0 mM instead of 7.5 mM and the anti-
reverse cap analog N7-Methyl-3’-O-Methyl-Guanosine-5"-Triphosphate-
5-Guanosine (ARCA, Trilink) was used at a final concentration of
12.0 mM resulting in a final ratio of Cap:GTP of 4:1 that allows efficient
capping of the mRNA. The incubation time for the ivt reaction was
reduced to 30 minutes. For constructs without a poly-A tail already
included in the plasmid, an additional step of polyadenylation was
performed using the manufacturer’s guidelines (Poly-A tailing kit,
Ambion). mRNA was precipitated using lithium chloride and resus-
pended in TE buffer in a final volume that allowed to achieve a
concentration of >1pg/pl. The mRNA quality was evaluated
using Bioanalyzer (Agilent). CBE-SpRY-OPT2 mRNA, containing
5-methoxyuridine, capped with Capl analog, and subjected to silica
membrane purification, was purchased from Trilink.

Plasmid transfection
K562 and HUDEP-2 cells (10° cells/condition) were transfected with
3.6 g of a base editor-expressing plasmid and 1.2 pg of a sgRNA-

Nature Communications | (2022)13:6618

16



Article

https://doi.org/10.1038/s41467-022-34493-1

containing plasmid. For base editor plasmids that do not express GFP,
we co-transfected 250 ng of a GFPmax-expressing plasmid (Lonza).
Cells transfected with TE buffer or with a base editor-expressing
plasmid only, served as negative controls. We used the AMAXA Cell
Line Nucleofector Kit V (VCA-1003) and U-16 and L-29 programs
(Nucleofector 1) for K562 and HUDEP-2, respectively. 18 h after
transfection, transfection efficiency was evaluated by flow cytometry,
using the Fortessa X20 (BD Biosciences) or the Gallios (Beckman
Coulter) flow cytometers. GFP* HUDEP-2 cells were sorted 18 h after
transfection using SH800 Cell Sorter (Sony Biotechnology). The gating
strategy used to assess transfection efficiency and to flow sort GFP*
cells is shown in Supplementary Fig. 18a-d.

CD34* HSPCs (10° cells/condition) were transfected with 3.6 pg of
a base editor-expressing plasmid and 4.5 pg of a sgRNA-containing
plasmid or with 4.0 pg of a Cas9-expressing plasmid and 4.9 pg of a
sgRNA-containing plasmid. To enrich for edited HSPCs, either we used
plasmids that express base editor-GFP fusions or we co-transfected the
enzyme-encoding plasmid and 250 ng of a GFPmax-expressing plas-
mid (Lonza). We used the AMAXA Human CD34 Cell Nucleofector Kit
(VPA-1003) and the U-08 program (Nucleofector II). 18 h after trans-
fection, GFP* CD34" HSPCs were sorted based on GFP medium (GFP
“-med) and high (GFP*-high) expression using SH800 Cell Sorter (Sony
Biotechnology). Cells transfected with TE buffer, or with the enzyme-
expressing plasmid and plasmid encoding a sgRNA targeting the
AAVSI locus, served as negative controls. The gating strategy used to
flow sort GFP* cells is shown in Supplementary Fig. 18e, f.

RNA transfection

In all, 10* to 2 x10° or 2 x10° CD34" HSPCs per condition were trans-
fected with 3.0 pg or 15.0 pg of the enzyme-encoding mRNA, respec-
tively, and a synthetic sgRNA at a final concentration of 2.3 pM. We
used the P3 Primary Cell 4D-Nucleofector X Kit S or L (Lonza) and the
CA137 program (Nucleofector 4D). Untransfected cells or cells trans-
fected with TE buffer or with the enzyme-encoding mRNA only, or with
the enzyme-encoding mRNA and a sgRNA targeting the AAVSI locus,
served as negative controls.

Ribonucleoprotein (RNP) transfection

RNP complexes were assembled at room temperature using a 90 pM
Cas9-GFP protein and a 180 pM synthetic sgRNA (ratio Cas9:sgRNA of
1:2). CD34" HSPCs (2 x 10° cells/condition) were transfected with RNP
complexes using the P3 Primary Cell 4D-Nucleofector X Kit S (Lonza)
and the CA137 program (Nucleofector 4D) in the presence of a trans-
fection enhancer (IDT). Untransfected cells or cells transfected with TE
buffer or with the enzyme-encoding mRNA only, or with the enzyme-
encoding mRNA and a sgRNA targeting the AAVSI1 locus, served as
negative controls.

HSPC differentiation

Transfected CD34* HSPCs were differentiated into mature RBCs using
a three-phase erythroid differentiation protocol, as previously
described*®. During the first phase (day O to day 6), cells were cul-
tured in a basal erythroid medium supplemented with 100 ng/ml
recombinant human SCF (PeproTech), 5 ng/ml recombinant human IL-
3 (PeproTech), 3 IU/ml EPO Eprex (Janssen-Cilag) and 10°M hydro-
cortisone (Sigma). During the second phase (day 6 to day 9), cells were
co-cultured with MS-5 stromal cells in the basal erythroid medium
supplemented with 3 IU/ml EPO Eprex (Janssen-Cilag). During the third
phase (day 9 to day 20), cells were co-cultured with stromal MS-5 cells
in a basal erythroid medium without cytokines. Heat-inactivated
human AB serum was added during the third phase of the differ-
entiation (10%; day 13 to day 20). Erythroid differentiation was mon-
itored by flow cytometry analysis of CD36, CD71, GYPA, BAND3, and
o4-Integrin erythroid surface markers and of enucleated cells using the
DRAQS5 double-stranded DNA dye. 7AAD was used to identify live cells.

The gating strategy used to assess erythroid surface markers and
enucleated cells is shown in Supplementary Fig. 19.

Colony-forming cell (CFC) assay

CD34" HSPCs were plated at a concentration of 1x10° cells/mL in a
methylcellulose-based medium (GFH4435, Stem Cell Technologies)
under conditions supporting erythroid and granulocyte/monocyte
differentiation. BFU-E and CFU-GM colonies were counted after
14 days. Colonies were randomly picked and collected as bulk popu-
lations (containing at least 25 colonies) to evaluate base-editing effi-
ciency, globin expression by RT-qPCR and RP-HPLC and hemoglobin
expression by CE-HPLC. BFU-Es were randomly picked and collected as
single colonies (around 20 colonies per sample) to evaluate base-
editing efficiency and globin expression by RT-qPCR.

Evaluation of editing efficiency

Base-editing efficiency, InDels frequency, and the presence of the 4.9-
kb deletion were evaluated in K562 and HUDEP-2 cells, 3 days post-
transfection, in HSPC-derived erythroid cells at the end of the first
phase (day 6) and during the third phase (day 13) of differentiation, in
BFU-E and CFU-GM 14 days after plating, in human CD45" cells sorted
from the bone marrow of NBSGW recipient mice, and in spleen and
blood derived from the same mice.

Genomic DNA was extracted from control and edited cells using
PURE LINK Genomic DNA Mini kit (Life Technologies), or Quick-DNA/
RNA Miniprep (ZYMO Research), or DNeasy Blood & Tissue Kit (QIA-
GEN), following the manufacturer’s instructions. To evaluate base-
editing efficiency at sgRNA target sites, we performed PCR followed by
Sanger sequencing and EditR analysis (EditR: A Method to Quantify
Base Editing from Sanger Sequencing)®. TIDE analysis (Tracking of
InDels by Decomposition) was also performed in order to evaluate the
percentage of insertion and deletion (InDels) in base-edited samples®’.
Supplementary Table 2 lists the primers used for PCR.

Digital Droplet PCR (ddPCR) was performed using a primer/probe
mix (Bio-rad) to quantify the frequency of the 4.9-kb deletion. Control
primers annealing to hALB (located on chr 4) were used as DNA loading
control. For the in vivo data, the frequency of the 4.9-kb deletion was
calculated upon normalization of the ratio of the HBGI-HBG2 inter-
vening region/hALB to the average of the control samples. ddPCR was
performed using EvaGreen mix to quantify the frequency of chromo-
some loss by amplifying a region upstream (PODLI) and a region
downstream (CARS) to the HBGI1/2 promoters, located in the q and p
arm of chromosome 11, respectively (adapted from ref. 27). Data were
acquired through QX200 analyzer (Bio-Rad) and results were analyzed
with QuantaSoftTM Analysis Pro (Bio-Rad). A positive droplet count
threshold was set at 30 to allow proper calculation of copy/uL con-
centration through the application of the Poisson distribution. The
frequency of chromosome loss was calculated as the ratio p/q arm
(CARS/PODLI) copy concentrations. Supplementary Table 3 lists the
primers used for ddPCR.

Genome-wide, unbiased identification of DSBs enabled by
sequencing (GUIDE-seq)

Human embryonic kidney (HEK) 293T/17 cells (2.5 x 10°) were trans-
fected with 500 ng of Cas9-, Cas9-SpG-, or Cas9-SpRY-expressing
plasmid, together with 250 ng of each sgRNA-coding plasmid or an
empty pUCI19 vector (background control), 10 pmol of the bait double-
stranded oligodeoxynucleotide (dsODN) (designed according to the
original GUIDE-seq protocol®®), and 50 ng of a pEGFP-IRES-Puro plas-
mid, expressing both enhanced GFP (EGFP) and the puromycin resis-
tance genes. One day after transfection, cells were replated and
selected with puromycin (1 pg/ml) for 48 h to enrich for transfected
cells. Cells were then collected, and genomic DNA was extracted using
the DNeasy Blood and Tissue Kit (Qiagen) and sheared using the
Covaris S200 sonicator to an average length of 500bp. Library
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preparation was performed using the original adapters and primers
according to the previous work®®.

End-repair reaction was performed using NEBNext Ultra End
Repair/dA Tailing Module and adapter ligation using NEBNext® Ultra™
Ligation Module, as previously described®®. Amplification steps were
then performed following the GUIDE-seq protocol previously
described®®.

Libraries were sequenced with a MiSeq sequencing system (lllu-
mina) using the Illumina MiSeq Reagent kit V2-300 cycles (paired-end
sequencing; 2x150-bp). Raw sequencing data (FASTQ files) were
analyzed using the GUIDE-seq computational pipeline’®. Identified
sites were considered bona fide off-targets if a maximum of seven
mismatches against the on-target were present and if they were absent
in the background control.

NGS-targeted sequencing of on- and off-target sites

On-target sites (HBGI/2 promoters) were PCR amplified using the
Phusion High-Fidelity polymerase (New England BioLabs) and the GC
buffer (New England BioLabs). Amplicons were purified using Ampure
XP beads (Beckman Coulter). Illumina-compatible barcoded DNA
amplicon libraries were prepared using the TruSeq DNA PCR-Free kit
(Illumina). PCR amplification was then performed using 1ng of the
double-stranded DNA ligation product and Kapa Taq polymerase
reagents (KAPA HiFi HotStart ReadyMix PCR Kit, Kapa Biosystems).
After a purification step using Ampure XP beads (Beckman Coulter),
libraries were pooled and sequenced using Illumina NovaSeq
6000 system (paired-end sequencing; 2 x100-bp). Targeted deep
sequencing data were analyzed using CRISPRess02”".

Off-target sites (identified by GUIDE-seq) were PCR amplified
using the Phusion High-Fidelity polymerase (New England BioLabs),
the HF buffer (New England BioLabs) and primers containing specific
DNA stretches (MR3 for forward primers and MR4 for reverse primers)
5 to the sequence recognizing the off-target site. Amplicons were
purified using Ampure XP beads (Beckman Coulter). Illumina-
compatible barcoded DNA amplicon libraries were prepared by a
second PCR step using the Phusion High-Fidelity polymerase (New
England BioLabs), the HF buffer (New England BioLabs) and primers
containing Unique Dual Index (UDI) barcodes and annealing to MR3
and MR4 sequences. Libraries were pooled, purified by High Pure PCR
Product Purification Kit (Sigma-Aldrich), and sequenced using lllumina
NovaSeq 6000 system (paired-end sequencing; 2x150-bp). Targeted
deep sequencing data were analyzed using CRISPRess02”..

Supplementary Table 4 lists the primers used for targeted deep
sequencing at on- and off-target sites.

RNA-seq

Total RNA was isolated from HD HSPCs 48 h after RNA transfection
using the RNeasy Kit (QIAGEN), including a DNAse treatment step. RNA
quality was assessed by capillary electrophoresis using High Sensitivity
RNA reagents with the Fragment Analyzer (Agilent Technologies), and
the RNA concentration was measured by using both Xpose spectro-
photometry (Trinean) and Fragment Analyzer (Agilent Technologies)
capillary electrophoresis.

RNA-seq libraries were prepared starting from 30 ng of total RNA
using the Universal Plus mRNA-Seq kit (Nugen) as recommended by
the manufacturer. Briefly, mRNA was captured with poly-A+ magnetic
beads from total RNA. mRNA was chemically fragmented. Single-
strand and second-strand cDNA were produced and then ligated to
Illumina-compatible adapters with UDI. To produce oriented RNA-seq
libraries, a final step of strand selection was performed. The NuQuant
system (Nugen) was used to quantify the RNA-seq libraries. An equi-
molar pool of the final indexed RNA-Seq libraries was prepared and
sequenced using the Illumina NovaSeq 6000 system (paired-end
sequencing; 2 x 100-bp). A total of ~50 millions of passing filter paired-
end reads were produced per library.

Read quality was verified using FastQC (v. 0.11.97%). Raw reads
were trimmed for adapters and low-quality tails (quality < Q20) with
BBDuk (v. 38.927°); moreover, the first 10 nucleotides were force-
trimmed for low quality. Reads shorter than 35 bp after trimming were
removed. Reads were subsequently aligned to the human reference
genome (hg38) using STAR (v. 2.7.92’%). Raw gene counts were
obtained in R-4.1.1 using the featureCounts function of the Rsubread R
package (v. 2.6.47°) and the GENCODE 38 basic gene annotation for
hg38 reference genome. Gene counts were normalized to counts per
million mapped reads (CPM) and to fragments per kilobase of exon per
million mapped reads (FPKM) using the edgeR R package (v. 3.34.1°°);
only genes with a CPM greater than 1in at least 3 samples were retained
for differential analysis. Differential gene expression analysis was
performed using the glmQLFTest function of the edgeR R package,
using donor as a blocking variable.

RNA editing analysis was performed accordingly to GATK Best
Practices for RNA-seq variant calling (GATK v4.2.2.0). In brief, lane-
level FASTQ files were two-pass aligned to the hg38 human reference
genome with STAR™ (v2.7.2a) using parameters to specify the Read-
Group and output the aligned BAM file sorted by coordinate. Lane-
level alignments for each sample were merged and duplicate marked
using Picard (v2.25.4). After splitting reads containing Ns in their cigar
string because they span splicing sites, base quality recalibration was
performed using known variants in dbSNP155. RNA base-editing var-
iant calling was performed using GATK HaplotypeCaller only on
canonical (1-22, X, Y, and M) chromosomes.

Single-nucleotide variants (SNVs) were filtered using the untreated
sample as background to identify editing events private to treated
samples. Specifically, SNVs without high-confidence reference geno-
type calls in the untreated experiment were excluded applying the
following criteria: coverage >20 reads, genotype quality >30, frequency
of reference allele >0.99. Moreover, only SNVs with coverage >30 reads
and genotype quality >30 were finally retained in the treated samples.

C-to-U editing events comprise C-to-U SNVs called on the positive
strand as well as G-to-A SNVs sourced from the negative strand. A-to-I
editing events comprise A-to-l SNVs called on the positive strand as
well as T-to-C SNVs sourced from the negative strand. SNVs annotation
was performed using the Variant Effect Predictor (VEP) tool from
Ensembl”.

Whole-exome sequencing

Genomic DNA was extracted from RNA-transfected HD HSPCs using
PURE LINK Genomic DNA Mini kit (Life Technologies), following the
manufacturer’s instructions. Exome libraries were prepared using the
Twist Human RefSeq Exome Kit (36 Mb, Twist Bioscience). Briefly,
100-500 ng of genomic DNA was sheared with an Ultrasonicator
(Covaris). A total amount of 50 ng of the fragmented and purified
double-stranded DNA was used to prepare the exome libraries as
recommended by the manufacturer, but with no initial enzymatic
shearing and using adapters with Unique Molecular Identifier barcodes
(IDT). Barcoded exome libraries were pooled and sequenced with the
Illumina NovaSeq 6000 system (paired-end sequencing; 2 x 100-bp).
More than 54 million paired-end reads were produced per exome
library.

Variant calling was carried out accordingly to GATK Best Practices
for germline short variant discovery (GATK v4.2.2.0). In brief, lane-level
FASTQ files were mapped on the hg38 human genome reference with
BWA’® (v 0.7.17), specifying the ReadGroup. Lane-level alignments for
each sample were merged, sorted by genomic coordinate, and dupli-
cate marked using Picard (v2.25.4). Base quality recalibration was
performed, specifying the list of target exons (Twist_ Exome_R-
efSeq_targets_hg38.bed) with a padding region of 100 bp. Variant
calling was performed using GATK HaplotypeCaller only on canonical
(1-22, X, Y, and M) chromosomes. SNVs were filtered accordingly to
the following criteria: coverage >10 reads and genotype quality >30.
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SNVs annotation was performed using the Variant Effect Predictor
(VEP) tool from Ensembl”’.

Chromatin immunoprecipitation assay

GFP* high K562 cells were sorted 18 h post-transfection using the
SH800 Cell Sorter (Sony Biotechnology). ChIP experiments were per-
formed in LRF-4C, LRF-8C, LRF-2T, KLF1, Cas9-197-edited K562 bulk
populations and in mock-transfected (transfected with TE buffer)
samples. For each condition, 5x107 cells were cross-linked with 1%
formaldehyde for 15 min at room temperature, and the reaction was
quenched with glycine at a final concentration of 125 mM. Cross-linked
cells were then lysed and sonicated to obtain ~- 200-400 bp fragments
of chromatin. Sonicated DNA from each condition was split in two, and
each half was pulled down at 4 °C overnight using either 25 pg of an
antibody against LRF (1 pg/cell of anti-human LRF, 13E9, 14-3309-82,
ThermoFisher-Invitrogen) or 25ug of an isotype control antibody
(1pg/cell of Armenian hamster IgG isotype control (Arm-IgG),
eBi0299Arm, 14-4888-85, ThermoFisher-Invitrogen). Chromatin cross-
linking was then reversed, and DNA was eluted at 65 °C overnight and
purified. Real-time qPCR was performed on ChIP material using the
SYBR™ Green PCR Master Mix (Applied Biosystems) and the Viia7 Real-
Time PCR system (ThermoFisher Scientific). Supplementary Table 5
lists the real-time PCR primers used for ChIP-qPCR.

RT-qPCR

Total RNA was extracted from SCD or B-thalassemic HSPCs differ-
entiated towards the erythroid lineage (day 13) or from healthy donor
(HD) HSPCs (12 and 24 h post-transfection) using RNeasy micro kit
(QIAGEN), and from BFU-E pools and single colonies using Quick-DNA/
RNA Miniprep (ZYMO Research). RNA was treated with DNase using
the DNase I kit (Invitrogen), following the manufacturer’s instructions.
Mature transcripts were reverse-transcribed using SuperScript First-
Strand Synthesis System for RT-qPCR (Invitrogen) with oligo (dT)
primers. RT-qPCR was performed using the iTaq universal SYBR Green
master mix (Bio-rad) and the Viia7 Real-Time PCR system (Thermo-
Fisher Scientific), or the CFX384 Touch Real-Time PCR Detection
System (Bio-rad). Supplementary Table 6 lists the primers used for
RT-gPCR.

Flow cytometry analysis

HUDEP-2 were fixed and permeabilized using BD Cytofix/Cytoperm
solution (BD Pharmingen) and stained with an antibody recognizing
HbF (1/100 APC-conjugated anti-HbF antibody, MHFOS5, Life Technol-
ogies) and an antibody recognizing GYPA erythroid surface marker (1/
100 PE-Cy7-conjugated anti-GYPA antibody, 563666, BD Pharmingen).
The gating strategy used to assess HbF expression in HUDEP-2 cells is
shown in Supplementary Fig. 20a, b.

HSPC-derived erythroid cells were fixed with 0.05% cold glu-
taraldehyde and permeabilized with 0.1% TRITON X-100. After
fixation and permeabilization, cells were stained with an antibody
recognizing GYPA erythroid surface marker (1/100 PE-Cy7-
conjugated anti-GYPA antibody, 563666, BD Pharmingen) and
either an antibody recognizing HbF (1/5 FITC-conjugated anti-HbF
antibody, clone 2D12 552829 BD), or an antibody recognizing HbS
(1/20 anti-HbS antibody, H04181601, BioMedomics) followed by
the staining with a secondary antibody recognizing rabbit IgG (1/
200 BV421-conjugated anti-rabbit IgG, 565014, BD). The gating
strategy used to assess HbF and HbS expression in HSPC-derived
erythroid cells is shown in Supplementary Fig. 20c-f. Flow cyto-
metry analysis of CD36, CD71, GYPA, BAND3 and a4-Integrin ery-
throid surface markers was performed using a V450-conjugated
anti-CD36 antibody (1/20 561535, BD Horizon), a FITC-conjugated
anti-CD71 antibody (1/50 555536, BD Pharmingen), a PE-Cy7-
conjugated anti-GYPA antibody (1/100 563666, BD Pharmingen), a
PE-conjugated anti-BAND3 antibody (1/50 9439, IBGRL) and an

APC-conjugated anti-CD49d antibody (1/20 559881, BD). The gating
strategy used to assess erythroid surface markers is shown in
Supplementary Fig. 19. Flow cytometry analysis of enucleated or
viable cells was performed using double-stranded DNA dyes
(DRAQ5, 65-0880-96, Invitrogen and 7AAD, 559925, BD, respec-
tively). The gating strategy used to assess enucleated cells is shown
in Supplementary Fig. 19. Flow cytometry analysis of apoptotic
cells was performed using PE-conjugated Annexin V (1/10 559763,
BD Pharmingen). The gating strategy used to assess apoptotic cells
is shown in Supplementary Fig. 21a, b. Flow cytometry analysis of
reactive oxygen species (ROS) was performed using H,DCFDA
(D399, Invitrogen). The gating strategy used to assess ROS is shown
in Supplementary Fig. 21c, d. Flow cytometry analyses were per-
formed using Fortessa X20 (BD Biosciences) or Gallios (Beckman
Coulter) flow cytometers. Data were analyzed using the FlowJo (BD
Biosciences) software.

RP-HPLC analysis of globin chains

RP-HPLC analysis was performed using a NexeraX2 SIL-30AC chro-
matograph and the LC Solution software (Shimadzu). A 250 x 4.6 mm,
3.6 um Aeris Widepore column (Phenomenex) was used to separate
globin chains by HPLC. Samples were eluted with a gradient mixture of
solution A (water/acetonitrile/trifluoroacetic acid, 95:5:0.1) and solu-
tion B (water/acetonitrile/trifluoroacetic acid, 5:95:0.1). The absor-
bance was measured at 220 nm.

CE-HPLC analysis of hemoglobin tetramers

Cation-exchange HPLC analysis was performed using a NexeraX2 SIL-
30AC chromatograph and the LC Solution software (Shimadzu). A 2
cation-exchange column (PolyCAT A, PolyLC, Columbia, MD) was used
to separate hemoglobin tetramers by HPLC. Samples were eluted with
a gradient mixture of solution A (20 mM bis Tris, 2 mM KCN, pH = 6.5)
and solution B (20 mM bis Tris, 2mM KCN, 250 mM NacCl, pH = 6.8).
The absorbance was measured at 415 nm.

Sickling assay

HSPC-derived mature RBCs obtained at the end of the erythroid dif-
ferentiation, were incubated under gradual hypoxic conditions (20%
0, for 20 min; 10% O, for 20 min; 5% O, for 20 min; 0% O, for
60-80 min) and a time course analysis of sickling was performed in
real-time by video microscopy. Images were captured every 20 min
using an AxioObserver Z1 microscope (Zeiss) and a 40x objective.
Throughout the time course, images were captured and then pro-
cessed with Image] to determine the percentage of non-sickle RBCs per
field of acquisition in the total RBC population. More than 400 cells
were counted per condition.

HSPC xenotransplantation in NBSGW mice

NOD.Cg-Kit"*'Tyr *Prkdc“I2rg™""/Thom) (NBSGW) mice were
housed in a pathogen-free facility. Control or edited mobilized healthy
donor or non-mobilized SCD CD34" cells (0.4 to 1.2x10° cells per
mouse) were transplanted into nonirradiated NBSGW male and female
mice of 5 to 6 weeks of age via retro-orbital sinus injection. NBSGW male
and female mice transplanted with non-mobilized SCD CD34" cells were
conditioned with busulfan (Sigma, St Louis, MO, USA) injected intra-
peritoneally (10 mg/kg body weight/day) 24 h, 48 h and 72h before
transplantation. Neomycin and acid water were added in the water
bottle. 16 to 20 weeks after transplantation, NBSGW primary recipients
were sacrificed. Cells were harvested from bone marrow, thymus,
spleen, and blood, stained with antibodies against murine and human
surface markers [murine CD45 (1/50 mCD45-VioBlue), Miltenyi Biotec;
human CD45 (1/50 hCD45-APCvio770), Miltenyi Biotec; human CD3
(1/50 CD3-APC), Miltenyi Biotec; human CD14 (1/50 CD14-PE-Cy7), BD
Biosciences; human CD15 (1/50 CD15-PE), Miltenyi Biotec; human CD19
(1/100 CD19-BV510); human CD235a (1/50 CD235a-PE), BD Biosciences]
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and analyzed by flow cytometry using the MACSQuant analyzer (Mil-
tenyi Biotec) and the FlowJo software (BD Biosciences). The gating
strategy used to assess chimerism and lineage-specific markers is shown
in Supplementary Fig. 22. Human bone marrow CD45" cells were sorted
by immunomagnetic selection with AutoMACS (Miltenyi Biotec) after
immunostaining with the CD45 MicroBead Kit (Miltenyi Biotec). All
experiments and procedures were performed in compliance with the
French Ministry of Agriculture’s regulations on animal experiments and
were approved by the regional Animal Care and Use Committee (APA-
FIS#2019061312202425 v4). Mice were housed in a temperature
(20-22°C) and humidity (40-50%)-controlled environment with 12 h/
12 h light/dark cycle and fed ad libitum with a standard diet.

Statistics and reproducibility

No statistical method was used to predetermine the sample size. We
used the minimum number of replicates (n=3) to perform statistics.
Biologically independent experiments reported here are from inde-
pendent (i) splits of each cell type, or (ii) primary cells from different
donors, or (iii) mice. No data were excluded from the analyses. The
experiments were not randomized. The Investigators were not blinded
to allocation during experiments and outcome assessment. Statistical
analyses were performed with Prism version 9.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The RNA-seq data generated in this study and supporting the results of
this article have been deposited and are available in the Gene Expres-
sion Omnibus repository under the accession number GSE191135. The
WES data generated in this study and supporting the results of this
article have been deposited and are available in the BioProject repo-
sitory under the accession number PRJINA850889. The GUIDE-seq data
generated in this study and supporting the results of this article have
been deposited and are available in the BioProject repository under
the accession number PRJNA752948. Source data are provided with
this paper.
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Supplementary Tables

Supplementary Table 1. sgRNA target sequences.

sgRNA

Target sequence (5’ to 3’) Position (hg19) Strand

KLF1_bs_1 |GTGGGGAAGGGGCCCCCAAG

chr11: 5271279-5271298 (HBG1

chr11: §276203-5276222 (HBG2 *

LRF_bs_1 GGGCCCCTTCCCCACACTAT

chr11: 5271269-5271288 (HBG1
chr11: 5276193-5276212 (HBG2

LRF_bs 2 GCCCCTTCCCCACACTATCT

chr11: 5271272-5271291 (HBG1

LRF_bs_3 CCTTCCCCACACTATCTCAA

chr11: 5271274-5271293 (HBG1
chr11: 5276198-5276217 (HBG2

LRF_bs_4 CTTCCCCACACTATCTCAAT

chr11: 5271268-5271287 (HBG1
chr11: 5276192-5276211 (HBG2

LRF_bs_5 TTCCCCACACTATCTCAATG

(
(
(
E
chr11: 5276196-5276215 (HBG2
(
(
(
(
(

chr11: 5271267-5271286 (HBG1
chr11: 5276191-5276210 (HBG2

N = ' = = = ~— = ~—

AAVS1

GGGGCCACTAGGGACAGGAT chr19: 55627120-55627139 -

Supplementary Table 2. Primers used to detect base-editing and InDels events.

Amplified region

F/IR Sequence (5't0 3')

HBG1 + HBG2 promoters

AAAAACGGCTGACAAAAGAAGTCCTGGTAT

ATAACCTCAGACGTTCCAGAAGCGAGTGTG

AAVST site

CAGCACCAGGATCAGTGAAA

CTATGTCCACTTCAGGACAGCA

4 .9-kb deletion

GTTTTAAAACAACAAAAATGAGGGAAAGA

A Momzgm

GTTGCTTTATAGGATTTTTCACTACAC

F, forward primer; R, reverse primer.

Supplementary Table 3. Primers used for ddPCR.

Amplified region

F/R |Sequence (5’ to 3’)

. . . F ACGGATAAGTAGATATTGAGGTAAGC
HBG1-HBGZ2 intervening region R GTCTCTTTCAGTTAGCAGTGG
hALB F ACTCATGGGAGCTGCTGGTT
R GCTGTCATCTCTTGTGGGCTG
CARS F GGGCCAGGGAAGTGTATGATG
R ACAGACATCAGTGCCATTGCG
PODL1 ; GCAGGTTCAGTCCCTCTTGG

TGCTTGGCCTATGGACAGTTG

F, forward primer; R, reverse primer.

Supplementary Table 4. Primers used for targeted deep sequencing.

Am_plified F/R Sequence (5 to 3’)
region
HBG F GGAATGACTGAATCGGAACAAGG
promoters |R CTGGCCTCACTGGATACTCT
F GCAGCGTCAGATGTGTATAAGAGACAGTCTGTGTGGTCACTCAGGGG
g93-0T1 R TGGGCTCGGAGATGTGTATAAGAGACAGCACCTCTAGAACATGAGAAGGGG
F GCAGCGTCAGATGTGTATAAGAGACAGGAGGTTGGTAAGAGCAGCGC
g3-0T2 R TGGGCTCGGAGATGTGTATAAGAGACAGCTACCCCTTTCTCTAGCAAGTCAG
F GCAGCGTCAGATGTGTATAAGAGACAGGGGAGAGCATGTATGCAGGAG
g3-0T3 R TGGGCTCGGAGATGTGTATAAGAGACAGCTCTGTGGGTAACCTGTTAGGTTTTACTAAG
F GCAGCGTCAGATGTGTATAAGAGACAGACAGAAACAAAGGCTTGGAGGTGG
g3-0T4 R TGGGCTCGGAGATGTGTATAAGAGACAGCATGGTTCAAGTCCAGAGCTTTCC

4




GCAGCGTCAGATGTGTATAAGAGACAGATCAGGCATCAGTGCCTTCACAG

F
g3-0T5 R TGGGCTCGGAGATGTGTATAAGAGACAGTGCTCTCCTGCTCTAGCTCG

F GCAGCGTCAGATGTGTATAAGAGACAGAGGTTGAAACTCCTCGCCACAG
g3-OT6 R TGGGCTCGGAGATGTGTATAAGAGACAGGAGAGTAGTTGAGGCAAGGGAC

F GCAGCGTCAGATGTGTATAAGAGACAGAGACCGTTTAGCAGGAACAGA
g3-0T7 R TGGGCTCGGAGATGTGTATAAGAGACAGATTTAAATTCCTTTCAGAGGAGCAT

F GCAGCGTCAGATGTGTATAAGAGACAGATGGGATCCAAACTTACAGTTTCAGCCTTC
g3-OT8 R TGGGCTCGGAGATGTGTATAAGAGACAGCTGGATGCCTTTGCCATAGTTGAG

F GCAGCGTCAGATGTGTATAAGAGACAGTAGCCAATTCTTCCCATTGGGAGG
g3-0T9 R TGGGCTCGGAGATGTGTATAAGAGACAGCCATTGGAATTTAATGACAGCTAGAGTGGG

F GCAGCGTCAGATGTGTATAAGAGACAGGTGACACCAAAGCAGATGTCC
g3-0T10 R TGGGCTCGGAGATGTGTATAAGAGACAGACATAAAGACCCCTCTTGCCT

F GCAGCGTCAGATGTGTATAAGAGACAGGAGAGTGAGCAGCAGCAAGTATTG
g12-0T1 R TGGGCTCGGAGATGTGTATAAGAGACAGGACCACTCAGCTCTACCAATCAG

F GCAGCGTCAGATGTGTATAAGAGACAGTAAAAGCAGGCTGCCTGAGCCG
g12-0T2 R TGGGCTCGGAGATGTGTATAAGAGACAGCCTTCATGGTGAGTGTTACAGCTG

F GCAGCGTCAGATGTGTATAAGAGACAGCATGGAAGAAAGAGAGGGAAGGAG
g912-0T3 R TGGGCTCGGAGATGTGTATAAGAGACAGGTGGAATGCCTTCCCTTACTGATC

F GCAGCGTCAGATGTGTATAAGAGACAGGAGAGTTGATGTCTGTGGAACGG
g12-0T4 R TGGGCTCGGAGATGTGTATAAGAGACAGCGTCACAGCTAGAAACTCTATGCC

F GCAGCGTCAGATGTGTATAAGAGACAGGAACAGTGATAAGGAATTTCGAAGCCAGTC
g912-0T5 R TGGGCTCGGAGATGTGTATAAGAGACAGGTGCCAGGAAGAAGTCATTGCTTG

F GCAGCGTCAGATGTGTATAAGAGACAGACCTCAAGTAGACACCTCTCTCAG
912-0T6 R TGGGCTCGGAGATGTGTATAAGAGACAGGCAGAGCCTGCTGGAACAGA

F GCAGCGTCAGATGTGTATAAGAGACAGTTAGAGGGAACGAAGAGCTAGCAC
912-0T7 R TGGGCTCGGAGATGTGTATAAGAGACAGGGTTTTCGTTCTGCTTCCAACCTG

F GCAGCGTCAGATGTGTATAAGAGACAGAGAAGCTTCCTGAAGTCCAGTTCC
g12-0T8 R TGGGCTCGGAGATGTGTATAAGAGACAGGGGAAAAAGCTCCAGGAAGCTATG

F GCAGCGTCAGATGTGTATAAGAGACAGTCTGCAGGCACGTATTTCCCG
g12-0T9 R TGGGCTCGGAGATGTGTATAAGAGACAGGATGGAGACACGGACCAAGAG

F GCAGCGTCAGATGTGTATAAGAGACAGTGTGGGAATTTCAGCAACCCCAG
g12-0T10 R TGGGCTCGGAGATGTGTATAAGAGACAGCTCCATCCAGACTGCCAACAATC

F GCAGCGTCAGATGTGTATAAGAGACAGTCTGCATCCAGAGGTGGGAG
g12-0T15 R TGGGCTCGGAGATGTGTATAAGAGACAGTTTGAGCACCACGCTCGTGGA

F GCAGCGTCAGATGTGTATAAGAGACAGACAGAAACAAAGGCTTGGAGGTGG
921-0T1 R TGGGCTCGGAGATGTGTATAAGAGACAGCATGGTTCAAGTCCAGAGCTTTCC

F GCAGCGTCAGATGTGTATAAGAGACAGGTACTCTAATGTTAGTGTGACTGCCATGAC
g921-072 R TGGGCTCGGAGATGTGTATAAGAGACAGGTACAGGGTCCTTCACAGGATC

F GCAGCGTCAGATGTGTATAAGAGACAGGCTCAGTGGGGATGAAGGGT
g21-0T3 R TGGGCTCGGAGATGTGTATAAGAGACAGCACACACCCTCATAGGATTCTTTGTCTTC

F GCAGCGTCAGATGTGTATAAGAGACAGTGATCTCATCGTACCCAGGTATCC
g21-0T4 R TGGGCTCGGAGATGTGTATAAGAGACAGCTGGGTTTAATGCTGTCTGAAGGG

F GCAGCGTCAGATGTGTATAAGAGACAGAAGCCATAGCAAACTACTGAAGTAGGAACC
g21-0T5 R TGGGCTCGGAGATGTGTATAAGAGACAGCCAGATTTAGCCTCACAGGCC

F GCAGCGTCAGATGTGTATAAGAGACAGAGGTCTTGGGTTTTCGGGCC
g21-0T6 R TGGGCTCGGAGATGTGTATAAGAGACAGTTCCCATGCAGCGCCTGTT

F GCAGCGTCAGATGTGTATAAGAGACAGGGGCAAACCCTACCGAGTGA
g21-0T7 R TGGGCTCGGAGATGTGTATAAGAGACAGGACTGTACTCCTGCCAAGGAGTT

F GCAGCGTCAGATGTGTATAAGAGACAGGCAAGGGCATAAAAATGGGGGAC
g21-0T8 R TGGGCTCGGAGATGTGTATAAGAGACAGTCAGTCACACCCGCCCATCT

F GCAGCGTCAGATGTGTATAAGAGACAGGTTTATGAGTGGCTCTGTGTGTGC
921-0T9 R TGGGCTCGGAGATGTGTATAAGAGACAGTCCTTACACCCTTCCTGGACAC
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F |GCAGCGTCAGATGTGTATAAGAGACAGTTAGAGGCCCAAAGGCCTGA
921-0T10 1 7GGGCTCGGAGATGTGTATAAGAGACAGCCATTATGGAAGCCTCGOCT

F | GCAGCGTCAGATGTGTATAAGAGACAGACAGGAGGTTGTCCCCACGA
921-0T19 1 7GGGCTCGGAGATGTGTATAAGAGACAGAAAGAGGAGCCCCCTGGAAG

F | AATGATACGGCGACCACCGAGATCTACACAATAACGTTCGTCGGCAGCGTCAGATGTG
UDI-1 R | CAAGCAGAAGACGGCATACGAGATTAACGATTGTCTCGTGGGCTCGGAGATGT

E | AATGATACGGCGACCACCGAGATCTACACTTCTTGAATCGTCGGCAGCGTCAGATGTG
UDI-2 R | CAAGCAGAAGACGGCATACGAGATATGTAGACGTCTCGTGGGCTCGGAGATGT

F | AATGATACGGCGACCACCGAGATCTACACGGCAGATCTCGTCGGCAGCGTCAGATGTG
UDI-3 R |CAAGCAGAAGACGGCATACGAGATGAGCAGCGGTCTCGTGGGCTCGGAGATGT

F | AATGATACGGCGACCACCGAGATCTACACCTATGTTATCGTCGGCAGCGTCAGATGTG
UDI-4 R |CAAGCAGAAGACGGCATACGAGATTGTTGATCGTCTCGTGGGCTCGGAGATGT

F | AATGATACGGCGACCACCGAGATCTACACGTTGACGCTCGTCGGCAGCGTCAGATGTG
UDI-5 R | CAAGCAGAAGACGGCATACGAGATGTCCTTCGGTCTCGTGGGCTCGGAGATGT

F | AATGATACGGCGACCACCGAGATCTACACATCTACGATCGTCGGCAGCGTCAGATGTG
UDI-6 R | CAAGCAGAAGACGGCATACGAGATCCGGCATCGTCTCGTGGGCTCGGAGATGT

F | AATGATACGGCGACCACCGAGATCTACACCTCGACAGTCGTCGGCAGCGTCAGATGTG
UDI-7 R | CAAGCAGAAGACGGCATACGAGATCTTCGTAGGTCTCGTGGGCTCGGAGATGT

F | AATGATACGGCGACCACCGAGATCTACACGAGGCTGCTCGTCGGCAGCGTCAGATGTG
uDI-8 R | CAAGCAGAAGACGGCATACGAGATGACGCATCGTCTCGTGGGCTCGGAGATGT

F | AATGATACGGCGACCACCGAGATCTACACCCTCGTAGTCGTCGGCAGCGTCAGATGTG
UDI-9 R | CAAGCAGAAGACGGCATACGAGATTGCCGTAGGTCTCGTGGGCTCGGAGATGT

F, forward primer; R, reverse primer.

Supplementary Table 5. Primers used for ChiP-qPCR.

Amplified region F/IR Sequence (5" to 3’)
BG F TCAATGCAAATATCTGTCTGAAACG
R CAAGGCTATTGGTCAAGGCAA
s F CCCAACCCAGGCAAATTG
R GGGCTGGGAGTTGGGTCTT
F TGTGGCTGGTCCTTGGGCTT
DEFB122 R GTGGCTCCTGCCGTGACGAA

Supplementary Table 6. Primers used for RT-gPCR.

Amplified region F/IR Sequence (5" to 3’)
e F CGGTCAACTTCAAGCTCCTAA
R ACAGAAGCCAGGAACTTGTC
o F GCAAGGTGAACGTGGATGAAGT
R TAACAGCATCAGGAGTGGACAGA
F CCTGTCCTCTGCCTCTGCC
HBG1+HBG2 R GGATTGCCAAAACGGTCAC
e F CAAGGGCACTTTTTCTCAG
R AATTCCTTGCCAAAGTTGC
o F CTTTGGAAACCTGTCGTC
R CTTGCCAAAGTGAGTAGC
COKNT F CAGCATGACAGATTTCTACCACTC
R CTCGCGCTTCCAGGACTG
N F CCAGGGACCTCTCTCTAATCAGC
R GGTTTGCTACAACATGGGCTAC
L6 F GATTCAATGAGGAGACTTGCCTGG
R CTCACTACTCTCAAATCTGTTCTGG
IL-12 F ACCACTCCCAAAACCTGC
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R CCAGGCAACTCCCATTAG
IEN-a F GACTCCATCTTGGCTGTGA

R TGATTTCTGCTCTGACAACCT
IFN-B F TACTGCCTCAAGGACAGGATGAA

R GCATCTCATAGATGGTCAATGCG
TLR7 F CTGACCACTGTCCCTGAG

R AACCCACCAGACAAACCA
TLRS F AACATCAGCAAGACCCAT

R GACTCCTTCATTCTCCCT
RIG-I F GGACGTGGCAAAACAAATCAG

R GCAATGTCAATGCCTTCATCA
GAPDH F GAAGGTGAAGGTCGGAGT

R GAAGATGGTGATGGGATTTC

F, forward primer; R, reverse primer.
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Supplementary notes

Supplementary note 1. Selection of BE/sgRNA combinations targeting the -200 region of the
HBG promoters

Initially, we explored CBEs targeting the Cs in the LRF BS. The absence of a canonical
SpyCas9 NGG PAM close to the LRF BS prompted us to use CBEs containing non-NGG Cas9
nickases. We designed 5 sgRNAs and screened them with a variety of CBEs in the K562 fetal
erythroid cell line by plasmid transfection (Supplementary Figure 1a-c). For two sgRNAs
(LRF_bs_1 and LRF_bs_2), most of the cytosines of the LRF motif are located within the editing
window (positions 3-8). The other three sgRNAs (LRF_bs 3, LRF_bs_4 and LRF_bs_5) place only
the second cytosine stretch in the editing window. This allowed the creation of two editing profiles,
LRF 8C (up to 8 Cs converted to T) and LRF 4C (4 Cs converted to T) (Figure 1a, Supplementary
Figure 1a-c).

First, we combined the deaminase of the highly efficient AncBE4max enzyme' and the
SaKKH-Cas9 nickase recognizing an NNNRRT PAM?, to generate SaKKH-AncBE4max and we
targeted the LRF BS with LRF_bs_1 or LRF_bs 4 sgRNAs. Sanger sequencing showed poor editing
efficiency (Supplementary Figure 1a-c).

We then exchanged the PAM-interacting domain (PID) of the SpyCas9 nickase of
AncBE4max with the PID of S.macacae-Cas9 recognizing an NAA PAM. AncBE4max-NAA3 in
combination with LRF_bs_5 or LRF_bs 2 sgRNA was able to modify 4 or 7 out of the 8 cytosines
with efficiencies of 25.8%+5.0 when using LRF_bs 2 sgRNA (top efficiency, i.e., the highest base
conversion efficiency at the target site; Supplementary Figure 1a-c). Codon optimization of
S.macacae-Cas9 PID modestly increased the editing efficiency (Supplementary Figure 1c).

Furthermore, evoFERNY-BE4max-NG or evoCDA1-BE4max-NG CBEs recognizing the
more flexible NG PAM* combined with LRF_bs 3 sgRNA, were able to target 5 or 7 out of 8
cytosines of the LRF motif, with the highest but variable frequency observed with evoCDA1-
BE4max-NG (47.0%%19.6; Supplementary Figure 1a-c).

The best performing base editors were CBEs recognizing alternative and/or more flexible
PAMs (i.e., CBE-NRCH, CBE-NRRH, CBE-SpG compatible with NG PAM, and the PAMless CBE-
SpRY)%8. CBE-NRCH/LRF_bs_3 sgRNA, CBE-NRRH/LRF_bs_2 sgRNA and CBE-SpG/ LRF_bs_3
sgRNA combinations resulted in efficiencies of 50.3%+4.7, 44.0%+5.3 and 43.7%=3.9, respectively,
as evaluated by Sanger sequencing (Supplementary Figure 1a-c). CBE-SpRY enzyme allowed
more combinations with sgRNAs (LRF_bs 1, LRF_bs 2, LRF_bs_3 and LRF_bs 5) and hit
efficiencies of up to 58.0%=1.5 using LRF_bs_2 sgRNA (Supplementary Figure 1a-c).

Overall, we selected 5 combinations of CBEs and sgRNAs (CBE-NRCH/LRF_bs_3, CBE-
NRRH/LRF_bs_2, CBE-SpG/LRF_bs_3, CBE-SpRY/LRF_bs_3 and CBE-SpRY/LRF_bs_2), which
were associated with the highest efficiency and different editing profiles (three generating the LRF
4C profile and two generating the LRF 8C profile).

Next, we used ABEmax and the KLF1_bs 1 sgRNA to generate a KLF1 BS with an efficiency
of 30.3% + 3.8 (KLF1 profile; Figure 1a, Supplementary Figure 1a and d). In parallel, we used the
ABE8e enzyme containing a highly processive deaminase’ with the same sgRNA, resulting in
efficient conversion of both central Ts (72.7% + 1.5 for A7; 66.0% = 1.5 for Ag) (LRF 2T profile;
Figure 1a, Supplementary Figure 1a and d).

As fetal K562 cells express high HbF levels, we employed the HUDEP-2 adult erythroid cell
line (producing mainly 3-globin) to evaluate y-globin de-repression upon plasmid delivery of the
base-editing system (Supplementary Figure 2a). We targeted the -200 region of the HBG
promoters with CBEs to disrupt the LRF BS, achieving an overall low editing frequency, even with
enzymes that were highly efficient in K662 (e.g., CBE-NRRH), and low HbF levels (Supplementary
Figure 2b). On the contrary, samples treated with ABEmax or ABE8e showed high base-editing
efficiency and frequency of HbF-expressing cells (Supplementary Figure 2c).

Lastly, to confirm that base editors induce little or no DSBs compared to Cas9 nuclease?, we
measured the frequency of InDels in base-edited K562 and HUDEP-2 samples by Sanger
sequencing. In most of the cases, we detected no InDels, except for evoCDA1-BE4max-NG*? |
while for the highly processive ABE8e enzyme 1 or 2-nt InDels did not occur at the expected
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cleavage site and are likely observed because of either a polymerase or a sequencing error due to
the presence of a 10-nt-long C homopolymer in edited HBG promoters (Figure 1a, Supplementary
Figure 1e, Supplementary Figure 2d, Supplementary Note 2). Furthermore, we detected a low
frequency of the 4.9-kb deletion (resulting from the simultaneous cleavage of the identical HBG1/2
promoters) only for some BEs (evoFERNY-BE4max-NG, ABEmax and ABES8e) (Supplementary
Figure 1e and Supplementary Figure 2d).

Supplementary Note 2. Evaluation of InDel in ABE8e-treated samples

The evaluation of InDel frequency by TIDE'™ analysis in K562 edited samples subjected to Sanger
sequencing, revealed ~5-15% of InDels in ABE8e-treated samples bearing the LRF 2T profile. As
TIDE™ analysis does not provide the precise location of the InDels, we used ICE Synthego. This
analysis confirmed the presence of InDels at the expected cleavage site, with similar frequencies.
Initially, and being encouraged/biased by the first report of ABE8e enzyme that revealed a higher
tendency of ABE8e to cause DSBs, as compared to ABEmax'?, we concluded that these events are
real InDel events. These results were confirmed in ABE8e-treated SCD HSPCs. Nevertheless, ICE
is not accurate in identifying the position of InDels, as the possible genotypes encompass all
frequent InDels identified in the literature (e.g. typically +1 and -1 InDels at the expected cleavage
site located 3-4 nucleotides before the PAM). Indeed, Sanger sequencing chromatograms in edited
samples showed the presence of the 1 nucleotide deletion in the poly-C homopolymers and not at
the expected cleavage site (Supplementary Figure 3a). Similarly, NGS sequencing and
CRISPRESSO 2 analysis (more precise as compared to Sanger sequencing and TIDE/ICE
analyses) of ABE8e-treated SCD HSPCs revealed high frequencies of InDels, that, however, were
not present at the expected cleavage site. In particular, NGS revealed the presence of 1 or 2
nucleotide deletions, and with a lower frequency the presence of 1 C insertion, within the poly-C
homopolymer stretch that was present in ABE8e treated samples (LRF 2T profile) (Supplementary
Figure 4d). The frequency of these types of InDels was higher in samples with high base-editing
efficiency and consequently high presence of the homopolymer C-stretch (Supplementary Figure
3b). In ABEmax-treated samples (KLF1 profile), when the LRF 2T profile was occasionally present
upon modification of both central Ts, there was a small fraction of promoters harboring 1 nucleotide
deletion or insertion (Supplementary Figure 4d). Based on these considerations, we concluded
that the 1-2 nucleotide deletions or 1 nucleotide insertion observed in LRF 2T, and sometimes in
KLF1 samples, are likely observed either because of a polymerase error or because of a sequencing
error due to the presence of a 10-nt-long C homopolymer in edited HBG promoters.
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Supplementary Figure 1. LRF BS disruption and KLF1 BS creation in the HBG1/2 promoters
in K562 cell line.

a. Representation of the sequence of the HBG2 and HBG1 identical promoters, from —212 to —179
nucleotides upstream of the HBG transcription start sites. Pink arrows indicate the sgRNA designed
to target the -200 region of the HBG1 and HBGZ2 identical promoters aligned to the target DNA
sequences.

b-d. C-Gto T-A (b and c) and A-T to G-C (d) base-editing efficiency calculated by the EditR software
in samples subjected to Sanger sequencing. The base-editing efficiency was measured by
subtracting the percentage of the base conversion in the control that was considered as background
noise. On the top of each graph the editing profile, the enzyme and the sgRNA used are indicated.
HPFH (dark pink) and HPFH-like (light pink) mutations are indicated. Data are expressed as mean
+ SEM [b: n=3 (SaKKH-AncBE4max, evoFERNY-BE4max-NG, CBE-NRCH, CBE-SpG and CBE-
SpRY), n=4 (AncBE4max-NAA) biologically independent experiments; c: n=3 (SaKKH-AncBE4max,
evoCDA1-BE4max-NG, CBE-NRRH and CBE-SpRY), n=6 (AncBE4max-NAA and AncBE4max-
NAA-OPT) biologically independent experiments; d: n=3 biologically independent experiments].

e. Frequency of InDels, measured by TIDE analysis, and frequency of the 4.9-kb deletion, measured
by ddPCR, for control (transfected with TE buffer or enzyme plasmid only) and base-edited samples.
The insertion or deletion of a C (£1 nt) in the homopoly-C stretch of the LRF 2T profile was separated
from the overall frequency of InDels, as it was considered a sequencing error (Supplementary Note
2). Data are expressed as mean £ SEM [InDels: n=21 (Control), n=4 (AncBE4max-NAA/LRF_bs_5),
n=6 (AncBE4max-NAA/LRF_bs 2 and AncBE4max-NAA-OPT/LRF_bs 2), n=2 (CBE-
SpG/LRF_bs 3 and CBE-SpRY/LRF_bs 1) and n=3 (other groups) biologically independent
experiments; 4.9-kb deletion: n=19 (Control), n=4 (AncBE4max-NAA/LRF_bs_5), n=6
(AncBE4max-NAA/LRF_bs_2 and AncBE4max-NAA-OPT/LRF_bs_2) and n=3 (other groups)
biologically independent experiments]. ** p=0.0054 for ABEmax, or p=0.0060 for ABE8e; ****
p<0.0001 (Ordinary One-way ANOVA with Dunnett correction for multiple comparisons).

Source data are provided as a Source Data file.
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Supplementary Figure 2. HbF reactivation upon LRF BS disruption and KLF1 BS creation in
the HBG1/2 promoters in HUDEP-2 cell line.

a. Experimental protocol used for base-editing experiments in HUDEP-2 cell line. A BE-, a sgRNA-
and a GFP- (optional for enzyme plasmids that do not contain a GFP cassette) expressing plasmids
were co-transfected in HUDEP-2 cell line and 18h post-transfection, GFP* cells were FACS-sorted
and further analyzed for base-editing efficiency and HbF reactivation.

b-c. C-G to T-A (b) and A-T to G-C (c) base-editing efficiency, calculated by the EditR software in
samples subjected to Sanger sequencing. On the top of each graph the enzyme and the sgRNA
used are indicated. Data are expressed as mean + SEM [n=2 (evOFERNY-BE4max-NG/LRF_bs_3,
CBE-NRCH/LRF_bs_3, CBE-SpG/LRF_bs 3, CBE-SpRY/LRF_bs_3, CBE-SpRY/LRF_bs 2,
ABEmax/KLF1_bs_1 and ABE8e/KLF1_bs_1), n=3 (evoCDA1-BE4max-NG/LRF_bs_3), n=6
(AncBE4max-NAA/LRF_bs_2), n=1 (CBE-NRRH/LRF_bs_2) biologically  independent
experiments]. Representative flow cytometry histograms showing the percentage of HbF-expressing
cells for control (transfected with enzyme plasmid only; blue line) and base-edited (red line) samples
are reported within each graph.

d. Frequency of InDels, measured by TIDE analysis, and frequency of the 4.9-kb deletion, measured
by ddPCR, for control (transfected with TE buffer or enzyme plasmid only) and base-edited samples.
The insertion or deletion of a C (£1 nt) in the homopoly-C stretch of the LRF 2T profile was separated
from the overall frequency of InDels, as it was considered a sequencing error (Supplementary Note
2). Data are expressed as mean + SEM [InDels: n=14 (Control), n=3 (evoCDA1-BE4max-NG), n=6
(AncBE4max-NAA), n=1 (CBE-NRRH) and n=2 (other groups) biologically independent
experiments; 4.9-kb deletion: n=14 (Control), n=3 (evoFERNY-BE4max-NG), n=4 (evoCDA1-
BE4max-NG), n=6 (AncBE4max-NAA), n=1 (CBE-NRRH) and n=2 (other groups) biologically
independent experiments]. **** p<0.0001 (Ordinary One-way ANOVA with Dunnett correction for
multiple comparisons).

Source data are provided as a Source Data file.
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Supplementary Figure 3

a Control Edited

E Qual¥y: BA [ J
[ TGCATTGAGATAGTGT|IGGGGAAGGGGICCCCCIAAGAGGATACTGCTGCTTA e

TTGA

Qual%;:RA_BES6-SBFUL101-HBG

@ Base 7238, Q
rcrcTiccccccag|gcccccha

GAT

1.C02_012.ab1

EAGGATACNGCTGCT TAATT

+1 ntdel %

0 T T T
0 20 40 60 80 100

TT>CC %

Supplementary Figure 3. Evaluation of the presence of real InDel events in samples bearing

the LRF 2T profile.

a. Representative Sanger sequencing chromatograms of control (n=8) and edited BFU-E (n=17;
from Figure 2i). The red line indicates the expected cleavage site. The blue line indicates the
position where the shift of the sequence occurs because of the 1-nt deletion. The black box indicates
the LRF BS (in control sample) and the poly-C homopolymer in the edited sample.
b. Correlation between InDels and base editing efficiency. We correlated the frequency of £1 InDels
and base editing efficiency in the two central T of the -200 site (TT>CC) in LRF 2T colonies from

Figure 2i (n=15 biologically independent BFU-E colonies).

Source data are provided as a Source Data file.
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Supplementary Figure 4. Targeted NGS sequencing of the HBG1/2 promoters in erythroblasts
derived from SCD HSPCs transfected with BE- and sgRNA- expressing plasmids.

a. Frequency of modified (orange) and unmodified (blue) promoters (reads) in base editor- and
Cas9-treated samples sorted for GFP"9" expression, as measured by targeted NGS sequencing.
Data are expressed as single values (1 donor).

b. Frequency of insertions, deletions and substitutions in base editor- and Cas9-treated samples
sorted for GFP"9" expression, as measured by targeted NGS sequencing. Data are expressed as
single values (1 donor).

c. Frequency and location of insertions, deletions and substitutions in base editor- and Cas9- treated
samples sorted for GFP"9" expression, as measured by targeted NGS sequencing. Data are
expressed as single values (1 donor).

d. Frequency and sequence of modified and unmodified promoters in base editor- and Cas9- treated
samples sorted for GFP"9" expression, as measured by targeted NGS sequencing. Data are
expressed as single values (1 donor). In ABE8e-treated samples, around 10% of the total base-
editing events were 1-nt or 2-nt deletions, and 1 C insertions. However, the presence of these events
is likely due to a polymerase or sequencing error caused by the presence of a 10-nt-long C
homopolymer.

e. Product purity of base-editing enzymes, as indicated by the type of substitution and measured by
targeted NGS sequencing. Data are expressed as single values (1 donor).

Source data are provided as a Source Data file.

16



Supplementary Figure 5
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Supplementary Figure 5. Erythroid differentiation upon plasmid-mediated delivery of base

editors to SCD HSPCs.

8
9
0
1
2
3

a. Frequency of enucleated cells at day 13, 16 and 20 of erythroid differentiation, as measured by
flow cytometry analysis of DRAQS5 in control (transfected with TE buffer or with CBE-SpRY plasmid
and a sgRNA targeting the unrelated AAVS1 locus) and edited samples. Data are expressed as
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single values or as mean + SEM [n=2 (control), n=3 (LRF 4C), n=1 (other groups) biologically
independent experiments, 2 donors]. Representative flow cytometry histograms showing the
DRAQS5" cell population for unstained, control and edited samples are presented.

b-d. Frequency of CD36"* (b), CD71" (c) and GYPA" (d) cells at day 6, 13 and 20 of erythroid
differentiation, as measured by flow cytometry analysis of CD36, CD71 and GYPA erythroid
markers. Data are expressed as single values or as mean + SEM [n=2 (control), n=3 (LRF 4C), n=1
(other groups) biologically independent experiments, 2 donors]. Representative flow cytometry
histograms showing the CD36* (b), CD71* (c) and GYPA™ (d) cell population for unstained, control
and edited samples are reported.

e. Frequency of a4-Integrin®, BAND3"* and a4-Integrin*/BAND3" in 7TAAD/GYPA" cells at day 6, 13
and 20 of erythroid differentiation, as measured by flow cytometry analysis of a4-Integrin and
BAND3 erythroid markers. Data are expressed as single values or as mean £+ SEM [n=2 (control),
n=3 (LRF 4C), n=1 (other groups) biologically independent experiments, 2 donors]. Representative
flow cytometry contour plots showing the a4-Integrin®, BAND3" and o4-Integrin®/BAND3* cell
population for unstained, control and edited samples are reported.

Source data are provided as a Source Data file.
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Supplementary Figure 6
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Supplementary Figure 6. HbF reactivation in SCD patient erythroid cells upon plasmid-
mediated delivery of base editors to HSPCs.

a. RT-gPCR analysis of BS- and y-globin mRNA levels in SCD patient erythroblasts at day 13 of
erythroid differentiation. BS- and y-globin mRNA expression was normalized to a-globin mRNA and
expressed as percentage of the BS-+y- globins mMRNA. The base-editing efficiency is indicated for
each sample in the lower part of the panel. Data are expressed as single values or as mean £+ SEM
(n=2-3 biologically independent experiments, 2 donors). * p=0.0477; ** p=0.0080 for Donor 1, or
p=0.0023 for Donor 2 LRF 4C, or p=0.0046 for Donor 2 LRF 8C; **** p<0.0001 (Two-way ANOVA
with Tukey correction for multiple comparisons).

b. Expression of y- and BS-globin chains measured by RP-HPLC in SCD patient erythroblasts at day
16 (donor 1) or day 19 (donor 2) of erythroid differentiation. B-like globin expression was normalized
to a-globin. The base-editing efficiency is indicated for each sample in the lower part of the panel.
Data are expressed as single values or as mean * SEM (n=2-3 biologically independent
experiments, 2 donors). ** p=0.0030 for Donor 1 LRF 4C, or p=0.0020 for Donor 1 LRF 8C, or
p=0.0012 for Donor 2 LRF 4C, or p=0.0028 for Donor 2 LRF 8C; **** p<0.0001 (Two-way ANOVA
with Tukey correction for multiple comparisons).

Source data are provided as a Source Data file.
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Supplementary Figure 7. Analysis of BFU-E and CFU-GM colonies derived from plasmid-
transfected SCD HSPCs.

a. Frequency of CFC in control and edited samples. SCD HSPCs mock-treated or treated with a
sgRNA targeting the unrelated AAVS1 locus served as controls. Data are expressed as mean +
SEM [BFU-E: n=9 (LRF 4C), n=3 (other groups) biologically independent experiments, 3 donors;
CFU-GM: n=6 (LRF 4C), n=2 (other groups) biologically independent experiments, 3 donors]. No
statistical differences were observed between control and edited samples (Two-way ANOVA,
multiple comparisons).

b-c. Frequency of InDels in BFU-E (b) and CFU-GM (c) pooled colonies, measured by TIDE
analysis, for edited and control (transfected with TE buffer or with CBE-SpRY plasmid and a sgRNA
targeting the unrelated AAVS17 locus) samples. The insertion or deletion of a C (1 nt) in the
homopoly-C stretch of the LRF 2T profile was separated from the overall frequency of InDels, as it
was considered a sequencing error (Supplementary Note 2). Data are expressed as mean + SEM
[BFU-E: n=8 (LRF 4C), n=3 (other groups) biologically independent experiments, 3 donors; CFU-
GM: n=6 (LRF 4C), n=2 (other groups) biologically independent experiments, 3 donors]. ****
p<0.0001 (Ordinary One-way ANOVA with Dunnett correction for multiple comparisons).

d. C-G to T-A or A-T to G-C base-editing efficiency, calculated by the EditR software in samples
subjected to Sanger sequencing. Data are expressed as mean + SEM [BFU-E: n=8 (LRF 4C), n=3
(other groups) biologically independent experiments, 3 donors; CFU-GM: n=6 (LRF 4C), n=2 (other
groups) biologically independent experiments, 3 donors].

e. Expression of y- and BS-globin chains measured by RP-HPLC in BFU-E bulk populations. B-like
globin expression was normalized to a-globin. Data are expressed as mean + SEM [n=6 (LRF 4C),
n=2 (other groups) biologically independent experiments, 2 donors]. ** p=0.0013; *** p=0.0002 for
LRF 2T high, or p=0.0003 for KLF1 med, or p=0.0001 for KLF1 high (Ordinary One-way ANOVA
with Dunnett correction for multiple comparisons).

f. Analysis of HbF and HbS by cation-exchange HPLC in BFU-E bulk populations. We calculated
the percentage of each Hb type over the total Hb tetramers. Data are expressed as mean + SEM
[n=6 (LRF 4C), n=2 (other groups) biologically independent experiments, 2 donors]. ** p=0.0095;
**** p<0.0001 (Two-way ANOVA with Dunnett correction for multiple comparisons).

Source data are provided as a Source Data file.
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derived from SCD HSPCs transfected with ABE8e- and KLF bs 1

Frequency and sequence of modified and unmodified promoters in erythroid BFU-E single colonies
(#101-119) derived from ABE8e-treated SCD HSPCs, as measured by targeted NGS sequencing.

Supplementary Figure 8. Targeted NGS sequencing of the HBG1/2 promoters in erythroi
Data are expressed as single values (n

sgRNA- expressing plasmids.

BFU-E single colonies
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Supplementary Figure 9. Plasmid optimization for CBE-SpRY in vitro transcription.
a. Schematic representation of CBE-SpRY plasmid optimization for in vitro transcription (ivt) and
mMRNA production. pB-actin and pT7 are depicted by grey boxes. CBE-SpRY, ABEmax and GFP
coding sequences, HBB 3'UTR and Poly-A are depicted by colored boxes. The mRNA produced
upon ivt is represented above each plasmid construct. B-actin promoter (pp-actin); T7 promoter
(pT7); coding sequence of CBE-SpRY (CBE-SpRY); coding sequence of ABEmax (ABEmax);
coding sequence of GFP (GFP); uridine depleted coding sequence of CBE-SpRY (CBE-SpRY U
depl); HBB 3’ untranslated region (HBB 3’'UTR); Polyadenine tail (Poly-A); Guanine (G); Adenine
(A); Uridine (U); 5-methoxyuridine (5-MoU).
b. Frequency of GFP* K562 cells upon transfection with different constructs depicted in A. We
combined CBEs with LRF_bs_2 sgRNA. Data are expressed as mean + SEM (n=3 biologically
independent experiments). No statistical differences were observed between CBE-SpRY and CBE-
SpRY-OPT1 and CBE-SpRY-OPT2 (Ordinary One-way ANOVA with Dunnett correction for multiple
comparisons).
c. GFP MFI of GFP* K562 cells upon transfection with different constructs depicted in A. Data are
expressed as mean + SEM (n=3 biologically independent experiments). * p=0.0452 (Ordinary One-
way ANOVA with Dunnett correction for multiple comparisons).
d. C-G to T-A base-editing efficiency, calculated by the EditR software in samples subjected to
Sanger sequencing. Data are expressed as mean * SEM (n=3 biologically independent
23
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experiments). ** p=0.0021 for CBE-SpRY-OPT1, or p=0.0084 for CBE-SpRY-OPT2 (Ordinary One-
way ANOVA).
Source data are provided as a Source Data file.
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Supplementary Figure 10. Targeted NGS sequencing of the HBG1/2 promoters in
erythroblasts derived from SCD HSPCs transfected with BE mRNA and chemically modified
sgRNAs.

a. Frequency of modified and unmodified promoters (reads) in base editor- and Cas9-treated
samples, as measured by targeted NGS sequencing. Data are expressed as mean + SEM (n=3
biologically independent experiments, 3 donors).

b. Representative graphs (n=3 biologically independent experiments, 3 donors) showing the
frequency of insertions, deletions and substitutions in base editor- and Cas9-treated samples, as
measured by targeted NGS sequencing.

c. Representative graphs (n=3 biologically independent experiments, 3 donors) showing the
frequency and location of insertions, deletions and substitutions in base editor- and Cas9-treated
samples, as measured by targeted NGS sequencing.

d. Representative graphs (n=3 biologically independent experiments, 3 donors) showing the
frequency and sequence of modified and unmodified promoters in base editor- and Cas9-treated
samples, as measured by targeted NGS sequencing.

e. Representative graphs (n=3 biologically independent experiments, 3 donors) showing the product
purity of base-editing enzymes, as indicated by the type of substitution and measured by targeted
NGS sequencing.

Source data are provided as a Source Data file.
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Supplementary Figure 11

a
80 LRF 4C
c BFU-E
2 60+
4
o
>
c
g 40+ N
= . .
) . o | T
7 {[w {tl {Iw {FW
0 T T T T T T T
-203 -202 -201 -200 -199 -198 -197 -196 -195 -194
80-) LRF 8C
c BFU-E .
kel
4
3
>
c
Q
o
-
A
(&)
B
-203 -202 -201 -200 -199 -198 -197 -196 -195 -194
80 LRF 2T
£ BFU-E
2 .
o .
>
z J
g 40 :
O]
2
2 20
(0 T T T T T T T T T T
-203 -202 -201 -200 -199 -198 -197 -196 -195 -194
80+ KLF1
c BFU-E
@ 60 [
9 .
>
c
g8 40+
O]
2
2 20
0 T T T T [ﬁ T T T T T
-203 -202 -201 -200 -199 -198 -197 -196 -195 -194
BFEU-E CFU-GM
HHKF
100+ [
! Aok
80 s
@ 60 -
[a
£
N 40+ 1=
20+ . -
& M =
00— L i
98K 45% 56 298815
S owowowog v S b owow g v
g2 E&¥g &g
[$) (8}
d *
FHFK
FHFK
KKK @ HbF
120+ EZ23 [ HbS
100
2]
£
o 80
o
=)
O 60
1S ol e
[}
T 40 . * =
X
20| NENERE
0 L S N
L2 8 <Z( ® g 8 R I &
T 2 X Z owoowow g o
o £ é ¥ o o© =
< w - =4 - Q
2 o O

[ #1nt

80+ LRF 4C = HPFH
5 604 CFU-GM [ HPFH-like
2
o}
>
c
§ 40
=
15 .
o\o ZOA .ﬁ D ’l‘ .
0 T T T T ’—-TL‘
-203 -202 -201 -200 -199 -198 -197 -196 -195 -194
80 LRF 8C
c CFU-GM
2 60+
o . .
[
>
c
Q
(&)
=
A
O
X
-203 -202 -201 -200 -199 -198 -197 -196 -195 -194
80 LRF 2T
c CFU-GM
S 60 .
o
[
>
c .
g 40
o
2
< 207 "
0 T T T T T T T T T T
-203 -202 -201 -200 -199 -198 -197 -196 -195 -194
80 KLF1
c CFU-GM
S 60
14
[
>
S .
g 40
o
2 o
< 207
T T T T [._-::.1 T T T T T
-203 -202 -201 -200 -199 -198 -197 -196 -195 -194
(o
BFU-E CFU-GM
InDels
80 e
Feokokk
Aekkk
S 601 1 !
ko]
3 *ok
o 401 4
X
=
<
X 20+ B
0= = - b
5988t 298 LNLSb
S L oo g 7 S wowow g Y
85X g S8EEITYg
o [&]
COGy WA @@y
*
I Aokokok
skokok
1.04 |
0.8
*
c 1
o 0.6
o
(o))
B 044
> . ;
“l Hﬂ : ﬂ | H |
oo I HML &l i

Untreated s -
Mock -

BE mRNA- - -
AAVS | -fmm—— -
LRF 4C— -

LRF 8C—fmmmm
LRF 2T
KLF1+

Cas9 -197

N
~N



SO0 IO N WD, OOV NP, WO~ OOV AW -

Supplementary Figure 11. CFC assay from RNA-transfected SCD HSPCs

a. C-G to T-A or A-T to G-C base-editing efficiency, calculated by the EditR software in BFU-E and
CFU-GM pooled colonies subjected to Sanger sequencing. Data are expressed as mean £+ SEM
(n=3 biologically independent experiments, 3 donors).

b. Frequency of InDels in BFU-E and CFU-GM pooled colonies, measured by TIDE analysis, for
edited and control (transfected with TE buffer, or with a BE-expressing plasmid alone or with CBE-
SpRY plasmid and a sgRNA targeting the unrelated AAVS17 locus) samples subjected to Sanger
sequencing. The insertion or deletion of a C (£1 nt) in the homopoly-C stretch of the LRF 2T profile
was separated from the overall frequency of InDels, as it was considered a sequencing error
(Supplementary Note 2). Data are expressed as mean + SEM (n=3 biologically independent
experiments, 3 donors). **** p<0.0001 (Ordinary One-way ANOVA with Dunnett correction for
multiple comparisons).

c. Frequency of the 4.9-kb deletion in BFU-E and CFU-GM pooled colonies, measured by ddPCR,
for edited and control (transfected with TE buffer, or with a base editor enzyme plasmid alone or
with CBE-SpRY plasmid and a sgRNA targeting the unrelated AAVS1 locus) samples. Data are
expressed as mean + SEM (n=3 biologically independent experiments, 3 donors). ** p=0.0030; ****
p<0.0001 (Ordinary One-way ANOVA with Dunnett correction for multiple comparisons).

d. Analysis of HbF and HbS by cation-exchange HPLC in BFU-E. We calculated the percentage of
each Hb type over the total Hb tetramers. Data are expressed as mean + SD (n=3 biologically
independent experiments, 3 donors). * p=0.0155; *** p=0.0005 for LRF 4C, or p=0.0001 for LRF 8C,;
**** p<0.0001 (Two-way ANOVA with Sidak correction for multiple comparisons).

e. Expression of Cy-, Ay-, y- (®y- + Ay-) and BS-globin chains measured by RP-HPLC in BFU-E. B-
like globin expression was normalized to a-globin. Data are expressed as mean + SEM (n=3
biologically independent experiments, 3 donors). * p=0.0281 for LRF 8C, or p=0.0468 for Cas9 -
197; *** p<0.0001 (Two-way ANOVA with Dunnett correction for multiple comparisons).

Source data are provided as a Source Data file.
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Supplementary Figure 12
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Supplementary Figure 12. Erythroid differentiation of SCD HSPCs upon RNA-mediated
delivery of base editors.

a. Frequency of enucleated cells at day 6, 13, 16 and 20 of erythroid differentiation, as measured
by flow cytometry analysis of DRAQS nuclear staining in control (untreated, or transfected with TE
buffer, or transfected with a BE mRNA only, or transfected with a BE mRNA and a sgRNA targeting
the unrelated AAVST locus) and edited samples. Data are expressed as mean + SEM (n=3
biologically independent experiments, 3 donors). Representative flow cytometry histograms
showing the DRAQS5" cell population for control and edited samples are reported.

b-d. Frequency of CD36"* (b), CD71" (c) and GYPA" (d) cells at day 6, 13 and 20 of erythroid
differentiation, as measured by flow cytometry analysis of CD36, CD71 and GYPA erythroid
markers. Data are expressed as mean + SEM (n=3 biologically independent experiments, 3 donors).
Representative flow cytometry histograms showing the CD36* (b), CD71* (c) and GYPA" (d) cell
population for control and edited samples are reported.

e. Frequency of a4-Integrin®, BAND3"* and a4-Integrin*/BAND3" in 7TAAD/GYPA" cells at day 6, 13
and 20 of erythroid differentiation, as measured by flow cytometry analysis of a4-Integrin and
BAND3 erythroid markers. Data are expressed as mean + SEM (n=3 biologically independent
experiments, 3 donors). Representative flow cytometry contour plots showing the a4-Integrin®,
BAND3* and a4-Integrin*/BAND3" cell population for control and edited samples are reported.

f. Frequency of sickling cells upon O2 deprivation in control and edited samples. Data are expressed
as mean + SEM (n=3 biologically independent experiments, 3 donors). * p=0.0245 for LRF 4C, or
p=0.0107 for LRF 2T; ** p=0.0034 for LRF 8C, or p=0.0014 for KLF1, or p=0.0080 for Cas9 -197
(One-way ANOVA with Tukey correction for multiple comparisons).

Source data are provided as a Source Data file.
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Supplementary Figure 13
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Supplementary Figure 13. CFC assay from RNA-transfected B-thalassemic HSPCs.

a. C-G to T-A or A-T to G-C base-editing efficiency, calculated by the EditR software in BFU-E and
CFU-GM pooled colonies subjected to Sanger sequencing. Data are expressed as mean £+ SEM
(n=2 biologically independent experiments, 2 donors).

b. Frequency of InDels in BFU-E and CFU-GM pooled colonies, measured by TIDE analysis, for
edited samples subjected to Sanger sequencing. The insertion or deletion of a C (x1 nt) in the
homopoly-C stretch of the LRF 2T profile was separated from the overall frequency of InDels, as it
was considered a sequencing error (Supplementary Note 2). Data are expressed as mean + SEM
(n=2 biologically independent experiments, 2 donors).

c. Frequency of the 4.9-kb deletion in BFU-E and CFU-GM pooled colonies, measured by ddPCR,
for edited and control (transfected with TE buffer) samples. Data are expressed as mean + SEM
(n=2 biologically independent experiments, 2 donors). No statistical differences were observed
between control and edited samples (Ordinary One-way ANOVA).
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d. Analysis of HbF, HbA and HbA: by cation-exchange HPLC in BFU-E pooled colonies. We
calculated the percentage of each Hb type over the total Hb tetramers. Data are expressed as mean
+ SEM (n=2 biologically independent experiments, 2 donors). ** p=0.0026; **** p<0.0001 (Two-way
ANOVA with Dunnett correction for multiple comparisons).

e. Expression of B-, 8-, ®y-, Ay- and y- (®y- + Ay-) globin chains measured by RP-HPLC in B-
thalassemia patient RBCs. B-like globin expression was normalized to a-globin. The ratio a/non-a
globins is reported on top of the graph. Data are expressed as mean + SEM (n=2 biologically
independent experiments, 2 donors). ** p=0.0078; (Two-way ANOVA with Dunnett correction for
multiple comparisons).

Source data are provided as a Source Data file.

32



NN AW =, OOV NPEWNDRR, OOV NS

Supplementary Figure 14
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Supplementary Figure 14. Analysis of genes activated by RNA stimuli.

RT-gPCR analysis performed 12 and 24 hours post-transfection in HD HSPCs. TNF-a, IL-6, IL-12,
IFN-a, IFN-B, TLR7, TLR8, RIG-I mRNA expression was normalized to GAPDH mRNA.
Polyinosinic:polycytidylic acid (pl:pC)-treated HD HSPCs were used as positive control. Data are
expressed as mean + SEM [TNF-a: n=2 (24h/CBE-SpRY-OPT1-LRF 8C and 24h/CBE-SpRY-
OPT2-LRF 8C), n=3 (other groups) biologically independent experiments, 2-3 donors; IL-6: n=1
(12h/ABEmax-KLF1, 12h/CBE-SpRY-OPT2-LRF 8C and Ca9 -197), n=2 (Untreated, mock,
24h/CBE-SpRY-OPT1, 24h/CBE-SpRY-OPT1-LRF 8C, 12h/CBE-SpRY-OPT2, ABEmax,
24h/ABEmax-KLF 1), n=3 (other groups) biologically independent experiments, 1-3 donors; IL-12:
n=1 (Untreated and 12h/mock), n=3 (12h/pl:pC), n=2 (other groups) biologically independent
experiments, 1-3 donors; IFN-a: n=2 (12h/Untreated, 12h/mock, 24h/CBE-SpRY-OPT1-LRF 8C and
12h/CBE-SpRY-OPT2), n=3 (other groups) biologically independent experiments, 2-3 donors; IFN-
B: n=1 (12h/CBE-SpRY-OPT1-LRF 8C), n=2 (Untreated, mock and 12h/ABEmax), n=3 (other
groups) biologically independent experiments, 1-3 donors; TLR7: n=1 (12h/Untreated), n=2 (other
groups) biologically independent experiments, 1-2 donors; TLR8: n=2 biologically independent
experiments, 2 donors; RIG-I: n=3 biologically independent experiments, 3 donors]. * p=0.0104; **
p=0.0027; *** p=0.0003 for IFN-a, or p=0.0002 for IFN-B; **** p<0.0001 (Two-way ANOVA with Sidak
correction for multiple comparisons).

Source data are provided as a Source Data file.
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Supplementary Figure 15
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Supplementary Figure 15. sgRNA-dependent DNA off-target cleavage activity of CBE or ABE
targeting the HBG promoters.

a. Analysis of the chromatin states at the LRF 8C-OT1 sequence in primary human HSPCs and
HSPC-derived early (EPP5) and late (EPP11) erythroid precursors, and in erythroid (K562) and
granulo-monocytic (GM12878) cell lines (UCSC datasets).

b-d. Frequency of InDels at on-target and off-target (OT) sites, for control and LRF 4C (b), LRF 8C
(c), LRF 2T (d), and KLF1 (d) samples, as measured by targeted NGS sequencing. The frequency
of InDels for the on-target site was corrected (cor) upon subtraction of the frequency of 1 nt insertion
or deletion, that is due to sequencing error because of the presence of homopolymer C or T
stretches. Data are expressed as individual values and median (n=3 biologically independent
experiments, 3 donors).

Source data are provided as a Source Data file.
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Supplementary Figure 16
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Supplementary Figure 16. Human hematopoietic cell reconstitution in NBSGW mice
transplanted with control and edited HSPCs.

Frequency of human T (CD3) and B (CD19) lymphoid, myeloid (CD14, CD15 and CD11b) and
erythroid (GYPA) cells in BM in mice transplanted with control and edited HSPCs [HD: n=3 (Mock,
CBE mRNA and ABE mRNA), n=4 (LRF 8C), n=2 (KLF1); SCD: n=3 (Mock), n=2 (LRF 8C), n=5
(KLF1) mice per group]. Each data point represents an individual mouse. Data are expressed as
mean + SEM.

Source data are provided as a Source Data file.
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Supplementary Figure 17
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Supplementary Figure 17. Detection of the 4.9-kb deletion in repopulating HSCs.

PCR analysis of the 4.9-kb deletion in input and bone marrow-derived human HD and SCD cells.
We used primers amplifying a 1435 bp-long product (del) only when the 4.9-kb deletion is present.
Control primers amplifying the human HBG promoters (HBG1+HBG2 promoters) were used as DNA
loading control (384 bp-long amplicon, h ctr). The different input and bone marrow (BM) HD and
SCD cell samples are defined on top of each gel picture. This experiment was performed once.
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Supplementary Figure 18. Examples of gates used to assess transfection efficiency or to
flow sort GFP* cells.

a-b. Representative gating strategy for population analysis on live, single, K562 cells in order to
determine GFP expression via flow cytometry, in mock-transfected (a) and cells transfected with
plasmids encoding fusions of base editors and GFP (b). This gating strategy was used to analyze
data shown in Supplementary Figure 9b-c.

c-f. Representative gating strategy for population flow sorting of live, single, GFP* HUDEPZ2 cells (c-
d), or live, single, GFP* HSPCs (e-f), in mock-transfected (¢ and e) and cells transfected with
plasmids encoding fusions of base editors and GFP (d and f). This gating strategy was used to sort
cell populations that were further analyzed for the production of data shown in Supplementary Figure
2 (c-d), or Figure 2 and Supplementary Figures 3-8 (e-f).
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Supplementary Figure 19. Examples of gates used to assess erythroid surface markers and
enucleated cells in HSPC-derived erythroid cells.

a-b. Representative gating strategy for population analysis on single, live (7AAD"), erythroid cells in
order to determine GPA, CD36, CD71, BAND3 and a4-Integrin expression via flow cytometry, in
GPA-mono-stained (a) and stained cells (b). This gating strategy was used to analyze data shown
in Figure 4l-o and Supplementary Figures 5b-e and 12b-e.

c-d. Representative gating strategy for population analysis on live, single, erythroid cells in order to
determine enucleated cells (DRAQS") via flow cytometry, in unstained (c), and stained cells (d). This
gating strategy was used to analyze data shown in Figure 4j and Supplementary Figures 5a and
12a.
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Supplementary Figure 20. Examples of gates used to assess HbF and HbS expression.

a-b. Representative gating strategy for population analysis on live, single, HUDEPZ2 cells in order to
determine HbF expression via flow cytometry, in control (a) and edited cells (b). This gating strategy
was used to analyze data shown in Supplementary Figure 2b-c.

c-f. Representative gating strategy for population analysis on live, single, HSPC-derived erythroid
cells in order to determine HbF (¢ and d) or HbS (e and f) expression via flow cytometry, in control

(c and e) and edited cells (d and f). This gating strategy was used to analyze data shown in Figures
2f, 3l-m and 4q.
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Supplementary Figure 21. Examples of gates used to assess apoptosis and ROS in HSPC-
derived erythroid cells.

a-b. Representative gating strategy for population analysis on live, single, HSPC-derived erythroid
cells in order to determine apoptotic cells via flow cytometry, in unstained (a) and stained cells (b).
This gating strategy was used to analyze data shown in Figure 4p.

c-d. Representative gating strategy for population analysis on live, single, HSPC-derived nucleated
(DRAQS5") and enucleated (DRAQ5) erythroid cells in order to determine ROS via flow cytometry,
in DRAQS-mono-stained (c¢) and stained cells (d). This gating strategy was used to analyze data
shown in Figure 4q.
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Supplementary Figure 22. Examples of gates used to assess chimerism and lineage specific
markers in xenotransplantation experiments.

Representative gating strategy for population analysis on live, single, bone marrow-, spleen-,
thymus-, and blood-derived human-mouse chimeric cells in order to determine human chimerism
and lineage specific markers expression in xenotransplanted mice via flow cytometry, in mCD45-
mono-stained (a) and stained cells (b). This gating strategy was used to analyze data shown in
Figure 8b-c and Supplementary Figure 16.
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Supplementary sequences

CBE-SpRY-OPT sequence

T7 promoter
_ (G or A for CBE-SpRY-OPT1 and CBE-SpRY-OPT2 respectively)

CBE-SpRY Coding sequence, Uridine depleted

Poly-A tail

TCCGCGCACATTTCCCCGAAAAGTGCCACCTGGGTCGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAG
TTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGA
CGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCC
ACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCC
AGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTCGAGGTGAGCCCCACGT
TCTGCTTCACTCTCCCCATCTCCCCCCCCTCCCCACCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGCAGCGATGGGGG
CGGGGGGGGGGGGGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGCGGGGCGGGGCGAGGCGGAGAGGTGCGGCGGCAGCCAAT
CAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCGCGCGGCGGGCGGGA
GTCGCTGCGCGCTGCCTTCGCCCCGTGCCCCGCTCCGCCGCCGCCTCGCGCCGCCCGCCCCGGCTCTGACTGACCGCGTTACTCCCA
CAGGTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGCTGTAATTAGCGCTTGGTTTAATGACGGCTTGTTTCTTTTCTGTGGCTGCGT
GAAAGCCTTGAGGGGCTCCGGGAGGGCCCTTTGTGCGGGGGGAGCGGCTCGGGGGGTGCGTGCGTGTGTGTGTGCGTGGGGAGCGCC
GCGTGCGGCTCCGCGCTGCCCGGCGGCTGTGAGCGCTGCGGGCGCGGCGCGGGGCTTTGTGCGCTCCGCAGTGTGCGCGAGGGGAGC
GCGGCCGGGGGCGGTGCCCCGCGGTGCGGGGGGGGCTGCGAGGGGAACAAAGGCTGCGTGCGGGGTGTGTGCGTGGGGGGGTGAGCA
GGGGGTGTGGGCGCGTCGGTCGGGCTGCAACCCCCCCTGCACCCCCCTCCCCGAGTTGCTGAGCACGGCCCGGCTTCGGGTGCGGGG
CTCCGTACGGGGCGTGGCGCGGGGCTCGCCGTGCCGGGCGGGGGGTGGCGGCAGGTGGGGGTGCCGGGCGGGGCGGGGCCGCCTCGG
GCCGGGGAGGGCTCGGGGGAGGGGCGCGGCGGCCCCCGGAGCGCCGGCGGCTGTCGAGGCGCGGCGAGCCGCAGCCATTGCCTTTTA
TGGTAATCGTGCGAGAGGGCGCAGGGACTTCCTTTGTCCCAAATCTGTGCGGAGCCGAAATCTGGGAGGCGCCGCCGCACCCCCTCT
AGCGGGCGCGGGGCGAAGCGGTGCGGCGCCGGCAGGAAGGAAATGGGCGGGGAGGGCCTTCGTGCGTCGCCGCGCCGCCGTCCCCTT
CTCCCTCTCCAGCCTCGGGGCTGTCCGCGGGGGGACGGCTGCCTTCGGGGGGGACGGGGCAGGGCGGGGTTCGGCTTCTGGCGTGTG
ACCGGCGGCTCTAGAGCCTCTGCTAACCATGTTCATGCCTTCTTCTTTTTCCTACAGCTCCTGGIAATACCACTCACTATA [ B |G
GAGAGCCGCCACCATGAAGCGGACCGCCGACGGCAGCGAGTTCGAGAGCCCCAAGAAGAAGCGGAAGGTGAGCAGCGAGACCGGCCC
CGTGGCCGTGGACCCCACCCTGCGGCGGCGGATCGAGCCCCACGAGTTCGAGGTGTTCTTCGACCCCCGGGAGCTGCGGAAGGAGAC
CTGCCTGCTGTACGAGATCAACTGGGGCGGCCGGCACAGCATCTGGCGGCACACCAGCCAGAACACCAACAAGCACGTGGAGGTGAA
CTTCATCGAGAAGTTCACCACCGAGCGGTACTTCTGCCCCAACACCCGGTGCAGCATCACCTGGTTCCTGAGCTGGAGCCCCTGCGG
CGAGTGCAGCCGGGCCATCACCGAGTTCCTGAGCCGGTACCCCCACGTGACCCTGTTCATCTACATCGCCCGGCTGTACCACCACGC
CGACCCCCGGAACCGGCAGGGCCTGCGGGACCTGATCAGCAGCGGCGTGACCATCCAGATCATGACCGAGCAGGAGAGCGGCTACTG
CTGGCGGAACTTCGTGAACTACAGCCCCAGCAACGAGGCCCACTGGCCCCGGTACCCCCACCTGTGGGTGCGGCTGTACGTGCTGGA
GCTGTACTGCATCATCCTGGGCCTGCCCCCCTGCCTGAACATCCTGCGGCGGAAGCAGCCCCAGCTGACCTTCTTCACCATCGCCCT
GCAGAGCTGCCACTACCAGCGGCTGCCCCCCCACATCCTGTGGGCCACCGGCCTGAAGAGCGGCGGCAGCAGCGGCGGCAGCAGCGG
CAGCGAGACCCCCGGCACCAGCGAGAGCGCCACCCCCGAGAGCAGCGGCGGCAGCAGCGGCGGCAGCGACAAGAAGTACAGCATCGG
CCTGGCCATCGGCACCAACAGCGTGGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCAAGAAGTTCAAGGTGCTGGGCAA
CACCGACCGGCACAGCATCAAGAAGAACCTGATCGGCGCCCTGCTGTTCGACAGCGGCGAGACCGCCGAGCGGACCCGGCTGAAGCG
GACCGCCCGGCGGCGGTACACCCGGCGGAAGAACCGGATCTGCTACCTGCAGGAGATCTTCAGCAACGAGATGGCCAAGGTGGACGA
CAGCTTCTTCCACCGGCTGGAGGAGAGCTTCCTGGTGGAGGAGGACAAGAAGCACGAGCGGCACCCCATCTTCGGCAACATCGTGGA
CGAGGTGGCCTACCACGAGAAGTACCCCACCATCTACCACCTGCGGAAGAAGCTGGTGGACAGCACCGACAAGGCCGACCTGCGGCT
GATCTACCTGGCCCTGGCCCACATGATCAAGTTCCGGGGCCACTTCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGACGTGGA
CAAGCTGTTCATCCAGCTGGTGCAGACCTACAACCAGCTGTTCGAGGAGAACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCAT
CCTGAGCGCCCGGCTGAGCAAGAGCCGGCGGCTGGAGAACCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAACGGCCTGTTCGGCAA
CCTGATCGCCCTGAGCCTGGGCCTGACCCCCAACTTCAAGAGCAACTTCGACCTGGCCGAGGACGCCAAGCTGCAGCTGAGCAAGGA
CACCTACGACGACGACCTGGACAACCTGCTGGCCCAGATCGGCGACCAGTACGCCGACCTGTTCCTGGCCGCCAAGAACCTGAGCGA
CGCCATCCTGCTGAGCGACATCCTGCGGGTGAACACCGAGATCACCAAGGCCCCCCTGAGCGCCAGCATGATCAAGCGGTACGACGA
GCACCACCAGGACCTGACCCTGCTGAAGGCCCTGGTGCGGCAGCAGCTGCCCGAGAAGTACAAGGAGATCTTCTTCGACCAGAGCAA
GAACGGCTACGCCGGCTACATCGACGGCGGCGCCAGCCAGGAGGAGTTCTACAAGTTCATCAAGCCCATCCTGGAGAAGATGGACGG
CACCGAGGAGCTGCTGGTGAAGCTGAACCGGGAGGACCTGCTGCGGAAGCAGCGGACCTTCGACAACGGCAGCATCCCCCACCAGAT
CCACCTGGGCGAGCTGCACGCCATCCTGCGGCGGCAGGAGGACTTCTACCCCTTCCTGAAGGACAACCGGGAGAAGATCGAGAAGAT
CCTGACCTTCCGGATCCCCTACTACGTGGGCCCCCTGGCCCGGGGCAACAGCCGGTTCGCCTGGATGACCCGGAAGAGCGAGGAGAC
CATCACCCCCTGGAACTTCGAGGAGGTGGTGGACAAGGGCGCCAGCGCCCAGAGCTTCATCGAGCGGATGACCAACTTCGACAAGAA
CCTGCCCAACGAGAAGGTGCTGCCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTACAACGAGCTGACCAAGGTGAAGTACGT
GACCGAGGGCATGCGGAAGCCCGCCTTCCTGAGCGGCGAGCAGAAGAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGAAGGT
GACCGTGAAGCAGCTGAAGGAGGACTACTTCAAGAAGATCGAGTGCTTCGACAGCGTGGAGATCAGCGGCGTGGAGGACCGGTTCAA
CGCCAGCCTGGGCACCTACCACGACCTGCTGAAGATCATCAAGGACAAGGACTTCCTGGACAACGAGGAGAACGAGGACATCCTGGA
GGACATCGTGCTGACCCTGACCCTGTTCGAGGACCGGGAGATGATCGAGGAGCGGCTGAAGACCTACGCCCACCTGTTCGACGACAA
GGTGATGAAGCAGCTGAAGCGGCGGCGGTACACCGGCTGGGGCCGGCTGAGCCGGAAGCTGATCAACGGCATCCGGGACAAGCAGAG
CGGCAAGACCATCCTGGACTTCCTGAAGAGCGACGGCTTCGCCAACCGGAACTTCATGCAGCTGATCCACGACGACAGCCTGACCTT
CAAGGAGGACATCCAGAAGGCCCAGGTGAGCGGCCAGGGCGACAGCCTGCACGAGCACATCGCCAACCTGGCCGGCAGCCCCGCCAT
CAAGAAGGGCATCCTGCAGACCGTGAAGGTGGTGGACGAGCTGGTGAAGGTGATGGGCCGGCACAAGCCCGAGAACATCGTGATCGA
GATGGCCCGGGAGAACCAGACCACCCAGAAGGGCCAGAAGAACAGCCGGGAGCGGATGAAGCGGATCGAGGAGGGCATCAAGGAGCT
GGGCAGCCAGATCCTGAAGGAGCACCCCGTGGAGAACACCCAGCTGCAGAACGAGAAGCTGTACCTGTACTACCTGCAGAACGGCCG
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GGACATGTACGTGGACCAGGAGCTGGACATCAACCGGCTGAGCGACTACGACGTGGACCACATCGTGCCCCAGAGCTTCCTGAAGGA
CGACAGCATCGACAACAAGGTGCTGACCCGGAGCGACAAGAACCGGGGCAAGAGCGACAACGTGCCCAGCGAGGAGGTGGTGAAGAA
GATGAAGAACTACTGGCGGCAGCTGCTGAACGCCAAGCTGATCACCCAGCGGAAGTTCGACAACCTGACCAAGGCCGAGCGGGGCGG
CCTGAGCGAGCTGGACAAGGCCGGCTTCATCAAGCGGCAGCTGGTGGAGACCCGGCAGATCACCAAGCACGTGGCCCAGATCCTGGA
CAGCCGGATGAACACCAAGTACGACGAGAACGACAAGCTGATCCGGGAGGTGAAGGTGATCACCCTGAAGAGCAAGCTGGTGAGCGA
CTTCCGGAAGGACTTCCAGTTCTACAAGGTGCGGGAGATCAACAACTACCACCACGCCCACGACGCCTACCTGAACGCCGTGGTGGG
CACCGCCCTGATCAAGAAGTACCCCAAGCTGGAGAGCGAGTTCGTGTACGGCGACTACAAGGTGTACGACGTGCGGAAGATGATCGC
CAAGAGCGAGCAGGAGATCGGCAAGGCCACCGCCAAGTACTTCTTCTACAGCAACATCATGAACTTCTTCAAGACCGAGATCACCCT
GGCCAACGGCGAGATCCGGAAGCGGCCCCTGATCGAGACCAACGGCGAGACCGGCGAGATCGTGTGGGACAAGGGCCGGGACTTCGC
CACCGTGCGGAAGGTGCTGAGCATGCCCCAGGTGAACATCGTGAAGAAGACCGAGGTGCAGACCGGCGGCTTCAGCAAGGAGAGCAT
CCGGCCCAAGCGGAACAGCGACAAGCTGATCGCCCGGAAGAAGGACTGGGACCCCAAGAAGTACGGCGGCTTCCTGTGGCCCACCGT
GGCCTACAGCGTGCTGGTGGTGGCCAAGGTGGAGAAGGGCAAGAGCAAGAAGCTGAAGAGCGTGAAGGAGCTGCTGGGCATCACCAT
CATGGAGCGGAGCAGCTTCGAGAAGAACCCCATCGACTTCCTGGAGGCCAAGGGCTACAAGGAGGTGAAGAAGGACCTGATCATCAA
GCTGCCCAAGTACAGCCTGTTCGAGCTGGAGAACGGCCGGAAGCGGATGCTGGCCAGCGCCAAGCAGCTGCAGAAGGGCAACGAGCT
GGCCCTGCCCAGCAAGTACGTGAACTTCCTGTACCTGGCCAGCCACTACGAGAAGCTGAAGGGCAGCCCCGAGGACAACGAGCAGAA
GCAGCTGTTCGTGGAGCAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCAGCGAGTTCAGCAAGCGGGTGATCCTGGCCGA
CGCCAACCTGGACAAGGTGCTGAGCGCCTACAACAAGCACCGGGACAAGCCCATCCGGGAGCAGGCCGAGAACATCATCCACCTGTT
CACCCTGACCCGGCTGGGCGCCCCCCGGGCCTTCAAGTACTTCGACACCACCATCGACCCCAAGCAGTACCGGAGCACCAAGGAGGT
GCTGGACGCCACCCTGATCCACCAGAGCATCACCGGCCTGTACGAGACCCGGATCGACCTGAGCCAGCTGGGCGGCGACAGCGGCGG
CAGCGGCGGCAGCGGCGGCAGCACCAACCTGAGCGACATCATCGAGAAGGAGACCGGCAAGCAGCTGGTGATCCAGGAGAGCATCCT
GATGCTGCCCGAGGAGGTGGAGGAGGTGATCGGCAACAAGCCCGAGAGCGACATCCTGGTGCACACCGCCTACGACGAGAGCACCGA
CGAGAACGTGATGCTGCTGACCAGCGACGCCCCCGAGTACAAGCCCTGGGCCCTGGTGATCCAGGACAGCAACGGCGAGAACAAGAT
CAAGATGCTGAGCGGCGGCAGCGGCGGCAGCGGCGGCAGCACCAACCTGAGCGACATCATCGAGAAGGAGACCGGCAAGCAGCTGGT
GATCCAGGAGAGCATCCTGATGCTGCCCGAGGAGGTGGAGGAGGTGATCGGCAACAAGCCCGAGAGCGACATCCTGGTGCACACCGC
CTACGACGAGAGCACCGACGAGAACGTGATGCTGCTGACCAGCGACGCCCCCGAGTACAAGCCCTGGGCCCTGGTGATCCAGGACAG
CAACGGCGAGAACAAGATCAAGATGCTGAGCGGCGGCAGCAAGCGGACCGCCGACGGCAGCGAGTTCGAGCCCAAGAAGAAGCGGAA
GGTGGGCGGCGGCGGCAGCGGCGCCACCAACTTCAGCCTGCTGAAGCAGGCCGGCGACGTGGAGGAGAACCCCGGCCCCATGGTGAG
CAAGGGCGAGGAGCTGTTCACCGGCGTGGTGCCCATCCTGGTGGAGCTGGACGGCGACGTGAACGGCCACAAGTTCAGCGTGAGCGG
CGAGGGCGAGGGCGACGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCT
GGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGGTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGAGCGCCATGCC
CGAGGGCTACGTGCAGGAGCGGACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGGGCCGAGGTGAAGTTCGAGGGCGACAC
CCTGGTGAACCGGATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGCCACAAGCTGGAGTACAACTACAACAG
CCACAACGTGTACATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGGCACAACATCGAGGACGGCAGCGT
GCAGCTGGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGAG
CGCCCTGAGCAAGGACCCCAACGAGAAGCGGGACCACATGGTGCTGCTGGAGTTCGTGACCGCCGCCGGCATCACCCTGGGCATGGA
CGAGCTGTACAAGTGAGCTAG

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGGCTTAAGTTAAAATAAGGCTAG
TCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTCTAGAAGCGGCCGCACTCCTCAGGTGCAGGCTGCCTATCAGA
AGGTGGTGGCTGGTGTGGCCAATGCCCTGGCTCACAAATACCACTGAGATCTTTTTCCCTCTGCCAAAAATTATGGGGACATCATGA
AGCCCCTTGAGCATCTGACTTCTGGCTAATAAAGGAAATTTATTTTCATTGCAATAGTGTGTTGGAATTTTTTGTGTCTCTCACTCG
GAAGGACATATGGGAGGGCAAATCATTTAAAACATCAGAATGAGTATTTGGTTTAGAGTTTGGCAACATATGCCCATATGCTGGCTG
CCATGAACAAAGGTTGGCTATAAAGAGGTCATCAGTATATGAAACAGCCCCCTGCTGTCCATTCCTTATTCCATAGAAAAGCCTTGA
CTTGAGGTTAGATTTTTTTTATATTTTGTTTTGTGTTATTTTTTTCTTTAACATCCCTAAAATTTTCCTTACATGTTTTACTAGCCA
GATTTTTCCTCCTCTCCTGACTACTCCCAGTCATAGCTGTCCCTCTTCTCTTATGGAGATCCCTCGACCTGCAGCCCAAGCTTGGCG
TAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAA
GCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAG
CGGATCCGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATT
CTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAG
GCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAA
TTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCCGCTG
CATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCG
GTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAAC
ATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAG
CATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTC
GTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCA
CGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCC
TTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGA
GCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCT
CTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTT
TGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAA
AACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCA
ATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGT
TCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCG
CGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTA
TCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATT
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GCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCC
CCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTT
ATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGA
GAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTC
ATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCC
AACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGG
GCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATAC
ATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGT
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0 Supplementary uncropped scans of blot and gels

1
2 Uncropped scan of gel from Supplementary Figure 17
12 3 4 5 6 7 8 9 1011 12 13 14 1516 17 18 19 20 2122 23 24 25 26 27 28 -
== §
~= :
=k
o
3E
12 34 5 6 7 8 9 101 12 13 14 1516 17 18 19 20 2122 23 24 25 26 27 28 mg ".
el
3
4
Row | Number Sample
1 4.9-kb deletion
Mock
2 human control
3 CBE 4.9-kb deletion
4 Ervthroid human control
5 rythrot 4.9-kb deletion
liquid LRF 8C
6 human control
culture .
7 4.9-kb deletion
ABE
8 human control
9 KLE1 4.9-kb deletion
10 Inout human control
11 P 4.9-kb deletion
Mock
A 12 HD human control
13 CBE 4.9-kb deletion
14 human control
15 HSPC LRF 8C 4.9-kb deletion
16 medium human control
17 4.9-kb deletion
18 ABE human control
19 4.9-kb deletion
20 KLF1 human control
21 Mock 4.9-kb deletion
22 Bone human control
23 marrow 4.9-kb deletion
24 CBE human control
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Unrelated samples

26
27 H,O 4.9-kb deletion
28 2 human control
1 LRF 8C 4.9-kb deletion
2 human control
3 ABE 4.9-kb deletion
4 human control
5 4.9-kb deletion
Mock
6 human control
7 CBE 4.9-kb deletion
8 human control
9 4.9-kb deletion
10 LRF 8C human control
11 KLE1 4.9-kb deletion
12 HD Bone human control
13 marrow 4.9-kb deletion
ABE
14 human control
15 Mock 4.9-kb deletion
16 human control
17 4.9-kb deletion
18 ABE human control
19 4.9-kb deletion
20 KLF1 human control
21 4.9-kb deletion
22 CBE human control
23 4.9-kb deletion
24 LRF 8C human control
25
26 Unrelated samples
27 4.9-kb deletion
8 H20

human control
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Row | Number Sample

4.9-kb deletion

Mock
human control
CBE 4.9-kb deletion
human control
HD Bone LRF 8C 4.9-kb deletion
marrow human control
ABE 4.9-kb deletion
human control
KLE1 4.9-kb deletion
human control
4.9-kb deletion

Mock

human control
CFU- 4 .9-kb deletion
Input GM LRF 8C human control
4.9-kb deletion

KLF1
human control
sch Mock 4.9-kb deletion
human control
LRF 8C 4.9-kb deletion
Bone human control
marrow KLE1 4.9-kb deletion
human control
4.9-kb deletion

Mock

human control

Unrelated samples

4.9-kb deletion
human control
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human control

1 Mock 4.9-kb deletion
2 human control
3 Mock 4.9-kb deletion
4 human control
5 Mock 4.9-kb deletion
6 human control
7 KLE1 4.9-kb deletion
8 human control
9 4.9-kb deletion
10 KLF1 human control
11 sch Bone KLE1 4.9-kb deletion
12 marrow human control
13 Mock 4.9-kb deletion
14 human control
15 4.9-kb deletion
16 KLF1 human control
17 4.9-kb deletion
18 KLF1 human control
19 4.9-kb deletion
20 LRF 8C human control
21 Mock 4.9-kb deletion
22 human control
23

>4 Unrelated samples

25 4.9-kb deletion
26 H20

27

28
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