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Abstract 21 

1. Aggregated species occurrence and abundance data from disparate sources are increasingly 22 

accessible to ecologists for the analysis of temporal trends in biodiversity. However, sampling biases 23 

relevant to any given research question are often poorly explored and infrequently reported; this has 24 

the potential to undermine statistical inference. In other disciplines, it is common for researchers to 25 

complete “risk-of-bias” assessments to expose and document the potential for biases to undermine 26 

conclusions. The huge growth in available data, and recent controversies surrounding their use to infer 27 

temporal trends, indicate that similar assessments are urgently needed in ecology. 28 

2. We introduce ROBITT, a structured tool for assessing the “Risk-Of-Bias In studies of Temporal Trends 29 

in ecology”. ROBITT has a similar format to its counterparts in other disciplines: it comprises signalling 30 

questions designed to elicit information on the potential for bias in key study domains. In answering 31 

these, users will define study inferential goal(s) and relevant statistical target populations. This 32 

information is used to assess potential sampling biases across domains relevant to the research question 33 

(e.g. geography, taxonomy, environment), and how these vary through time. If assessments indicate  34 

biases, then users must clearly describe them and/or explain what mitigating action will be taken. 35 

3. Everything that users need to complete a ROBITT assessment is provided: the tool, a guidance 36 

document, and a worked example. Following other disciplines, the tool and guidance document were 37 

developed through a consensus-forming process across experts working in relevant areas of ecology and 38 

evidence synthesis. 39 
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4. We propose that researchers should be strongly encouraged to include a ROBITT assessment when 40 

publishing studies of biodiversity trends, especially when using aggregated data. This will help 41 

researchers to structure their thinking, clearly acknowledge potential sampling issues, highlight where 42 

expert consultation is required, and provides an opportunity to describe data checks that might go 43 

unreported. ROBITT will also enable reviewers, editors, and readers to establish how well research 44 

conclusions are supported given a dataset combined with some analytical approach. It should also 45 

strengthen evidence-based policy and practice, reduce differing interpretations of data, and provide a 46 

clearer picture of the uncertainties associated with our understanding of ecological reality. 47 

Key words 48 
risk-of-bias; species occurrence data; temporal trends; Essential Biodiversity Variables; indicators; 49 

uncertainty; insect declines 50 

Introduction  51 

Species occupancy and abundance are fundamental state variables in ecology. Understanding the rates 52 

at which these variables are changing is required to monitor progress towards biodiversity targets and 53 

the effects of conservation interventions. Ultimately, this information comes from data documenting 54 

the detection of one or more individuals of some taxon; that is, species occurrence data, or, in some 55 

countries, “biological records” (note that here we also use these terms to cover abundance data, as such 56 

information may be considered an occurrence attribute). Species occurrence data from disparate 57 

sources are often combined and analysed statistically to derive measures of biodiversity over large 58 

taxonomic, spatial, and temporal extents (e.g. Gregory et al., 2005). Indeed, this is the premise of 59 

species population “Essential Biodiversity Variables” (Jetz et al., 2019; Kissling et al., 2018; Pereira et al., 60 

2013). The temporal component of these data products may be averaged over spatial and taxonomic 61 

domains to produce indicators (GEO BON, 2015); these have become a key source of information on 62 

ecological change for policy makers (Navarro et al., 2017). Frequently then, evidence of temporal trends 63 

in biodiversity is derived through the statistical analysis of species occurrence data. 64 

Species occurrence data vary widely in terms of why and how they were recorded, and the information 65 

that they provide. Presence-only data document the sighting of some species, with information on 66 

where and when the sighting occurred. These data are derived from a variety of sources, including 67 

natural history collections in museums and herbaria, surveys by professional biologists, and various 68 

types of data collected by volunteer naturalists (Collen et al., 2013). Presence-absence data provide 69 

additional information on sampling events which did not yield a detection of the focal taxon. These data 70 

are most likely to be collected through structured monitoring schemes using specific protocols (but see 71 

Sullivan et al., 2014). Abundance data can provide more information still: they document the number (or 72 

other quantity) of individuals. All of these data can be used to provide information on trends in 73 

biodiversity. 74 

In recent years, species occurrence data have increased in volume and accessibility. This can be ascribed 75 

to several initiatives: the digitization of historic biological records (Page et al., 2015); the proliferation 76 

and growth of citizen science monitoring initiatives (Spear et al., 2017); the launch of online data 77 

aggregators such as GBIF and similar regional portals (Nelson and Ellis, 2019); and the compilation of 78 

more specialist databases focused on particular types of ecological community (Dengler et al., 79 
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2011), monitoring data (Dornelas et al., 2018) or other evidence types (Hudson et al., 2017). Thanks to 80 

these initiatives, it is now straightforward for ecologists to access large quantities of data, and to use 81 

them for research. However, data quantity does not necessarily equal quality of scientific insight, and 82 

there have been important questions raised concerning the suitability of some biodiversity data for 83 

drawing reliable inferences about change over time (e.g. Ball-Damerow et al., 2019; Cardinale et al., 84 

2018; Pescott et al., 2019). 85 

To appreciate the potential challenges associated with the analysis of heterogeneous data, it is useful to 86 

define some key statistical concepts (see Box 1 in supplementary material 2 for a glossary of relevant 87 

terms). Whilst there are many possible definitions of statistics (Barnett, 1982), one typical conception is 88 

that of reasoning under uncertainty and inherent variability, with classical texts (e.g. Lehmann, 1959) 89 

focusing on the use of observed data to make inferences concerning unobserved distributions. For 90 

example, monitoring-type investigations can be appreciated as a sample-based approach to 91 

understanding features of some broader environment; likewise, smaller-scale experiments are normally 92 

conducted with generalisation in mind. In both these cases it is rarely feasible to census an entire 93 

population of interest: researchers use samples. This leads to questions concerning the validity of 94 

inferences. One assessment of a study’s validity is to ask whether these inferences are well-supported 95 

by the data in hand (internal validity). For sample-based results to be generalisable, however, they must 96 

also be true of the wider population of interest (external validity). A study’s external validity is likely to 97 

be undermined if samples are not representative of the population with respect to important features 98 

for the desired inferences (Meng, 2018); this is often known as “sampling bias”, or sometimes “selection 99 

bias”. 100 

To obtain a representative sample, researchers would ideally select individual units randomly from the 101 

population (probability sampling). However, this is often impractical, in which case researchers might 102 

make use of nonprobability samples, such as those found in aggregated biodiversity databases; these 103 

are samples that were not necessarily collected to be representative of a clearly defined population. 104 

Small samples may also be unrepresentative of important features by chance, even if they are 105 

probability samples. Before researchers can understand a sample’s representativeness, they must first 106 

define their research question and statistical target population. 107 

In studies of biodiversity trends, researchers tend to define their statistical populations along the axes of 108 

space, time, and taxonomy (e.g. Dennis et al., 2019; Outhwaite et al., 2019; Powney et al., 2019; van 109 

Strien et al., 2019). For example, one might be interested in trends in bird distributions in North America 110 

over the period 1950 to the present day. It is also worth noting that, although they may not always be 111 

defined explicitly, other axes may be important for inference. For example, researchers may be more 112 

interested in whether samples represent all areas of some multi-dimensional environmental space (e.g. 113 

as defined by a set of climatic variables), rather than just being considered representative of geographic 114 

space. Likewise, for some purposes, representative coverage of species' traits may be desired along 115 

with, or instead of, even phylogenetic coverage. To be representative of such populations, data should 116 

be representative of all axes. To illustrate this point using the above example, data would need to be 117 

sampled as close to randomly as possible across North America, across all relevant bird species, and 118 

evenly between 1950 and the present day. Otherwise, it is possible that the data will be 119 

unrepresentative of the populations of interest. For example, particular geographical areas may be over- 120 
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or under-sampled at particular times, leading to a confounding of time and space, and, ultimately, 121 

conclusions that bear little resemblance to the true state of nature. 122 

There are many situations in which occurrence data are unlikely to be representative of the statistical 123 

populations implied by studies of biodiversity trends. Data collected opportunistically are highly likely to 124 

be non-random along the key axes of space, time, and taxonomy (or other important dimensions). 125 

Volunteer naturalists, for example, tend to preferentially sample accessible and attractive locations, and 126 

interesting species (Barends et al., 2020; Prendergast et al., 1993). Structured data, collected according 127 

to some sampling design, may well be representative of some set of domains; however, when multiple 128 

datasets, with different aims, extents, and protocols, are aggregated (e.g. as on GBIF), then the target 129 

population to which these data pertain becomes unclear. To illustrate this point, imagine several 130 

datasets, each derived from structured monitoring of some taxon in some spatial unit at regular time 131 

intervals. These data might be very informative about change in those units (but see Gonzalez et al., 132 

2016), but there is no reason to suppose that they can be combined and used to draw robust inferences 133 

about some wider geographic domain, unless the samples happen to resemble a probability sample of 134 

the broader population(s) of interest (Cardinale et al., 2018). The problem of a mismatch between 135 

sample and population could be reduced or avoided if researchers first assessed their data to inform 136 

readers of their choice of population and the scope of their inferences. 137 

The frequent mismatch between sample and statistical target population in studies of biodiversity 138 

trends has not gone unnoticed; indeed, it is a common subject for critical comments on studies in the 139 

literature. For example, Sánchez-Bayo and Wyckhuys (2019) and van Klink et al. (2020) were criticised 140 

for extrapolating their claims of insect declines beyond the taxonomic and geographical limits of their 141 

data (Desquilbet et al., 2020; Jähnig et al., 2021; Saunders et al., 2020; Simmons et al., 2019). Vellend et 142 

al. (2013) and Dornelas et al. (2014) were criticised for concluding that local species richness is not in 143 

decline globally from meta-analyses of studies that were geographically biased in relation to human 144 

disturbance and species richness itself (Cardinale et al., 2018; Gonzalez et al., 2016). Crossley et al. 145 

(2020) and van Klink et al. (2020), on the other hand, were taxonomically selective when reporting their 146 

conclusions: both sets of authors included non-insect groups in their analyses, but restricted their 147 

conclusions (and paper titles) to insects (Desquilbet et al., 2021, 2020). Other studies of insect trends 148 

have been criticised with regards to whether particular modelling approaches have appropriately dealt 149 

with temporal biases in the data. For example, both Lister and Garcia (2018) and Soroye et al. (2020) 150 

have been criticised in this regard (Anon., 2020; Guzman et al., 2021; Willig et al., 2019). This brief 151 

overview of some recent disagreements highlights a fundamental problem: potential biases are rarely 152 

communicated to the reader in sufficient detail; instead, they are often addressed with a passing 153 

comment, if at all. 154 

In other disciplines, strategies have developed to assist researchers in avoiding potentially inappropriate 155 

inferential claims. In medicine and related areas, inclusion of a study in a systematic review often 156 

requires that the original publication is subject to a “risk-of-bias” (RoB) assessment. Several tools have 157 

been developed to conduct RoB assessments, each focusing on a particular type of study and data (see 158 

supplementary material 5). Whilst many of these tools were designed for use in systematic reviews, 159 

others were designed for use at the primary research stage, or both (supplementary material 5). 160 

Regardless, the function of these tools is essentially the same: to clearly expose threats to the validity of 161 

a study’s conclusions arising from potential biases in the underlying data. RoB tools in medicine have 162 
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been described as reflecting a “shift in focus from methodological quality to risk of bias” (Sterne et al., 163 

2016)—a shift that has yet to take place in ecology, despite efforts to provide structured approaches to 164 

documenting methodological choices in some areas (e.g. Grimm et al., 2010). It is easy to appreciate 165 

why this shift was needed in medicine: one would not want to approve some pharmaceutical product 166 

which had only been demonstrated to be safe in some population subset, for example. We argue that 167 

the increasing policy relevance of inferences about trends in biodiversity necessitates a similar transition 168 

in ecology. 169 

In this paper we introduce ROBITT, a tool for assessing the “Risk-Of-Bias In studies of Temporal Trends in 170 

ecology”. The tool has a similar format to its counterparts in other fields: it comprises a number of 171 

“signalling” questions (Sterne et al., 2016) designed to elicit information on the potential for bias in a 172 

study. Users are first asked to define the statistical target population about which they intend to make 173 

inferences, and then to assess whether their data are likely to be representative of this population in the 174 

geographic, temporal, environmental, and taxonomic domains as relevant (the latter defined broadly as 175 

covering any organismal space that might be important for inference). If the data are found to be 176 

potentially biased, then the user is asked to explain how they will mitigate those biases, or how they will 177 

be clearly and appropriately communicated. Below we describe the development of the tool, provide an 178 

overview, describe its sections, and refer the reader to the supplementary material for the tool itself, a 179 

guidance document, and worked example. Finally, we discuss the potential value of ROBITT for ecology, 180 

and propose its inclusion as supplementary information for all studies of biodiversity trends based on 181 

species occurrence data—particularly where those data are obtained from aggregated databases. 182 

ROBITT tool  183 

Development 184 

ROBITT was developed through a consensus-forming process involving experts across relevant areas of 185 

ecology and evidence synthesis (the authors). See supplementary material 3 for details.  186 

Overview  187 

ROBITT comprises 17 questions designed to elicit information on a study’s potential for bias. The user 188 

may answer the questions using text and/or figures. The first section, the “research statement and pre-189 

bias assessment”, comprises four questions concerning the scope of the research and related issues; the 190 

remainder constitutes the bias assessment itself. See Figure 1 for an overview of the tool. The ROBITT 191 

tool and supporting guidance document can be found in supplementary materials 1 and 2. The guidance 192 

follows the PRISMA model (Page et al., 2021b): i.e., an explanation of the rationale for each question is 193 

given, followed by a summary of the expected response. Worked examples of ROBITT are provided in 194 

supplementary material 4. 195 



v.9 

  
 

 

  
 

 196 

Figure 1. A conceptual overview of ROBITT with brief details about what is required at each stage. Black 197 

arrows indicate the order in which users should proceed through a ROBITT assessment. Purple arrows 198 

are used to indicate that completing a ROBITT form can be an iterative process: if the data are found to 199 

be unrepresentative of any domain, then it may be necessary to return to step 1.1 and redefine the 200 

extent and/or resolution of the statistical population accordingly. 201 

Tool sections 202 

Research statement and pre-bias assessment 203 

The purpose of this section is to assemble the information needed to assess a study’s risk of bias. The 204 

first step is to define the target population about which inferences are desired. This must include a 205 

specification of the extents of any relevant domains (e.g. geographic, temporal, taxonomic, 206 

environmental). It must also include a statement of the resolutions at which analyses will be conducted 207 

(e.g., 1 km grid cells, annual increments etc.). This is important because the scale at which a research 208 

question is formulated can influence data availability and the nature of, and potential for, biases (e.g. 209 

Pescott et al., 2019). The next step is to state the inferential goal; for example, “to estimate temporal 210 

trends in species’ occupancy”. In the remainder of this section, the user must document data 211 

provenances, and explain and justify any steps that were taken to modify or clean data. 212 

Bias assessment 213 
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The main section of ROBITT is the bias assessment. This begins with a specification of the geographic, 214 

temporal, and taxonomic resolutions (grain sizes) at which the assessment will be conducted. Generally, 215 

these should match the resolutions at which inferences are desired (as specified in the research 216 

statement section). It would likely be inappropriate, for example, to assess data in decadal time periods 217 

and 100 km grid cells, and then conclude that they were unbiased for making yearly inferences at the 1 218 

km resolution. We note that there may be limited exceptions to this: for example, it is not possible to 219 

assess sampling biases at the species level using presence-only data because these say nothing about 220 

sampling effort where the focal species was not observed.  221 

The next three subsections denote our three main domains of potential bias: geographic, environmental 222 

and taxonomic (or other organismal axis, such as functional group). Temporal biases are dealt with 223 

within each of these three sections (see below). In each subsection, the user must answer three 224 

questions: the first two are designed to reveal potential biases relative to the research question (i.e. the 225 

inferential goal). The first asks whether the data are representative of that domain; that is to say, do the 226 

data cover the whole domain evenly (ideally randomly)? The second question asks whether the same 227 

portion of the focal domain has been sampled over time; that is, is there any indication of temporal 228 

changes in coverage? The answers to this second question are crucial for assessing the suitability of the 229 

data for estimating temporal trends. To illustrate this, imagine that species data are collected from one 230 

location in one time period, and then from another in the next. Using these data to estimate changes in 231 

species’ distributions or abundances between time periods will likely be problematic, because shifts in 232 

space are confounded with shifts in time. In one sense, the distinction between the first and second 233 

question can be considered equivalent to the distinction between external and internal validity: a study 234 

might have low external validity if it is not representative of some domain overall; however, for a subset 235 

of that domain (e.g. a well-sampled portion of geographic space), the data might be very informative 236 

about change (i.e. high internal validity). The answers to these first two questions in each domain have 237 

important implications for how one answers the third. 238 

The third question in each domain subsection asks the user to state how they will mitigate potential 239 

biases indicated by the preceding two questions. There are several ways in which one might go about 240 

mitigating biases, which we review in the Discussion. There will be cases in which it is unnecessary to 241 

mitigate for a lack of coverage or inconsistent sampling over time, because these are not relevant to the 242 

inferential goal. For example, even coverage in environmental space may be inappropriate if 243 

environmental change is expected over time for the geographic extent of the analysis. Users are not 244 

required to explain poor coverage in any domain if it is irrelevant to their inferences. There could also be 245 

situations in which a bias is deemed relevant but mitigation is not feasible. In this case the resultant 246 

trends should be appropriately and clearly caveated. 247 

The final subsection is “Other potential biases”. This is different to the previous three in that it does not 248 

relate to a single domain; rather, it provides an opportunity for the user to consider additional biases 249 

that might affect their research. The first question asks whether there are any temporal biases that do 250 

not relate to the ecological states of interest. Often these biases will relate to observation error or the 251 

estimation of some parameter in a model related to this. For example, site-occupancy models are 252 

sometimes used to estimate trends in species’ occupancies (Kéry and Royle, 2016). These models 253 

normally require data from replicate visits to sites within short spaces of time to estimate detection 254 

probabilities (thus correcting for imperfect detection). Where these models are used, analysts should 255 
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consider whether there is variation in the quantity and type of repeat visits that could result in biased 256 

estimates of these parameters (Royle, 2006).   257 

The second question in the “other biases” section asks the user to consider whether there are any other 258 

biases not covered by the preceding questions. Examples include biases relating to phenology, such as a 259 

mismatch between sampling dates and a species’ flight period; temporal baselines; and changes in the 260 

portion of one domain that has been sampled over some other domain, such as geographic variation in 261 

taxonomic coverage.  Like earlier sections, the final question asks users to explain how they plan to 262 

mitigate biases revealed in their answers to the two preceding questions. See the guidance document in 263 

supplementary material 2 for detail on the expected content of responses to the ROBITT questions and 264 

other background information. 265 

Completing the assessment 266 

Whilst the assessment questions require individual answers, it may be that researchers prefer to provide 267 

responses in the main text of a report. As a point of comparison, PRISMA (Page et al., 2021a) provides a 268 

checklist format that allows researchers to direct the reader to the answer to any given question. This 269 

could also be the case here; for example, paper subheadings could be provided in response to a 270 

question, provided the text referenced was a complete answer to it. 271 

 272 

Users may go about answering the questions in the bias assessment section in the best ways they see fit. 273 

However, we have found the use of “heuristics” that indicate the potential for bias to be of value. We 274 

use the term “heuristic” to acknowledge that it is generally not possible to determine the exact extent of 275 

bias without a probability sample for comparison. Many heuristics have been used to screen biodiversity 276 

data for biases in the literature; we briefly review these in Table 1 in supplementary material 2. The 277 

most common example is a map of the density of records across geographic space; such maps could 278 

provide evidence of geographic representativeness (or lack thereof).   Taking this further, one could 279 

produce several maps, each pertaining to some time period; these could be used to assess temporal 280 

variation in geographic coverage. To obtain a more formal, quasi-statistical measure of geographic 281 

representativeness, one could compare the nearest neighbor distances of their data to those of a 282 

simulated random distribution (Clark and Evans, 1954). This gives an index indicating the extent to which 283 

the data depart from a random distribution geographically. In Figure 2 we present three example 284 

heuristics that could be used to screen data for geographic biases. In these examples, the heuristics are 285 

applied to hummingbird (Trochilidae) records collected between 1950 and 2019 in Ecuador and 286 

Colombia. Whilst heuristics of this type will be useful, it is important to remember that a ROBITT 287 

assessment is not intended to be a contextless set of numbers or figures: bias can strictly only be 288 

defined in relation to some inferential goal. The central point of ROBITT is that assessments of bias are 289 

clearly linked to a research question, and assessed in the context of this and any analytical tools being 290 

used to answer that question.  291 
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Figure 2. Three “heuristics” indicating the potential for geographic biases in data on hummingbird 293 

occurrences collected in Ecuador and Colombia from 1950-2019. These data were downloaded from 294 

GBIF (see supplementary material 3 for full details of the provenance of these data). In these examples, 295 

the data are assessed in seven decadal time periods (p1 = 1950-1959, p2 = 1960-1969, etc.) and in 1° 296 

grid cells. Panel A shows the nearest neighbor index for each decade; values further from one indicate a 297 

greater departure from a simulated random distribution. The shaded band denotes uncertainty derived 298 

by bootstrapping. Panel B is a map showing the number of decades in which records are available for 299 

each grid cell. This is a simple measure of how the spatial distribution of sampling has changed over 300 

time. Panel C shows the density of records in each grid cell for each decade on a log10 scale.  301 

In some cases completing a ROBITT assessment will be an iterative process. For example, researchers 302 

might complete a first iteration of the tool and find that data coverage is not sufficient in portions of 303 

their geographic domain of interest. In this case, they might decide to redefine this domain to exclude 304 

poorly sampled regions; this would mean completing a second iteration of ROBITT using an appropriate 305 

subset (Fig. 1, see supplementary material 4). Where a ROBITT assessment is iterative, the user should 306 

clearly version control (i.e. track and record changes over time) their documents and provide this history 307 

as supporting information to their work. 308 

Discussion 309 

Sampling biases have long been recognised as a challenge for inference in ecology (e.g. Peters, 1991), 310 

however, unlike in other disciplines, no formal tools for assessing these have been produced. We have 311 

designed and introduced ROBITT, a tool for assessing the potential “Risk-Of-Bias in studies of Temporal 312 

Trends in ecology”. The tool comprises a number of questions, each designed to clearly elicit the 313 

potential for bias in the study under assessment. In answering these, users will define their research 314 
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question and target population across relevant domains, and then assess the degree to which their data 315 

are likely to be representative of these. We propose that researchers be strongly encouraged to include 316 

a ROBITT assessment as supporting information when publishing studies of temporal trends in 317 

biodiversity, especially when using aggregated data. We expect that this will support scientists in writing 318 

clear methods sections, strengthen evidence-based policy and practice, help resolve scientific 319 

controversies around biodiversity trends, assist editors, reviewers, and readers, and, ultimately, 320 

highlight the uncertainty associated with our understanding of ecological reality. Accumulated over 321 

studies, ROBITT assessments will also highlight where data are required to address pressing questions 322 

concerning biodiversity change. 323 

We hope that the completion of ROBITT will become a standard requirement where researchers 324 

estimate trends from aggregated species occurrence data. The tools listed in supplementary material 5 325 

have set similar precedents in other disciplines; many are endorsed by journals and uptake is generally 326 

high. Whilst some reporting tools for various subdisciplines of ecology already exist, they do not focus 327 

on risk-of-bias. These include the ODD (Grimm et al., 2010, 2006) and TRACE (Schmolke et al., 2010) 328 

protocols for describing and documenting individual-based models, and the ODMAP (Zurell et al., 2020) 329 

protocol for documenting the use of species distribution models. In medicine, some reporting tools have 330 

evolved from a general focus on methodology to a more specific, and arguably more in-depth, focus on 331 

the impacts of bias on inference (Sterne et al., 2016). There is no doubt a place for both in ecology 332 

(indeed, some tools in medicine combine these aspects, e.g. Page et al., 2021a), however, we agree with 333 

Sterne et al. (2016) that in-depth, qualitative, assessments of risk-of-bias across relevant domains are 334 

more useful and revealing than simply checking methodological items off a list. 335 

We suggest that researchers will get the greatest benefit from our tool if they use it to structure their 336 

research. ROBITT contains questions that researchers should be asking themselves already; indeed, it 337 

provides an opportunity to demonstrate the large amount of work that goes into studies of temporal 338 

trends in biodiversity, but which may go unreported. An interesting possibility is that ROBITT 339 

assessments could be supplied as part of the preregistration process, which is becoming increasingly 340 

common in ecology  (e.g., 341 

https://besjournals.onlinelibrary.wiley.com/hub/journal/26888319/registered-reports-author-342 

guidelines). If, on the other hand, a ROBITT form is completed just before the submission of an article 343 

for publication, then it may reveal problems that could have been dealt with earlier. Completing the 344 

form during the research process has the potential to save researchers' time, by providing a framework 345 

for structuring thought and decision-making. 346 

Much of the risk-of-bias literature in other disciplines has focused on the effects of interventions (see 347 

supplementary material 5). In this type of research the questions asked are causal, because the desired 348 

inference concerns whether some action results in some outcome. This has also been the standard focus 349 

of evidence-based conservation (e.g. Lortie et al., 2015). ROBITT, on the other hand, is primarily focused 350 

on descriptive inference of the type that is often used for ecological indicators (e.g. Gregory et al., 2005) 351 

or the EBV literature (e.g. Jetz et al., 2019). However, this distinction is not absolute, and there are many 352 

examples of ecological studies that use aggregated species occurrence data in attempts to reach causal 353 

conclusions. For example, Woodcock et al. (2016) divided wild bee data for Britain into two subsets 354 

based on insecticide use, assessing trends in occupancy for taxa in each subset. Whilst this type of 355 

assessment is correlative, there is often a causal motivation (e.g. the title of Woodcock et al. 2016 356 
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implies causality). Whilst the ROBITT tool has not been explicitly designed to deal with these situations, 357 

we suggest that it will still be useful when attempting to make causal inferences from observational 358 

data. In the example of Woodcock et al. (2016), the domain representativeness of the data in the two 359 

subsets could have been assessed separately to investigate the potential for confounding; additionally, 360 

the full dataset could have been assessed for its external validity. 361 

One key issue with risk-of-bias assessments is that, whilst it might be easy to define a target population, 362 

in some cases it will not be straightforward to determine whether any given sample is representative of 363 

that population. For example, a researcher might define their population as wild bees in Chile in the 364 

2010s. Mapping the data might reveal that available data are not randomly distributed across the 365 

country, but does this reflect the true distribution of wild bees in Chile, or does it reflect non-random 366 

sampling? The user might also want to establish whether they have data for all known species of wild 367 

bee in Chile: how do they know whether this is the case? The answers to these questions will vary. 368 

Whilst it will not always be easy to establish whether a sample is representative of a population, we 369 

propose some simple criteria. First, subject-matter experts should be consulted; experts may be able to 370 

separate sampling biases from biological phenomena. For example, an expert might know, or suspect, 371 

that a species or taxon group occupies areas where it has not been recorded; this is likely to be a strong 372 

indication of sampling bias. Second, it might be possible to supplement expert advice with published 373 

information. Regional or national Floras etc. may list (undigitised) specimens, or provide information on 374 

regional occurrences at some coarse spatio-temporal level. Third, when using presence-only data for a 375 

reasonably large number of species in the same group (e.g., bees, birds), it may be acceptable to assume 376 

that the combined distribution of records for all species approximates the sampling distribution (Dudík 377 

et al., 2005; Phillips et al., 2009). In this case, the combined data would ideally be randomly distributed 378 

across the geographical domain. Fourth, presence/absence and abundance data may be a direct 379 

reflection of the distribution of sampling (i.e. a species might not be detected but a record is still made 380 

of the event), therefore such data may provide reliable information on the distribution of sampling in 381 

space and time. If the basis of sampling is known (e.g. random, systematic-random etc.), then data may 382 

be representative, at least within the bounds of the original survey. However, even here, such a sample 383 

may still be unrepresentative of an analyst’s target population if that population pertains to a different 384 

spatio-temporal-taxonomic domain to the survey. We can see very few scenarios where it will not be 385 

possible to at least approximate the degree to which a dataset is representative of a given population 386 

using all the knowledge that could be brought to bear. Indeed, this is the rationale behind qualitative 387 

risk-of-bias tools based on expert assessments (supplementary material 5).  388 

If analysts cannot reach an informed conclusion with regards to the likely representativeness of a 389 

sample, then broader inference is not likely to be meaningful; simple descriptive statistics could be used 390 

instead, and this limitation acknowledged, with paper titles, abstracts etc. all reflecting this. This may 391 

seem a negative conclusion for an analyst to reach, but we argue that this is likely to be the most 392 

honest, and scientific, endpoint for a dataset whose representativeness cannot be clearly assessed. 393 

Four of the questions in ROBITT provide researchers with an opportunity to consider whether and how 394 

they can mitigate biases revealed elsewhere in the tool. It is not possible to review here all possible 395 

measures that could be taken by researchers; a full treatment of adjustments and models for dealing 396 

with bias would have to cover many topics within statistics and ecological data. However, we note three 397 
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general approaches. The first is to modify the data in some way (e.g. thinning; Inman et al. 2021). The 398 

second is to model the biases; typically, this will involve incorporation of variables thought to capture 399 

the biasing mechanism in some form of regression analysis (e.g. van Strien et al., 2019), although other 400 

approaches are possible (Ahmad Suhaimi et al., 2021). Third, we suspect that in many cases ROBITT will 401 

reveal the need to restrict the extent of researchers’ inferences. This might include redefining the spatial 402 

extent of an analysis to reflect the fact that data are scarcely available in some portion of geographic 403 

space, or coarsening the temporal resolution to “smooth over” temporal biases in geographic or 404 

taxonomic coverage (Pescott et al., 2019). Any modifications to the extents of the statistical population 405 

should be reflected in paper titles, abstracts, etc. We note that it will often be prudent for researchers to 406 

assess the sensitivity of their conclusions to the choice of bias mitigation strategy: some statistical 407 

“fixes” can make aspects of inference worse (Gelman, 2007; Lele, 2010). Nevertheless, we suspect that 408 

by using these general bias mitigation strategies, researchers will usually be able to proceed with their 409 

analyses, even if those analyses relate to more limited statistical populations than initially envisioned.  410 

The problem of inference from biased samples is difficult, and quick fixes do not exist. ROBITT 411 

represents a first attempt to encourage more thoughtful assessment of the potential for bias to 412 

undermine the robust estimation of temporal trends in ecology. We intend to update the tool over time 413 

and welcome feedback from users.  414 
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