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Societal Impact Statement
Seaweed cultivation is the fastest-growing aquaculture sector, with a demonstrable 
potential to drive development in some of the poorest coastal populations world-
wide. However, sustainable exploitation, fair access and equitable benefits from 
marine genetic resources, such as seaweeds have yet to be fully realised. Patchy 
fundamental knowledge on the genetic diversity and metabolic potential of algae 
limits their exploitation; scant practical skills and low investment in breeding restricts 
germplasm availability and the Nagoya protocol has only partially remediated insuf-
ficient governance. Further developments and the addressing of knowledge gaps in 
relation to biosecurity, breeders’ rights and conservation of genetic resources are 
needed for progress.
Summary 
We review how seaweed genetic resources are currently used in aquaculture, in re-
lation to the diversification and rapidly increasing use of marine resources. Using a 
revealing case-study, we summarise the potential for positive societal change, under-
pinned by the cultivation of eucheumatoid carrageenophytes (species of the red algal 
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1  | INTRODUC TION

Marine ecosystems are a widely recognised reservoir of underex-
ploited genetic resources (Arnaud-Haond et  al.,  2011) the phylo-
genetic breadth of which exceeds that of terrestrial ecosystems 
(Costello & Chaudhary, 2017). A wealth of novel diversity, revealed 
through large-scale marine meta-barcoding projects, not only awaits 
to be described (de Vargas et al., 2015), but its genetic and meta-
bolic potential also requires characterisation. The imbalance of 
knowledge between terrestrial and marine organisms is illustrated 
by the low proportion of functionally annotated genes in the few 
available genomes of marine organisms, for example, brown algae 
(Dittami et al., 2020) or corals (Cleves et al., 2020). Several authors 
have recently called for the urgent development of a suitable gov-
ernance structure to protect the intellectual property of innova-
tors, yet refraining unequitable appropriation of marine genetic 
resources (Blasiak et al., 2018; Vanagt et al., 2019), to guarantee the 

conservation of biodiversity (Diz, 2018), and if traded, to promote 
good biosecurity practice (Campbell et al., 2019).

Amongst all marine resources, algae have a long-recognised, 
yet still underutilised, potential for human use and biotechnologi-
cal applications (Arrieta et al., 2010). Driven by increasing demand 
and multiple potential uses as feed, food, pharmaceuticals or nutra-
ceuticals, aquaculture especially of marine macroalgae, that is, sea-
weeds has been developing at an unprecedented pace (FAO, 2020). 
Between 2010 and 2018, global production of red and brown sea-
weeds increased by 89.5% of the total 31.3 million metric tonnes wet 
weight, representing a value of 12.4 billion US $ (Table 1). Despite a 
downturn in biomass production in 2017 and 2018, a considerable 
proportion of the global seaweed production is due to the expand-
ing cultivation of the red algal genera Kappaphycus and Eucheuma 
(herein referred to as eucheumatoids) in Southeast Asia and the 
Western Indian Ocean, especially in Indonesia (FAO, 2020). Seaweed 
aquaculture has become an important industry that provides jobs 
and livelihoods to millions of families in rural coastal communities, 

genera Eucheuma and Kappaphycus), an activity which has been successfully initiated 
in many tropical countries to support their economic development. We also review 
the challenges currently faced by this industry and identify potential threats to the 
seaweed cultivation sector. Accordingly, we suggest new directions to support the 
continued development of an economically resilient and environmentally sustainable 
industry based on the utilisation of genetic resources.

K E Y W O R D S

algae, aquaculture, biosecurity, breeding, genetic diversity, marine genetic resources

TA B L E  1   Global production of the main seaweed crops from 2010 to 2018, in quantity and value (FAO, 2020), and number of registered 
varieties in China, Korea and Japan (mostly Hwang et al., 2019, Plant Variety Database accessed June 2020, UPOV, but see Table S1)

Production in metric tonnes 
fresh weight Value in billion USD

No. of certified 
varieties*

2010 2018** 2010 2018** 2010 2018**

Red algae 8.3 17.3 (+105.7%) 3.6 6.3 (+74.6%) 7 31 (+343%)

Foliose Bangiales (Neoporphyra haitanensis 
& Neopyropia spp.)

1.6 2.9 (+78.9%) 1.8 2.8 (+59.9%) 6 28 (+367%)

Gracilarioids (sensu lato) 1.1 3.3 (+192%) 0.4 1.9 (+336%) 1 3 (+200%)

Eucheumatoids (Eucheuma denticulatum and 
Kappaphycus spp.)

5.6 11.1 (+95%) 1.4 1.6 (+14%) NRV NRV

Brown algae 8.1 14.0 (+72.7%) 3.2 6.1 (+89.6%) 5 18 (+260%)

Undaria pinnatifida 1.5 2.3 (+54.1%) 0.7 1.6 (117.8%) 0 7

Saccharina spp. 6.5 11.4 (75.4%) 2.4 4.3 (+77.0%) 5 11 (+120%)

Sargassum spp. 0.10 0.27 (+177.1%) 0.061 0.213 (+347.1%) NRV NRV

Overall sum 16.4 31.3 (+89.5%) 6.8 12.4 (+81.7%) 12 49 (+308%)

Abbreviation: NRV, No registered varieties.
*Data presented for Korea, Japan and China, which represent 64% of the global production in 2018. 
**Values in bracket correspond to the % increase between 2010 and 2018. 
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particularly in areas where few other opportunities exist, including 
enabling women to be economically active and gain independent 
economic power (Msuya & Hurtado,  2017; Rebours et  al.,  2014). 
Seaweeds consumed as sea vegetables, especially nori (Neopyropia/
Neoporphyra) are valuable protein resources for human nutrition 
(Fleurence,  2004). They are also used in animal feed, for example 
in polyculture or integrated multi-trophic aquaculture systems to 
help meet the global demand for dietary protein and to contrib-
ute to global food security, aligning with several UN Sustainable 
Development Goals (Bjerregaard et al., 2016). As seaweed aquacul-
ture is predicted to increase significantly, the growth of an econom-
ically and environmentally sustainable industry would create major 
opportunities for coastal communities and subsequently, contribute 
to poverty reduction (Cottier-Cook et al., 2016).

Taking the cultivation of eucheumatoid algae as a case-study, 
Box 1 highlights the intricate agronomical, ecological and societal 
challenges that need to be tackled to achieve resilient production 
systems, mitigate their potential impact on ecosystems and provide 
stable income and prospects for people working in this industry. 
Many other domesticated seaweed species face similar challenges, 
such as a narrow genetic diversity of cultivars (e.g. Guillemin 
et al., 2008), an increased frequency of diseases and pests (Loureiro 
et al., 2015), gene flow between farms and wild populations (Grulois 
et al., 2011), as well as limited or inadequate governance (Campbell 
et al., 2019). A common theme underlying many of these issues, is 
the management of genetic resources and the requirement to de-
velop robust regional, national and supranational governance to-
wards their conservation, as well as their equitable and sustainable 
exploitation. New technology opens novel avenues to explore the 
genetic potential of seaweed resources, whether they are already 
cultivated or not. Here, we review the current exploitation of sea-
weed genetic resources and their governance in the context of a 
growing aquaculture sector, identify knowledge gaps and explore 
new directions under-pinning the continued development of a sus-
tainable and resilient seaweed aquaculture industry that aligns with 
major sustainable development goals.

2  | CURRENT FRONTIERS IN THE 
E XPLOITATION OF ALGAL GENETIC 
RESOURCES

Genetic resources, breeding concepts and the resistance of sea-
weeds against stressors are far less studied than in major land-based 
crops, most of which have a long-standing research and biobank-
ing history (Tanksley & McCouch, 1997). Although seaweeds have 
been traditionally used for millennia throughout the world, their 
large-scale cultivation only dates back a few decades in most coun-
tries and, consequently the impacts of their domestication have only 
been investigated more recently (e.g. Loureiro et  al.,  2015; Valero 
et al., 2017 and references therein). Intra-specific genetic diversity 
is widely recognised as the basis for species’ survival, adaptation 
potential and resistance against biotic and abiotic stressors, and 

thus forms the foundation for sustainable cultivation and stable 
ecosystems (Laikre et al., 2020). Efforts to characterise and identify 
these genetic resources of wild seaweed populations and cultivars 
have been accelerated lately, for example, in kelps (e.g. Guzinski 
et  al.,  2016; Zhang et  al.,  2017), Undaria pinnatifida (Guzinski 
et al., 2018; Shan et al., 2018), Sargassum (Le Cam et al., 2019) and 
Agarophyton (Guillemin et  al.,  2008, 2014). Until recently, popula-
tion genetic studies primarily targeted ecologically important algae 
of temperate or cold waters and aimed to reconstruct their paleo-
geographic histories (Hu et  al.,  2016). Studies aimed at underpin-
ning breeding efforts, however, have only been initiated in recent 
years and knowledge is particularly limited for tropical species. In 
fact, cryptic diversities in many seaweed groups have only recently 
started to reveal their breadth, with the aid of molecular data, in-
cluding groups of major economic interest, such as the eucheuma-
toids (Lim et al., 2017, see also Box 1) and foliose Bangiales (Yang 
et al., 2020).

A key challenge to enable cultivation and breeding is to control 
the reproduction and life history of seaweeds; indeed, the devel-
opment of such knowledge is a milestone of domestication (Valero 
et  al.,  2017 and references therein). Red and brown algae exhibit 
diverse and complex, bi- or tri-phasic life histories, many of which 
have only been recently described or remain imperfectly known. 
Investigations into sex determination (Shan et  al.,  2015; Umen & 
Coelho, 2019; Zhang et al., 2015), life history transition control (Cock 
et al., 2014) and parthenogenesis (Mignerot et al., 2019) are funda-
mental resources for breeding efforts (Lipinska et al., 2015). While 
progress has been steady for brown algae, key knowledge gaps re-
main. For example, the genetic determinants of sex in red algae have 
yet to be identified. Similarly, the recent discovery of co-existing 
polyploidy (triploids, tetraploids and mixoploids) in gametophytes of 
three Porphyra species challenges the conventional wisdom that the 
gametophytes are necessarily haploid; the co-existence of several 
mating types in wild Porphyra populations underlines our paucity in 
knowledge of the intra-specific diversity of life histories and their 
ecological significance (Varela-Álvarez et al., 2018).

Bearing in mind this diversity of seaweed life histories, specific 
methods to biobank germplasm and produce quality seed-stock still 
need to be developed for each cultivated species. Cost-effective bio-
banking typically requires the maintenance of small, easily cultivable 
life stages with indefinite growth. Seed-stock production, however, 
often requires cost-effective amplification of healthy germplasm of 
high, predictable agronomic quality. Similar to animals and plants, the 
strategies of choice differ between sexually reproducing seaweeds 
(e.g. kelps) and those that can be propagated asexually, be it through 
parthenogenesis, apomixy or cuttings (e.g. eucheumatoids, see details 
in Box 1). For sexually reproducing species, an important research focus 
is to control life history transitions or exploit natural plasticity of life 
histories (Maggs, 1988) and to find individuals able to propagate asex-
ually, to facilitate biobanking and germplasm amplification (Ichihara 
et al., 2019; Li et al., 2017; Takahashi & Mikami, 2017). Comparable to 
crops such as banana and potato, asexually reproducing seaweeds are 
far easier to propagate; however, the development of new cultivars 
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still relies on the identification of agronomically valuable individuals in 
the wild, or on the ability to perform controlled crossings. Finally, and 
again similar to some land crops and cultured animals (e.g. oyster and 
salmon), the control of ploidy, whether through endo-polyploidisation, 
allo-polyploidisation or the generation of somatic hybrids offers hope 
for yield improvement and for the control of the genetic pollution of 
wild stocks by escapees (Goecke et al., 2020). Much can be learned 
from elaborate strategies deployed in animals and plants, as well as 
their pitfalls, particularly the dramatic erosion of genetic diversity that 
has plagued agriculture and animal aquaculture since the last century 
(Hainzelin, 2013).

Novel DNA sequencing and analytical technologies provide po-
tential opportunities to develop efficient pipelines for a large-scale, 
systematic exploration of the genetic and metabolic potential of 
algae that can aid further biotechnological exploitation. Although 
it is yet to be applied at scale in seaweeds, genome breeding has 
demonstrably shown its potential to accelerate the introgression 
in crops of genetic regions encoding high performance traits or 
increased resistance against abiotic and biotic stressors (Hickey 
et al., 2017). In addition to the potential of multi-omic approaches to 
improve crops for long-established uses of seaweeds, the explora-
tion of novel species for cultivation, or discovery of novel bioactive 
compounds is also tantalising (Kumar et al., 2016). This general trend 
certainly contributes to the exponential growth of the number of 
marine species undergoing domestication (Duarte et al., 2007), and 
should be further explored for seaweeds. However, with over 95% of 
seaweed cultivation activities taking place in low- or middle-income 
countries, significant investment and capacity building are needed 
to harness this scientific potential and ensure that seaweed farmers 
benefit fairly (Cottier-Cook et al., 2016).

3  | NOVEL CONSERVATION CHALLENGES 
BROUGHT BY ALGAL CULTIVATION

The accelerated loss of marine biodiversity is a general concern 
(Worm et al., 2006). Key seaweed-dominated ecosystems are disap-
pearing worldwide (Arafeh-Dalmau et al., 2020; Smale, 2020). Global 
warming, ocean acidification, eutrophication and other anthropogenic 
pressures are key drivers for rapid changes of seaweed-dominated 
ecosystems and their poleward shift or even retraction (Brodie, 
Williamson, et al., 2014; Fabricius et al., 2015; Wernberg et al., 2016). 
Physiological responses of tropical seaweeds to warming and ecologi-
cal responses to climate change are only starting to be understood 
(Kumar et al., 2020). Monitoring change and diversity loss in the ma-
rine environments continues to be a challenge, leading to the concern 
that vanishing tropical seaweed populations remain largely unnoticed.

In addition to these global drivers, rapid development of culti-
vation incurs novel risks for seaweeds in temperate as in tropical 
regions, which are only beginning to be identified. For most species, 
very little is known about the relative abundance of gametophytes 
as opposed to sporophytes in wild stocks, the balance between sex-
ual versus vegetative reproduction, or ploidy (as reported above 

for Porphyra, for example). Some microscopic life stages, such as 
the gametophytes of kelps are elusive in the field, resulting in a 
paucity of data about their ecology, longevity and vulnerability to 
environmental stressors or changes (Coleman & Goold, 2019). It is 
clear, however, that the control exerted over the life history and 
ploidy by farmers might shift the balance between life stages and 
reproductive modes in the field, with consequences on the genetic 
structure of populations and their resilience to perturbations. In 
the most comprehensively studied species, the agar-producing alga 
Agarophyton chilense (formerly Gracilaria chilensis) is predominantly 
propagated vegetatively by farmers and farming practices favour the 
propagation of diploid tetrasporophytes over haploid gametophytes 
(Guillemin et  al.,  2008). Evidence suggests that over-harvesting of 
wild stocks, in combination with the vegetative propagation in farms, 
has resulted in an extreme impoverishment of the species’ genetic 
diversity in Chile (Guillemin et al., 2014).

To date, seaweed cultivation has been widely regarded as environ-
mentally benign, because the ability of seaweeds to absorb nutrients 
helps remediate eutrophication caused, for example, by fish or shell-
fish aquaculture (Neori et  al.,  2004). Seaweed cultivation also pro-
vides some economic incentive for coastal populations to disengage 
from environmentally harmful practices, such as dynamite fishing or 
over-fishing (Ask et al., 2003; Msuya & Porter, 2014). However, many 
cultivation attempts have relied on the introduction of non-native 
germplasm (e.g. for eucheumatoids, see details in Box 1). With the 
exception of a few exemplary cases (Araújo et al., 2020), only limited 
environmental monitoring has been performed alongside these cul-
tivation attempts and it typically ceases when farms are abandoned 
(Sellers et  al.,  2015). Yet, there are examples where non-native eu-
cheumatoids have become established in the vicinity of farms, for 
example in Tanzania (Halling et al., 2013; Tano et al., 2015). The mor-
phological plasticity of many seaweeds and the difficulty to identify 
them in the field also contributes to unnoticed introductions for many 
years. For example, the first reports of introduced eucheumatoids es-
caping farms and of their subsequent establishment in the wild were 
largely made 10 to 20 years after cultivation was initiated in the area 
(Figure 1). This might be due to limited environmental monitoring, but 
also an indication of the time-scale necessary for such an impact to 
become detectable (Figure 1). It should be emphasised that agriculture 
and non-native species are major drivers of species extinction on land 
(Bellard et al., 2016). Therefore, the scale at which the global seaweed 
cultivation progresses and its integration with other human activities 
arguably calls for a careful assessment of its potential long-term im-
pacts on coastal ecosystems and their possible mitigation (Eggertsen & 
Halling, 2020). The specific characteristics of seaweeds, such as their 
complex life histories, would need to be fully considered when per-
forming risk assessments for invasiveness (Krueger-Hadfield, 2019).

Although still poorly documented for algae (Loureiro et al., 2015, 
see also Box 1), the worsening of disease outbreaks due to the in-
tensification and un-intentional translocation of pathogens, alongside 
the trade of seed stock, are well-known issues in other aquaculture 
sectors, for example, salmon (Johansen et al., 2011), crustaceans 
(Stentiford et al., 2012) and oysters (Mineur et al., 2014). For instance, 
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to replace dwindling local stocks of oysters in France, non-native 
seed-stock was imported from Japan, which subsequently posed a 
major threat to the industry via the accidental introduction of new 
pathogens (Mineur et  al.,  2014). Similar practices in the seaweed 
industry may have already led to the accidental introduction of the 
epiphyte Melanothamnus apiculatus (previously known as Neosiphonia 
apiculata) from the Philippines into Malaysian Kappaphycus alvarezii 
farms, in an unsuccessful attempt to replace stocks affected by the 
disease syndrome ‘ice-ice’ and another epiphyte Melanothamnus sa-
vatieri (previously Neosiphonia) (Vairappan et al., 2008). The causative 
agents of most diseases, however, encountered on seaweed farms are 
still imperfectly known (Box 1). Meta-barcoding evidence suggests 
the existence of a hidden diversity of pathogens that are yet to be 
described (Badis et al., 2019). Despite the well-documented lessons 
learnt from the aforementioned oyster and crustacean industries, 
these examples and subsequent assessments, highlight a comparative 
lack of biosecurity awareness and implementation in the seaweed in-
dustry at both an international (Campbell et  al.,  2019) and national 
level (Kambey et al., 2020; Mateo et al., 2020; Rusekwa et al., 2020). 
Given its global and growing nature (FAO, 2020), scaled risk assess-
ments and the identification of appropriate biosecurity measures 
should be carried out to protect the future of seaweed cultivation and 
wild algal populations, and raise biosecurity standards to that of other 
major aquaculture industries (Cottier-Cook et al., 2016).

4  | A GOVERNANCE IN NEED OF 
ADAPTING TO R APID CHANGES

The rapid growth of the seaweed industry is a key driver to address 
the ownership of algal genetic resources. Seaweeds in their current 

early state of domestication and with their aquatic habitat sit at the 
crossroads of regulatory frameworks. Within the national jurisdic-
tion zone, seaweeds—whether cultivated or not—are regulated 
under the Nagoya Protocol, as their aquatic origin currently excludes 
them from being considered under the International Treaty for Plant 
Genetic Resources for Food and Agriculture (ITPGRFA) (Campbell 
et al., 2019). The Nagoya Protocol gives countries sovereignty over 
the genetic resources within their national jurisdiction. However, 
marine resources are typically biogeographically less constrained 
than terrestrial ones and subject to the logistic challenges of under-
water monitoring. In addition, their ownership remains undefined in 
contested regions or outside the countries’ exclusive economic zone 
(Vierros et al., 2016), such as drifting rafts of gulfweed (Sargassum). 
Another limitation under the Nagoya protocol with regard to cul-
tivated seaweed species is the bilateral nature of the agreement 
when seaweed germplasm and products are traded globally be-
tween multiple parties. In comparison, the Plant Treaty regulates 
genetic resources of crops recognised in this treaty in a multilateral 
system that facilitates access to genetic resources for specific pur-
poses, for example, research, training or breeding (Cabrera Medaglia 
et al., 2019). Given that seaweed cultivation is expanding, and links 
to food security and livelihoods of human communities are growing, 
a multilateral system to regulate access and benefit sharing similar as 
implemented under the Plant Treaty might represent an appropriate 
framework that could be adapted in the future for key aquaculture 
species.

Providing access to genetic resources for farmers, breeders and 
scientists is essential to develop and sustain crop cultivation. For most 
seaweed species, the rapid development of the industry has yet to be 
matched with commensurate investment in breeding programmes; 
efforts to biobank germplasm and to make germplasm available to 

F I G U R E  1   A simplified worldwide overview of Kappaphycus and Eucheuma farming. The best documented introduction events for 
farming purposes are indicated by black arrows; the assumed native range depicted in blue; 'ice-ice' disease and epi-endophyte outbreaks 
in farming areas indicated by black and white boxes, respectively; suspected or confirmed invasions marked by grey boxes. The date of each 
event or first report (for continuing ones) are given in the box. Subsequent major disease outbreaks, some of which led to local industry 
collapse, are indicated with downward arrows, whereas horizontal arrows indicate continuing issues
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farmers and breeders are still in their infancy (Wade et al., 2020). Over 
the last few years, however, there has been a sharp rise of seaweed 
varieties registered with the International Union for the Protection of 
New Varieties of Plants (UPOV, Table 1). While the UPOV system pro-
vides protection to breeders and should thus encourage investment, 
it is important to note that it has been widely seen as encouraging 
homogeneous crops and subsequent loss of genetic diversity (Ahmadi 
et  al.,  2013). Also, only a few governments currently engage with 
UPOV for seaweeds (e.g. Japan and Korea). This reflects a continuing 
global imbalance among the countries involved in seaweed production 
and those engaged in research and biotechnology markets (Mazarrasa 
et al., 2013). Accordingly, this poses long-term challenges concerning 
the establishment of sustainable and equitable international part-
nerships. It is, therefore, important to accompany the current devel-
opment of the industry with a reflection on value-chains and power 
balance locally, nationally and internationally. For example, the devel-
opment of micropropagation for eucheumatoids to mass-produce ger-
mplasm free of key pathogens could be accompanied by participatory 
breeding initiatives that involve local farmers, for which the current 
small-scale family farming would be a favourable setting. Such initia-
tives would encourage the maintenance of genetic diversity, select 
local adaptations in the context of climate change and empower local 
farming communities to keep ownership of their algal seed-stock.

The sustainable exploitation of seaweed genetic resources also 
requires the implementation of effective marine conservation poli-
cies. Despite new technical developments, such as eDNA barcoding 
with primers targeting specific groups of seaweeds (Stat et al., 2017) 
underwater monitoring remains a challenge and the conservation 
status of many seaweeds remains imperfectly known. Accordingly, 
only a minute proportion of seaweeds are listed in the global IUCN-
red lists and most of these have deficient data available to assess 
their conservation status (Table 2), although it is worth mentioning 
initiatives to generate red data lists for seaweeds on national level, 
(e.g. Brodie et  al.,  2014), under-pinning the efforts to implement 
management regimes. To specifically ensure that seaweed culti-
vation does not impair persistence of wild seaweed populations, 
adaptable and reactive biosecurity policies must accompany the 
development of seaweed aquaculture and thereby avoiding expe-
riences made in other aquaculture such as genetic introgression of 

cultivated genetic material into wild populations or pathogen spill-
over threatening the wild populations (Badis et al., 2019). To avoid 
these negative impacts of seaweed aquaculture rigorous monitoring, 
innovation and adaptable and reactive policies, and communication 
between stakeholders, scientists and legal authorities are required.

5  | CONCLUSION AND PERSPEC TIVES

Several initiatives, such as one launched by the Food and Agriculture 
Organization of the United Nations in 2019 to assess aquatic genetic 
resources, widely reflect an increase in the awareness of the poten-
tial economic value of marine genetic resources (FAO, 2019). Here, 
we have highlighted the challenges faced by the seaweed producing 
industry by focusing on the carrageenan-producing eucheumatoids. 
However, many more seaweed taxa contain widely known, although 
hitherto barely exploited bioactive metabolites with anti-cancer, 
anti-viral, anti-tumour, hypocholesterolemic or hypolipidemic prop-
erties (Holdt & Kraan, 2011; Torres et al., 2019), which are driving a 
rapid diversification of the species undergoing cultivation attempts.

To support coastal communities to exploit seaweed genetic re-
sources for example by accessing more resilient cultivars, diversi-
fication of cultivated species and potentially, accessing high value 
seaweed-derived products, scientific efforts and development ini-
tiatives must build and rely on collaboration with farmers and coastal 
communities. The integration of their traditional knowledge and the 
genetic resources that they manage or own is vital when designing 
breeding programmes or developing strategies to manage disease 
and pest outbreaks, for example. Innovative solutions are requested 
that balance the need to reduce the risk to endemic wild seaweed 
populations from seaweed farming and allow the industry to expand 
in an economically and environmentally sustainable way, while being 
inclusive of the local community. Integration of scientific insight and 
traditional knowledge of local communities needs to inform pol-
icies that address sustainable challenges more holistically (i.e. by 
understanding the agronomical, ecological and societal dimension 
of marine farming). To this end, national implementation of policy 
frameworks that regulate access, biosecurity and benefit sharing 
must be context-specific.

TA B L E  2   Number of species assessed for their conservation status in the IUCN red lists

Group

Estimate of 
described 
species

Number 
of species 
evaluated

Data 
Deficient

Least 
Concern

Near 
Threatened Vulnerable Endangered

Critically 
endangered Extinct

Red algae 7,349* 58 44 4 0 0 0 6 1

Brown algae 2,065* 15 9 0 0 1 1 4 0

Green algae 6,734* 2 2 0 0 0 0 0 0

Vertebrates 72,478** 52,649

Invertebrates 1,504,341** 23,808

Flowering plants 369,000** 43,557

*Number of species in Algaebase (accessed Sept 2020). 
**IUCN Red list Statistics Version 2020–2 Table 1a. 
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BOX 1 Eucheumatoid cultivation—a case-study of a globalised, vegetatively propagated crop that supports 
development of deprived coastal communities

Eucheumatoids are sought after for their rich content of kappa and iota carrageenans (Lim et al., 2017). Carrageen is used as an ad-
ditive in manufactured food or as a stabiliser in cosmetics. Driven by high demand and over-exploitation of wild stocks, commercial 
cultivation of eucheumatoids was initiated in the Philippines in 1969 (Hurtado et al., 2014, Figure 1). Subsequently, cultivation was 
introduced in neighbouring countries in Asia, the Western Indian Ocean and the Americas, predominantly Brazil. Today, about 43 
countries are engaged, or have been engaged in the cultivation of eucheumatoids (Kelly et al., 2020). Their annual production is 
10.3 metric tonnes of fresh weight, for an output worth approximately 1 billion US $ (2017, FAO Fisheries statistics). Eucheumatoid 
farming is a major economic opportunity, specifically for low-income or middle-income regions, with proactive government policies 
in place, for example in Indonesia, Malaysia, the Philippines and Tanzania. Despite concerns about over-production, price stagnation 
(Table 1) and a controversy about carrageenan safety as a human food ingredient (Martino et al., 2017), this industry has enabled 
women to become economically active (Msuya, 2006), and offers livelihood opportunities to poor, often displaced populations, par-
ticularly in Asia (Nimmo, 1986; Nor et al., 2017).
From 37 extant eucheumatoid species (belonging to the genera Eucheuma, Kappaphycus, Betaphycus, Mimica, Eucheumatopsis and 
Tacanoosca) worldwide, two species dominate the market (Kappaphycus alvarezii and Eucheuma denticulatum), of which a few hap-
lotypes have been introduced globally for cultivation (see Figure 2a,b; Halling et al., 2013; Zuccarello et al., 2006). Kappaphycus 
striatus considerably contributes to cultivation, particularly in South East Asian farms (Hurtado et al., 2016, Figure 2c); K. malesianus 
is only cultivated within the borders of Malaysia and the Philippines (Figure 2d). Vegetative propagation is the standard practise in 
eucheumatoid farming, similar to potato and banana. In contrast to the global distribution of a few haplotypes, a large number of lo-
cally recognised varieties are cultivated in their native area, in the Philippines, Malaysia and Indonesia (Hurtado et al., 2016; Quiaoit 
et al., 2016; Tan et al., 2013). Considerable plasticity in the morphology of eucheumatoids, however, impedes species identification. 
Varieties, which have been gathered from wild populations, are given vernacular names by seaweed farmers. These local vernacu-
lar names are not unified between different regions and often farmers are unaware of the actual species that they are cultivating 
(Dumilag et al., 2016a; Ganzon-Fortes et al., 2012; Montes et al., 2008; Tan et al., 2013). This limitation in the ability to identify taxa 
and in the genetic characterisation of currently cultivated eucheumatoids is, therefore, a problem for the entire sector. Farmers re-
ceive lower prices for their product if they inadvertently mix species producing different types of carrageenans as Kappaphycus spp. 
contain the higher valued kappa carrageenan, while Eucheuma denticulatum contains the lower priced iota carrageenan; it impedes 
their conscious decision in cultivar choice and also restricts supra-regional management of cultivar diversity, for example, in the 
establishment of biobanks.
Another serious concern is the widespread, and apparently worsening, occurrence of diseases, particularly ‘ice-ice’ disease and infes-
tations by filamentous red algal endo-epiphytes (Hurtado et al., 2006; Largo, 2002; Vairappan et al., 2008). ‘Ice-ice’ is characterised 
by a whitening or loss of pigmentation of the thallus, followed by the disintegration of affected tissues and often the detachment of 
plants from cultivation ropes, resulting in loss of biomass. The condition appears to be the result of complex interactions between 
abiotic stress induced by ‘unfavourable’ shifts in environmental parameters, particularly a decrease in salinity or irradiance or an 
increase in water temperature or pH (e.g. Alibon et al., 2019; Largo et al., 1995) and the proliferation of ‘ice-ice’ promoting bacteria 
(often identified as Vibrio or Pseudomonas (Azizi et al., 2018; Largo et al., 1995) and it is thought to affect all cultivated eucheumatoid 
varieties (Sade et al., 2006; Tisera & Naguit, 2009). Infestation with epiphytic filamentous red algae is mostly caused by species 
of the genera Melanthamnus (previously Neosiphonia/Polysiphonia), Ceramium, Acanthophora, Centroceras and Colaconema (Araújo 
et al., 2014; Bustamante et al., 2015; Hurtado et al., 2006; Largo, 2002; Largo et al., 2020; Tsiresy et al., 2016; Vairappan et al., 2008). 
In some areas, prevailing diseases and pests have forced farmers to cease their activity. For example, in Tanzania, the production of 
K. alvarezii collapsed from 1,000 metric tonnes fresh weight in 2001 to ca. 13 metric tonnes fresh weight in 2010 and in Madagascar, 
it dropped from 1,860 metric tonnes fresh weight in 2009 to 110 metric tonnes fresh weight in 2012 (Msuya et al., 2014). Figure 1 il-
lustrates the generality of this trend and shows how—after an initial highly profitable period of up to ten years following the success-
ful introduction of farming—isolated disease outbreaks are typically reported, quickly followed by regional outbreaks. Diseases are 
usually mitigated by switching to other cultivars, changing the location of farms seasonally, or stopping farming temporarily during 
the ‘disease’ season. Yet, production is still reduced by disease and pest outbreaks and the extent by which the mostly uncontrolled 
globalised movement of germplasm may, or not, have contributed to the onset and worsening of these outbreaks is unknown.
In the light of these issues, there is a strong need for breeding programmes that produce disease-resistant cultivars that can tolerate 
the higher temperatures as a consequence of climate change and the provision of farmers with pest-free germplasm after a disease 
outbreak. Completing the entire life cycle of eucheumatoids in a laboratory, however, has only been achieved at a small scale (Luhan & 
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Sollesta, 2010). The successful application of micropropagation techniques offers new hope to establish biobanks from wild individu-
als (Luhan & Mateo, 2017); however, the depletion of wild eucheumatoid stocks is a matter of concern. Alarmingly, our knowledge 
on the conservation status of any of the cultivated eucheumatoid species is highly limited. Figure 2 provides an overview of avail-
able molecular data for the four cultivated eucheumatoid species. It shows a bias towards the molecular characterisation of farmed 
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BOX 1 (Continued)

F I G U R E  2   Haplotype networks and 
the geographic distribution of haplotypes 
of the four cultivated eucheumatoid 
species Eucheuma denticulatum (a), 
Kappaphycus alvarezii (b), K. striatus (c), K. 
malesianus (d), using the mitochondrial 
genetic sequence cox2-3 spacer as a 
marker. In the haplotype network, the 
size of the nodes relates to the number 
of sequences in Genbank, the colour of 
the inner circle relates to the geographic 
origin, the colour of the outer circle 
indicates the specimen origin (farmed, 
wild native, wild non-native). For the 
geographic distribution specimen were 
grouped according to their sampling 
location in marine ecoregions (following 
Spalding et al., 2007). Note that this does 
not necessarily reflect the indigenous 
diversity, as molecular information 
is biased towards farmed specimens 
and includes introduced specimens 
(see Figure 1 for major introduction 
events)
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