The wing venation of a new fossil species, reconstructed using geometric morphometrics, adds to the rare fossil record of Triassic Gondwanian Odonata

Isabelle Deregnaucourt, Jérémie Bardin, John M Anderson, Olivier Bethoux

- To cite this version:

Isabelle Deregnaucourt, Jérémie Bardin, John M Anderson, Olivier Bethoux. The wing venation of a new fossil species, reconstructed using geometric morphometrics, adds to the rare fossil record of Triassic Gondwanian Odonata. Arthropod Structure and Development, 2021, 63, 10.1016/j.asd.2021.101056 . mnhn-03223703

HAL Id: mnhn-03223703

https://mnhn.hal.science/mnhn-03223703
Submitted on 24 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

The wing venation of a new fossil species, reconstructed using geometric morphometrics, adds to the rare fossil record of Triassic
 Gondwanian Odonata

Isabelle Deregnaucourt ${ }^{1,2^{*}}$, Jérémie Bardin ${ }^{1}$, John M. Anderson ${ }^{3}$ and Olivier Béthoux ${ }^{1}$ ${ }^{1}$ Centre de Recherche en Paléontologie - Paris (CR2P), Sorbonne Université, MNHN, CNRS, 57 rue Cuvier, CP38, F-75005 Paris, France deregnaucourt.isa@gmail.com jeremie.bardin@sorbonne-universite.fr olivier.bethoux@mnhn.fr ${ }^{2}$ Centre d'Ecologie et des Sciences de la Conservation (CESCO), Sorbonne Université, MNHN, CNRS, 43 rue Buffon, 75005, Paris, France
${ }^{3}$ Environmental Studies Institute, Witwatersrand University, 1 Jan Smuts Ave., Braamfontein, Johannesburg 2000, South Africa <jmanderson.gondwana @ googlemail.com> *Corresponding author

Keywords : Wing venation - Molteno Formation - Stem-Odonata - Reconstruction

Abstract

Probably, the most common rock imprint fossil insect remain is an incomplete, isolated wing. This pitfall has been traditionally addressed by manually reconstructing missing parts, which is not ideal to comprehend long-term evolutionary trends in the group, in particular for morphological diversity (i.e., disparity) approaches. Herein we describe a new Triassic relative of dragon- and damselflies (Odonata), Moltenophlebia lindae gen. et sp. nov., from

the Molteno Formation (Karoo Basin, South Africa), on the basis of three incomplete, isolated wings. In order to provide a reconstruction of the complete wing venation of the species, we formalized and applied a repeatable method aiming at inferring the missing parts of a given specimen. It is based on homologous veins automatically identified thanks to a standardized color-coding. The dedicated script can be applied broadly to the fossil record of insect wings. The species occurs to be a member of the Zygophlebiida, within the Triadophlebiomorpha. This discovery therefore represents the first ascertained occurrence of the latter group in Gondwana, an area where the fossil record of Odonata is depauperate.

1. Introduction

Although the fossil record of Odonata (dragon- and damselflies, and their stem-relatives) is composed of about a thousand species (Paleobiology Database, 2019), many of the known fossils are represented by incomplete wings. Moreover, particular periods and geographical areas remain under-studied. This situation makes it difficult to comprehend long-term evolutionary trends in the group, using either taxonomic or morphological diversity (i.e., disparity) approaches.

Herein we describe a new species from the Molteno Formation (Triassic, South Africa). The species is represented by three incomplete, isolated wings. In order to provide a reconstruction of the entire wing venation of the species, we applied a standardized and repeatable method aiming at reconstructing missing parts. We used Thin Plate Splines (TPS), mathematical basis for deformation grids (Bookstein, 1989), to deform a reference shape onto a target shape using homologous landmarks and semi-landmarks subsampled along veins identified thanks to a standardized color-coding.

The new species adds to the fossil record of Odonata during the Triassic. Indeed it represents the first well ascertained occurrence of Triadophlebiomorpha in the Southern Hemisphere, a group previously known from Europe and Asia only (Nel et al., 2001; Pritykina, 1981; Zheng et al., 2017).

2. Terminology and materials

2.1. Nomenclature and abbreviations

We follow the serial insect wing venation ground pattern (Lameere, 1923, 1922). The corresponding wing venation nomenclature is repeated for convenience: ScP, posterior Subcosta; R, Radius; RA, anterior Radius; RP, posterior Radius; RP1+2, anterior branch of RP (to be further divided into RP1 and RP2); RP3+4, posterior branch of RP (to be further divided into RP3 and RP4); MA, anterior Media; MP, posterior Media; Cu , Cubitus; CuA , anterior Cubitus; CuP , posterior Cubitus; AA , anterior Analis. Based on this ground pattern we follow homology conjectures for total-Odonata proposed by Riek and Kukalová-Peck (1984), Bechly (1996) and Béthoux (2015; and see references therein). We follow Deregnaucourt et al. (2017) for the terminology to apply to intercalary veins. In details, $\operatorname{Irp}_{1}-\mathrm{rp}_{2}$ is the intercalary vein occurring between RP1 and RP2 (also termed 'IR1'), and $\operatorname{Irp}_{1+2}-\mathrm{rp}_{3+4}$ that occurring the RP1+2 and RP3+4 (also termed 'IR2'). In addition to this standard terminology, we propose to use additional terms, as follows. For the strongly convex, oblique cross-vein located between MA and MP and aligned with RP+MA/MA, we propose the term 'pons' ('bridge' in Latin; also termed 'MAb', e.g. by Nel et al., 1996); for the strongly convex and aligned cross-veins located between MP and the posterior wing margin, or CuA and the posterior wing margin, we propose the term 'pillar'.

Whether its portion located between CuP and the posterior wing margin AA (or one of its branches) or a strengthened cross-vein is addressed in the Discussion.

2.2.Documentation of fossil material

The studied specimens are housed at the Evolutionary Studies Institute (PRE/F/; formerly 'Bernard Price Institute for Palaeontology'), University of the Witwatersrand, Johannesburg, South Africa.

Draft drawings were prepared with the aid of a Zeiss SteREO Discovery V8 Stereomicroscope equipped with a pair of W-PL 10x/23 eye pieces, a Plan Apo S 1.0x FWD objective, and a drawing tube (Jena, Germany). Photographs were taken using a Canon EOS 5D Mark III equipped with Canon 50 mm or MP-E 65 mm macro lenses. The light-mirror technique was used to provide positive views of the specimens. Photographs were optimized [i.e. features (e.g. contrast) uniformly adjusted to maximize information content] using Adobe Photoshop CS6 (Adobe Systems, San Jose, CA, USA). Vector line drawings were made using Adobe Illustrator CS6 (Adobe Systems, San Jose, CA, USA) based on both scans of draft drawings and photographs. The drawing of the wing base of the holotype of Zygophlebia tonchuanensis Zheng, Nel, Wang, Jarzembowski, Chang and Zhang, 2017 was prepared based on published data and photographs provided by D. Zheng.

3. Reconstruction of missing parts

3.1.Methodology

In the literature, reconstructing non-conserved part of a fossil, for example a wing, is usually achieved following the author's appreciation, i.e., a non- repeatable, unstandardized method. The
material at hand, composed of several conspecific wings preserving different areas, was suitable for exploring methodologies aiming at reconstructing missing parts.

Several standardized reconstruction methods have already been developed and tested in the field of palaeoanthropology for 3D models of cranium (Gunz et al., 2009; Ogihara et al., 2015), including bilateral symmetry, multivariate regression and/or thin-plate spline (TPS) interpolation. Bilateral symmetry is not appropriate for our model (there is no inner symmetry in an isolated wing). Multivariate regression requires a sample of complete specimens, which is not available for our case. We therefore resorted to semi-landmarks and TPS deformation.

TPS deformation mimics the deformation of an infinitely thin metal plate (Bookstein, 1989). Therefore, it minimizes the bending energy of the transformation from a reference shape (here the wing used to infer the missing parts of the incomplete one) to a targeted shape (the wing to be reconstructed). As a consequence, the whole plan of the reference shape will be deformed. In practice, the entire reference drawing will be affected by the deformation in such a way that the placed points of reference (landmarks and semi-landmarks) fit perfectly the ones on the targeted shape. Thus, the missing parts of the targeted shape will be inferred by those deformed from the reference shape.

The two most complete specimens of Moltenophlebia lindae, PRE/F/20522 and PRE/F/10626 (Fig. 2A, B), have largely overlapping parts. Therefore, each can be used as reference shape to infer the missing parts of the other (Fig. 1A). Unfortunately, both specimens lack the wing apex. Thus, a second TPS deformation was performed using data on Zygophlebia ramosa Pritykina, 1981, the closest relative known from a complete wing, to reconstruct the missing apex (Fig. 1B).

For details, the missing parts of the specimen PRE/F/20522 (light lines in Fig. 2A) were inferred based on the specimen PRE/F/10626 (dark lines in Fig. 2B), and vice-versa. A drawing of the main veins and wing margin was first vectorized with Adobe Illustrator CS6. A specific color-code was applied to each vein. The vector files were then imported on R using grImport v.0.9-1 (Murrell, 2009).

Selection of sliding semi-landmarks was then performed (orange block in Fig. 1A). Fourteen homologous vein portions present on both specimens were automatically selected thanks to their color-coding. They were then sub-sampled to generate sets of landmarks with geomorph v.3.0.7 (Adams and Otárola-Castillo, 2013). For details, for each curve, the subsampling procedure generates two landmarks (considered homologous) at its beginning and end, and 3 to 49 semilandmarks between them (proportionally to the curve's length and complexity). Semi-landmarks were allowed to slide using the minimum Bending Energy criterion. This method is more suitable than minimizing Procrustes distances when there is large shape variation (Gunz and Mitteroecker, 2013; Schlager, 2017), which is the case for the second step of the reconstruction (see below; Fig. 1B). The actual disposition of landmarks and the rationale for placing them are provided as Supplemental Data 1 (Appendix A.).

A Procrustes superimposition (GPA) was then performed to correct for the effects of rotation, translation and size (Rohlf and Slice, 1990). Finally, a TPS deformation was applied to the specimen PRE/F/10626 (reference shape) so that its homologous points' coordinates fit those of the specimen PRE/F/20522 (targeted shape). The same deformation is applied to each pixel of the original drawing in order to obtain the image of PRE/F/20522 complemented by PRE/F/10626 original parts. The wing was almost completely reconstructed at that point, except for the apex.

To reconstruct this last area we applied the same procedure using data on Zygophlebia ramosa which, among the Zygophlebiida, to which Moltenophlebia lindae belongs (see Systematic Paleontology section), is the only species for which a complete wing is documented (Fig. 1B). However this specimen, like others excavated in the corresponding locality, is assumed to have been uniformly deformed by tectonics (Sharov, 1971, 1968; Voigt et al., 2006). To take that bias into account, we added a 'retrodeformation' step (blue block in Fig. 1B): the wing of Zygophlebia ramosa was submitted to 37 rotations (over 180°) and 11 elongations (from 100% to 200%) to create 407 retro-deformed wings (see examples in Supplemental Data 1, Appendix A). The Procrustes superimposition was then performed. The retro-deformed drawing selected for reconstruction was the one minimizing distances between landmarks coordinates and those of the previously reconstructed wing (purple wing in Fig. 1). The TPS deformation was then realized on this retro-deformed wing so that its homologous points' coordinates fit those of the previously reconstructed wing (penultimate step in Fig. 1B). A fully reconstructed wing was then obtained (main script, functions and functions description are available as Supplemental Data 2, 3 and 4 respectively, Appendix A.).

The same procedure was used to reconstruct the wing of the specimen PRE/F/10626 (but using the specimen PRE/F/20522 as reference shape for the first step).

3.2. Method limitations

Several sets of main veins were tested for reconstruction. Notably, the pertinence of using semi-landmarks on RP2, for the second part of the process (aiming at reconstructing the wing apex; Fig. 1B), was examined. Indeed, the area between RP3 and the anterior branch of RP2 is very dissimilar in the reference and targeted shapes: RP2 is branched more basally than RP3 +4
in Zygophlebia ramosa whereas in Moltenophlabia lindae RP2 is forked close to the posterior wing margin. Additionally, RP3+4 has many more branches in Moltenophlabia lindae. In a first attempt, RP2 was not used because of this important variation between the two wing shapes. However, the obtained reconstructed wing was not realistic: it was very elongated and the apex had a marked posterior bending. This reconstructed wing could have hardly flown.

In a second attempt, semi-landmarks were placed on the portion of RP2 before its first split on each wing shape, assuming that this variable area would be more constrained so as to better fit the targeted shape. The obtained reconstruction, more realistic, is the one presented here (Fig. 2A). However, given the remarkable differences in this area between the two wings (viz. the reconstructed Moltenophlabia lindae and the retro-deformed Zygophlebia ramosa), the TPS deformation generated unrealistic distortions of some vein portions. These distortions were not taken into account for the final reconstruction because they affected parts which were preserved in the targeted shape. The proposed reconstruction (Fig. 2A) is therefore a smoothened version of the R output to fit the fossil's preserved parts. R outputs are provided in Supplemental Data 1 (Appendix A.).

Unrealistic distortions were probably due to shape differences too important to be managed by the method. Indeed, semi-landmarks are allowed to slide along a curve, while only the first and last points are homologous landmarks (i.e., are not allowed to slide). Some semi-landmarks slid away from the original curve, not fitting anymore the original wing shape, probably because of the constraint induced by the use of RP2 curve for such a different area. The use of a more closely related species as reference shape might fix this issue. An additional improvement would be to consider more than one closely related species as reference shapes. Indeed, Gunz et al.
(2009) used several references to reconstruct their target and obtained different results. However, for now, there is no other complete wing appropriate for such a reconstruction.

Other issues can also be mentioned. It was not always possible to delimit vein portions based on well-defined points such as vein branching. We therefore resorted to a manual pre-alignment of the two sub-complete wings, inducing some degree of subjectivity. As arose by Gunz et al. (2009) and Ogihara et al. (2015), other parameters are susceptible to lead to differing reconstructions, such as the number of landmarks and semi-landmarks. In our case, a minimal number of semi-landmarks is needed to faithfully quantify a vein curvature, but too many render the sliding computation more complicated, time-consuming and prone to generate unrealistic crossings of semi-landmarks (due to their proximity).

Also, we ignore whether the two specimens of Moltenophlebia lindae used in the first step (Fig. 1A) belonged to homologous thoracic segments (i.e., were both forewings, or hind wings), or to individuals of the same sex. Some of the observed differences could reflect fore- vs. hind wing differentiation and/or sexual dimorphism, both variations occurring among extant Odonata. Indeed, i.e., hind wings are commonly broader and shorter than forewings in these insects. This differentiation is much less conspicuous in those possessing petiolated wings (Zygoptera and Anisozygoptera; i.e., damselflies and Epiophlebia spp., respectively), as Moltenophlebia lindae does. In Calopterygidae (i.e., broad-winged damselflies) females commonly have wings more elongated than those of males. However, leaving apart purely shape-related aspects, the main veins pattern remains essentially unchanged, especially in the distal two-thirds of the wing. This general appreciation was confirmed by Blanke (2018) who, on the basis of a broad-scale morphometric analysis of Anisoptera wing venation, demonstrated that fore- and hind wings correlate with each other in their shape variation. It can then be expected that our reconstruction
method will satisfactorily account for fore- vs. hind wing differentiation and/or sex-related shape differences. This is indeed exemplified by the fact that the obtained reconstruction of the specimen PRE/F/20522 (Fig. 2A) is broader than the used reference shape, which likely represents a genuine differentiation.

The obtained reconstructions are based on a standardized repeatable method which could be used on any wing that needs to be reconstructed for comparative analysis, or any fossil equivalent to a 2D model lacking bilateral symmetry. Gunz et al. (2009) tested several aspects of the reconstruction approach (e.g. error induced by reconstruction against intra-specific variability within an inter-specific framework) and highlight the relevance of the TPS deformation for cases such as the one presented here. We proposed an adaption of this method to insect wings and detailed it step by step to ensure a complete transparency. However, further testing could be valuable focusing on our model, for the reconstruction and also the retro-deformation step.

A possible venue would be to simulate missing parts on extant species and comparing the obtained reconstructions with the original wing shape. The number and distribution of missing areas, as well as their extents, likely are critical elements. For example, the reconstruction of a wing apex, as we endeavored herein, is likely to be less reliable than that of an inner part. Indeed, we performed an extrapolation, i.e., constraints were only applied on one side of the reconstructed part. That could explain why the firstly reconstructed wing apex was unrealistically elongated. In contrast, the reconstruction of a part located in the middle of a wing could be more accurate because it is an interpolation, i.e., with constraints on several sides. Also, phylogenetic closeness between the reference and target shapes is likely another prevalent factor to be tested. The number of landmarks and semi-landmarks also needs to be tested. Ultimately, the error induced by the reconstruction could be tested against intra-specific variability, within an
inter-specific framework (Gunz et al., 2009). Considering additional constraints, for example in relation with flight biomechanics (Wootton and Kukalová-Peck, 2000) and developmental modelling (Hoffmann et al., 2018), could further help obtaining more reliable reconstruction.

4. Systematic paleontology

Order Odonata Fabricius, 1793

Taxon Pandiscoidalia Nel et al., 2001
TAXon DISCoidalia Bechly, 1996
TAXON TRIADOPHLEBIOMORPHA PRITYKINA, 1981
TAXON ZyGophlebiIda Nel et al., 2001

Emended diagnosis

RP2 and $\operatorname{Irp}_{1+2}-\mathrm{rp}_{3+4}$ fused for some distance shortly after the origin of the former, and Irp ${ }_{1-}$ rp_{2} and RP2 fused for some distance; CuA without posterior branches; and, occurrence of a pillar (ranging either from CuA to the posterior wing margin, or from MP to the posterior wing margin).

Included families

Zygophlebiidae, Xamenophlebiidae, Permophlebiidae and Kargalotypidae.

Remarks

Nel et al. (2001) listed six character states as diagnostic of the taxon Zygophlebiida. Two of them relate to the particular organisation of $\operatorname{Irp}_{1-r p}, R P 2$, and $\operatorname{Irp}_{1+2}-\mathrm{rp}_{3+4}$. We provide a tentative interpretation of the corresponding area (Fig. 2) consistent with statements made by Bechly (1996) and Nel et al. (2001), positing that (1) in the basal part, RP2 briefly fuses with $\operatorname{Irp}_{1+2-r p_{3+4}}$, and, (2) in the distal part, $\operatorname{Irp}_{1}-\mathrm{rp}_{2}$, briefly fuses with RP2. These two states might have been acquired concurrently as a consequence of the relocation of the bases of $\operatorname{Irp}_{1}-\mathrm{rp}_{2}, \mathrm{RP} 2$, and $\operatorname{Irp}_{1+2-r p_{3+4}}$ towards the wing base. Therefore we propose to treat them as a single character state, which is obviously derived, as it is absent in the most remote stem-Odonata (Riek and Kukalová-Peck, 1984). Note that, as indicated by Nel et al. (2001), this character state was acquired convergently within Protomyrmeleontidae, belonging to the Stigmoptera (Deregnaucourt et al., 2021, and references therein), a group therefore only remotely related to the Zygophlebiida.

Other character states listed by Nel et al. (2001) are present in various other Pandiscoidalia, such as the Triadotypomorpha (Nel et al. 2001; Deregnaucourt et al., 2017). In other words, these states form a corpus relevant only if observed jointly. The most relevant is ' CuA simple', allowing Zygophlebiida to be distinguished from other Triadophlebiomorpha. However, it might represent the apomorphy of a larger group, including all extant forms.

Whether the posterior-most portion of the pillar is composed of AA (or one of its branches) or a strengthened cross-vein, as favored herein, is addressed in the Discussion. Regardless of its nature, the occurrence of the pillar itself is a putative diagnostic trait of Zygophlebiida, or of a subset within this group, as pointed out by Nel et al. (2001).

FAMILY UNCERTAIN

Genus Moltenophlebia gen. nov.

Type species
Moltenophlebia lindae gen. et sp. nov.

Diagnosis
By monotypy, as for the type species

Etymology
The name derives from that of the geological Formation and from 'phlebia', itself derived from the Ancient Greek 'phlebos' (vein).

Remarks

The genus Moltenophlebia can be confidently assigned to the Discoidalia owing to the occurrence of the pons. It can be further assigned to the Zygophlebiida owing to the occurrence of the diagnostic character states of this taxon (see above).

Moltenophlebia Lindae GEN. ET SP. NOV.
(Figs. 2-4)

Type specimens

Holotype: PRE/F/20522 (negative imprint). Paratypes: PRE/F/10626 (negative and positive imprints), $\mathrm{PRE} / \mathrm{F} / 10615$ (negative and positive imprints).

Diagnosis

$\mathrm{CuA}-\mathrm{CuP}$ fork located basal to the pillar (i.e., CuP not capturing the pillar; putative plesiomorphy within Zygophlebiida; see section 5.1); RP4 branched (putative plesiomorphy within Zygophlebiida; see Remarks section).

Occurrence

All the specimens are from Aasvoëlberg locality (locality code "Aas 411"; see Anderson and Anderson, 1984), Karoo Basin, South Africa; Molteno Formation; Carnian, Triassic (Anderson et al., 1998).

General description

Wing total length and maximum width unknown (about 98 mm , and 23 mm respectively when considering the reconstructions); wing broad with numerous small cells, slightly petiolate, narrowing from the second third of the wing to the apex; ScP fused with the anterior wing margin at the first third of the wing; many antenodal cross-veins; RA parallel to the anterior wing margin distal to the nodus, with a single row of cell between the two; RP+MA diverging obliquely from RA basal to the second antenodal cross-vein; RP+MA divided in RP and MA distal to the second antenodal cross-vein; RP divided into RP1+2 and RP3+4 basal to the nodus (inferred from preserved parts of the holotype); $\operatorname{Irp}_{1-\mathrm{r}}^{2} 2, \mathrm{RP} 2$ and $\operatorname{Irp}_{1+2}-\mathrm{rp}_{3+4}$ fused for some distance, forming a 'rectilinear convex stem' parallel to RP1 and seemingly diverging from this vein just distal to the nodus; $\operatorname{Irp}_{1}-\mathrm{rp}_{2}$ and RP2 diverging shortly after the wing mid-length; $\operatorname{Irp}_{1+2-\mathrm{rp}}^{3+4} 1$ diverging obliquely from the 'rectilinear convex stem' at wing mid-length; RP2
diverging obliquely from the 'rectilinear convex stem' further distally; areas between RP1 and $\operatorname{Irp}_{1}-\mathrm{rp}_{2}$, and between RP2 and $\operatorname{Irp}_{1+2}-\mathrm{rp}_{3+4}$ with a single row of cells; RP2 with at least two branches (some of the concave veins located between $\operatorname{Irp}_{1}-\mathrm{rp}_{2}$ and RP2, visible in PRE/F/10626, might actually be branches of RP2, as in Zygophlebiidae); RP3+4 divided in RP3 and RP4 at the two-third of the wing length, each with at least two branches; area between RP4 and MA with a single row of cells; MA with a strong angle when dividing from RP; presence of a convex pons aligned with the RP+MA and the basal portion of MA; MA and MP close and parallel to each other basal to the nodus, diverging distal to it, and converging close to their endings; area between MA and MP ranging from one row of cells up to four; a cross-vein occurring in the area between R+MA and MP, basal to the first antenodal cross-vein; MP with no evident fork, but delimiting a large area filled with several concave branches (intercalaries?) and convex intercalaries, subparallel; Cu close to the posterior wing margin at the end of the petiole; Cu divided into CuA and CuP at the level of the point of divergence of RA and $\mathrm{RP}+\mathrm{MA} ; \mathrm{CuA}$ and CuP parallel with one row of cells between them, occasionally divided into two cells in a same wing; CuP with no evident fork, but delimiting an area filled with several concave branches (intercalaries?) and convex intercalaries, subparallel.

Specimen description

Holotype specimen PRE/F/20522 (Figs. 2A and 3A): Left wing, almost complete, apex and posterior wing margin missing; preserved length 79.6 mm , maximum width 19.6 mm ; CuA and CuP more bent than in the specimen PRE/F/10626.

Paratype specimen PRE/F/10626 (Figs. 2B, 3B): Two-third of a right wing, antero-basal third and apex missing; preserved length 74.7 mm , maximum width 20.6 mm ; posterior wing margin and distal portions of RP2, RP3 and RP4 branches preserved.

Paratype specimen PRE/F/10615 (Figs. 2C, 3C): Two broken segments of a left wing, the base and a part of the third quarter; preserved length 19.2 mm , maximum width 34 mm .

Etymology

The name is dedicated to Linda Terblanche, who allowed access to the site where the fossils were discovered.

Remarks

There is virtually no doubt that the specimens PRE/F/20522 (holotype) and PRE/F/10626 (paratype) are conspecific. Our reconstruction suggests that the former is slightly broader, but this could represent differences between a hind wing and a forewing, and/or sexual dimorphism. The specimen PRE/F/10615 can be attributed to the same species thanks to the presence of a convex pons aligned with the RP+MA and the basal portion of MA, and also the $\mathrm{CuA}-\mathrm{CuP}$ split located basally (at the level of the point of divergence of RA and RP+MA). It is also very similar in size with the two other specimens.

The occurrence of a cross-vein in the area between $\mathrm{R}+\mathrm{MA}$ and MP near the wing base, observed in the holotype specimen is unusual for the group. It is not unlikely that it represents a rare, uncommon feature for the species (it could then be an atavism).

In the Zygophlebiida and more generally in Triadophlebiomorpha MP is distinct from Cu at the wing base (the two veins then remaining fused for some distance). This character state is
plesiomorphic, being observed in the earliest odonates (Riek and Kukalová-Peck, 1984). In our reconstruction we therefore assumed that Moltenophlebia lindae displayed this state.

Within the Zygophlebiida, the new species can neither be attributed to the Xamenophlebiidae nor to the Permophlebiidae, as it lacks the diagnostic characters of these families as delimited by Nel et al. (2001). The family Zygophlebiidae currently lacks a diagnosis (Bechly, 1996; Nel et al., 2001). The family currently contains four genera, from which Moltenophlebia lindae differs in many aspects, including a RP2 branched close to the posterior wing margin (whereas RP2 is widely developed in known Zygophlebiidae genera). Also, in the new species both RP3 and RP4 are branched (as in Triadotypomorpha, suggesting that this state is a plesiomorphy; see Pritykina, 1981; Nel et al., 2001). The resulting wide area (between RP3 and RP4) is also present in Mixophlebia mixta Pritykina, 1981, but RP4 is simple in this species. The observed differences justify the erection of a new genus. However, given uncertainties on the occurrence of several character states in various genera of Zygophlebiidae, and on the polarity of several character states, we refrained from erecting a new family to accommodate Moltenophlebia.

5. Discussion

5.1. Nature of the pillar

In Zygophlebiidae, the portion of the pillar located between CuP and the posterior wing margin has been interpreted as a branch of AA by Pritykina (1981) and Bechly (1996), and AA by Nel et al. (2001) and Zheng et al. (2017) (Fig. 4A). It implies that CuP and AA (or one of its branches) form a composite stem from the $\mathrm{CuA}-\mathrm{CuP}$ split. However, the condition displayed by

Moltenophlebia lindae, previously undocumented for Zygophlebiida, provides a new perspective on this particular aspect of wing venation homology conjectures. Instead of possessing a single, convex stem in the area delimited by MP, the pillar and the posterior wing margin, Moltenophlebia lindae displays a convex stem but also another, conspicuously concave one (green arrow in Fig. 4B; and see Fig. 3C), the latter likely being CuP free from any other vein (a configuration similar to that of Archizygoptera; Nel et al., 2012). It strongly suggests that the pillar, in Moltenophlebia lindae, is exclusively composed of strengthened cross-veins (as represented in Fig. 4D).

In turn, an alternative interpretation of the wing venation homology of other Zygophlebiidae, consistent with this observation, can be proposed. In the petiole of Zygophlebia tongchuanensis, a short vein-like element occurs in the area between the posterior wing margin and the vein immediately anterior to it, between the point of fusion of MP with $\mathrm{Cu}+\mathrm{AA}$ and the point of divergence of MP. It was interpreted as a cross-vein by Zheng et al. (2017; Fig. 4A) but another plausible interpretation is that it is AA (Fig. 4C), which would then end earlier than previously assumed. It must be emphasized here that such early ending of AA has been conjectured for many other members of Discoidalia, including members of the triassolestid assemblage, regarded as closely related to the crown-group of Odonata (Nel et al., 2002; Tierney et al., 2020) . In other words, this conjecture is very plausible. Then, the pillar is composed of (i) a very oblique portion of CuP and (ii) a strengthened cross-vein. With respect to the configuration in Moltenophlebia lindae (Fig. 4D), it can then be hypothesized that the CuA-CuP split is located more distally in Zygophlebia tongchuanensis (Fig. 4E) and in other Zygophlebiidae, to the point where CuP fuses with the portion of the pillar previously located between it and CuA (i.e., CuP captures the first cross-vein forming the pillar). Cross-veins forming the pillar being overall convex (Fig. 4B), this
elevation was likely imposed to CuP. This interpretation likely applies to the entire Zygophlebiida. The state 'CuA-CuP split located basally' is present in stem-Odonata more ancient than Zygophlebiida, including the Meganisoptera (see (Nel et al., 2009)) and the 'geropteromorphs' (see Riek and Kukalová-Peck, 1984).

5.2. Triassic Gondwanian Odonata

Within early-diverging stem-Odonata (and, more specifically, within the Discoidalia), the Triadophlebiomorpha were greatly diversified and widely distributed across Europe and Asia during the Triassic (Nel et al., 2001; Pritykina, 1981; Zheng et al., 2017). The new species, Moltenophlebia lindae, can be confidently assigned to one of the main lineages of this taxon, namely the Zygophlebiida. It therefore represents the first ascertained occurrence of the Triadophlebiomorpha in the Gondwana. This discovery concurs with previous accounts suggesting that major groups of Triassic Odonata had a worldwide distribution. The Triassic, Australian Iverya averyi Béthoux and Beattie, 2010, initially regarded as a Triadotypomorpha (see original description) but which actually occupies an uncertain position within the Discoidalia (Deregnaucourt et al., 2017), already indicated similarities between Laurasian and Gondwanian faunas of stem-Odonata. Moreover, a representative of another group of stemOdonata, the Triadotymorpha, well-documented from Europe and Asia (Bechly, 1997; Béthoux et al., 2009; Laurentiaux-Vieira et al., 1952; Pritykina, 1981; Reis, 1909) also occurred at Molteno (Deregnaucourt et al., 2017). Even the gracile, damselfly-like Protomyrmeleontoidea Handlirsch, 1906, which dispersal capabilities might have been more limited than those of larger,
contemporaneous stem-Odonata, have been documented from Triassic outcrops in Australia (Henrotay et al., 1997; Tillyard, 1922) and also from Molteno (Deregnaucourt et al., 2021). In summary, this South African outcrop testifies to a great diversity of Triassic Odonata in the Gondwana, and to a widespread distribution of the main lineages of Odonata during this period.

Authors contributions

Isabelle Deregnaucourt: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Visualization, Writing - original draft. Jérémie Bardin: Conceptualization, Formal analysis, Investigation, Methodology, Supervision, Writing - review \& editing. John M. Anderson: Resources, Writing — review \& editing. Olivier Béthoux: Conceptualization, Investigation, Funding acquisition, Supervision, Visualization, Writing - review \& editing.

Acknowledgments

We are grateful to H. M. Anderson (Honorary Research Associate, Evolutionary Studies Institute, Johannesburg), and often the kids, for having helped built the Molteno fossil insect collection. We are grateful to F. and L. Terblanche for their great welcoming on the site where the fossils were found. Data on the 'Anderson collection' and the new fossil species in particular were collected during two visits at the Evolutionary Studies Institute (University of the Witwatersrand; Johannesburg, South Africa; 2014, 2015). We are grateful to M. Bamford and T. Scott-Turner who proved very helpful during these visits. We are grateful to D. Zheng for providing photographs and for useful discussion. Visits were supported by two grants from the 'Action Transversale Muséum Emergences' (O. Béthoux, 2014, 2015) and by a grant from the DFG (WA 1492/12-1; T. Wappler and O. Béthoux, 2014). We are grateful to T. Wappler for discussion and collaboration on the description of the Molteno insect fauna. This work is part of
the first author's PhD project funded by 'Sorbonne Universités'. Finally, we are grateful to the two anonymous reviewers for their constructive comments.

References

Adams, D.C., Otárola-Castillo, E., 2013. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4, 393-399.

Anderson, J.M., Anderson, H.M., 1984. The fossil content of the Upper Triassic Molteno Formation, South Africa. Palaeontologia Africana 25, 39-59.

Anderson, J.M., Anderson, H.M., Cruickshank, A.R.I., 1998. Late Triassic Ecosystems of the Molteno/Lower Elliot Biome of Southern Africa. Palaeontology 41, 387-421.

Bechly, G., 1996. Morphologische Untersuchungen am Flügelgeäder der rezenten Libellen und deren Stammgruppenvertreter (Insecta; Pterygota; Odonata) unter besonderer Berücksichtigung der Phylogenetischen Systematik und des Grundplanes der Odonata [revised edition including appendix in English]. Petalura Special Volume 2, 1-402.

Bechly, G., 1997. New fossil odonates from the Upper Triassic of Italy, with a redescription of Italophlebia gervasuttii, and a reclassification of Triassic dragonflies (Insecta: Odonata). Rivista del Museo civico di Scienze Naturali "Enrico Caffi" 19, 31-70.

Béthoux, O., 2015. The Late Carboniferous Triplosoba pulchella is not a fly in the ointment but a stem-mayfly. Systematic Entomology 40, 342-356.

Béthoux, O., Beattie, R.G., 2010. Iverya averyi gen. nov. \& sp. nov., a new triadotypomorphan species from the Middle Triassic at Picton, New South Wales, Australia. Acta Geologica Sinica 84, 688-692.

Béthoux, O., de la Horra, R., Benito, I.M., Barrenechea, J.F., Galán, A.B., López-Gómez, J., 2009. A new triadotypomorphan insect from the Anisian (Middle Triassic), Buntsandstein facies, Spain. Journal of Iberian Geology 35, 179-184.

Bookstein, F.L., 1989. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 567585.

Deregnaucourt, I., Wappler, T., Anderson, J.M., Béthoux, O., 2017. A new triadotypid insect from the Late Triassic of South Africa. Acta Palaeontologica Polonica 62, 613-618.

Deregnaucourt, I., Wappler, T., Anderson, J.M., Béthoux, O., 2021. The wing venation of the Protomyrmeleontidae (Insecta: Odonatoptera) reconsidered thanks to a new specimen from Molteno (Triassic; South Africa). Historical Biology 33, 306-312.

Fabricius, J.C., 1793. Entomologia systematica emendata et aucta. Secundum classes, ordines, genera, species adjectis synonimis, locis, observationibus, descriptionibus. Tome 2. Proft, C. G., Copenhagen.

Gunz, P., Mitteroecker, P., 2013. Semilandmarks: a method for quantifying curves and surfaces. Hystrix It. J. Mamm. 24, 103-109.

Gunz, P., Mitteroecker, P., Neubauer, S., Weber, G.W., Bookstein, F.L., 2009. Principles for the virtual reconstruction of hominin crania. Journal of Human Evolution 57, 48-62.

Handlirsch, A., 1906. Die fossilen Insekten und die Phylogenie der rezenten Formen. Ein Handbuch für Paläontologen und Zoologen. Wilhelm Engelmann, Berlin.

Henrotay, M., Nel, A., Jarzembowski, E.A., 1997. New Protomyrmeleontidae damselflies from the Triassic of Australia and the Liassic of Luxembourg. Odonatologica 26, 395-404.

Hoffmann, J., Donoughe, S., Li, K., Salcedo, M.K., Rycroft, C.H., 2018. A simple developmental model recapitulates complex insect wing venation patterns. PNAS 115, 9905-9910.

Lameere, A., 1922. Sur la nervation alaire des insectes. Bulletin de la Classe des Sciences de l'Académie Royale de Belgique 8, 138-149.

Lameere, A., 1923. On the wing-venation of insects. Psyche 30, 123-132.
Laurentiaux-Vieira, F., Ricour, J., Laurentiaux, D., 1952. Un Protodonate du Trias de la Dent de Villard. Bulletin de la Société Géologique de France, (6) 1, 319-324.

Murrell, P., 2009. Importing vector graphics: The grImport package for R. Journal of Statistical Software 30, 1-37.

Nel, A., Béthoux, O., Bechly, G., Martínez-Delclòs, X., Papier, F., 2001. The Permo-Triassic Odonatoptera of the "protodonate" grade (Insecta: Odonatoptera). Annales de la Société Entomologique de France (N.S.) 37, 501-525.

Nel, A., Fleck, G., Garrouste, R., Gand, G., Lapeyrie, J., Bybee, S.M., Prokop, J., 2009. Revision of Permo-Carboniferous griffenflies (Insecta: Odonatoptera: Meganisoptera) based upon new species and redescription of selected poorly known taxa from Eurasia. Palaeontographica Abteilung A 289, 89-121.

Nel, A., Marie, V., Schmeissner, S., 2002. Revision of the Lower Mesozoic dragonfly family Triassolestidae Tillyard, 1918 (Odonata: Epiproctophora). Annales de Paléontologie 88, 189-214.

Nel, A., Papier, F., Stamm-Grauvogel, L., Gall, J.-C., 1996. Voltzialestes triasicus, gen. nov., sp. nov., le premier Odonata Protozygoptera du Trias inférieur des Vosges (France). Paleontologia Lombarda, (N.S.) 5, 25-36.

Ogihara, N., Amano, H., Kikuchi, T., Morita, Y., Hasegawa, K., Kochiyama, T., Tanabe, H.C., 2015. Towards digital reconstruction of fossil crania and brain morphology. Anthropological Science 123, 57-68.

Pritykina, L.N., 1981. Novye triasovye strekozy srednej Azii. In: Vishniakova, V.N., Dlussky, G.M., Pritykina, L.N. (Eds.), Novye Iskopaemye Nasekomye s Terrotorii SSSR. Trudy Paleontologicheskogo instituta, Akademiya Nauk SSSR, 183, Moscow, pp. 5-42.

Reis, O.M., 1909. Handlirschia gelasii nov. gen. et spec. aus dem Schaumkalk Frankens. Abhandlungen der Koeniglich Bayerischen Akademie der Wissenschaftern, Mathematisch-Physikalischen Klasse 23, 659-694.

Riek, E.F., Kukalová-Peck, J., 1984. A new interpretation of dragonfly wing venation based upon Early Upper Carboniferous fossils from Argentina (Insecta, Odonatoidea) and basic character states in pterygota wings. Canadian Journal of Zoology 62, 1150-1166.

Rohlf, F.J., Slice, D., 1990. Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks. Syst Biol 39, 40-59.

Schlager, S., 2017. Morpho and Rvcg - Shape Analysis in R. In: Statistical Shape and Deformation Analysis. Elsevier, pp. 217-256.

Sharov, A.G., 1968. Filogeniya orthopteroidnykh nasekomykh. Trudy Paleontologicheskogo instituta, Akademiya Nauk SSSR 118, 1-216.

Sharov, A.G., 1971. Phylogeny of the Orthopteroidea. Israel Program for Scientific Translations, Jerusalem.

Tierney, A., Deregnaucourt, I., Anderson, J.M., Tierney, P., Wappler, T., Béthoux, O., 2020. The Triassic Mesophlebiidae, a little closer to the crown of the Odonata (Insecta) than other 'triassolestids.' Alcheringa: An Australasian Journal of Palaeontology 44, 279-285.

Tillyard, R.J., 1922. Mesozoic insects of Queensland. No. 9. Orthoptera, and additions to the Protorthoptera, Odonata, Hemiptera and Plannipennia. Proceedings of the Linnean Society of New South Wales 47, 447-470.

Voigt, S., Haubold, H., Meng, S., Krause, D., Buchantschenko, J., Ruckwied, K., Götz, A.E., 2006. Die Fossil-Lagerstätte Madygen: ein Beitrag zur Geologie und Paläontologie der Madygen-Formation (Mittel- bis Ober-Trias, SW-Kirgisistan, Zentralasien). Hallesches Jahrbuch für Geowissenschaften 22, 85-119.

Wootton, R.J., Kukalová-Peck, J., 2000. Flight adaptations in Palaeozoic Palaeoptera. Biological Review 75, 129-167.

Zheng, D.R., Nel, A., Wang, B., Jarzembowski, E.A., Chang, S.-C., Zhang, H.C., 2017. The first Triassic ‘Protodonatan’ (Zygophlebiidae) from China: stratigraphical implications. Geological Magazine 154, 169-174.

Figures and Figure Captions

Fig. 1. Flow-chart explaining the standardized method used to reconstruct the wing of specimen PRE/F/20522. A, first step, reconstruction of specimen PRE/F/20522 with specimen PRE/F/10626. B, second step, reconstruction of the firstly reconstructed wing of specimen PRE/F/20522 with the holotype of Zygophlebia ramosa PIN 2785/20. GPA = generalised Procrustes analysis; TPS = thin plate splines; squares correspond to process and circles to data.

Fig. 2. Moltenophlebia lindae gen. et sp. nov., from Carnian (Triassic) of Aasvoëlberg locality, Molteno Formation, Karoo Basin, South Africa, line drawings. A, specimen PRE/F/20522 (left
wing; holotype). B, specimen PRE/F/10626 (right wing; paratype). C, specimen PRE/F/10615 (left wing). $\mathrm{RA}=$ anterior Radius; $\mathrm{RP}=$ posterior Radius; $\mathrm{RP} 1+2=$ anterior branch of RP (to be further divided into RP1 and RP2); RP3+4 = posterior branch of RP (to be further divided into RP3 and RP4); $\operatorname{Irp}_{1}-\mathrm{rp}_{2}=$ intercalary vein between RP1 and RP2; $\operatorname{Irp}_{1+2}-\mathrm{rp}_{3+4}=$ intercalary vein between RP1 +2 and RP3+4; MA $=$ anterior Media; $\mathrm{MP}=$ posterior Media; $\mathrm{CuA}=$ anterior Cubitus; $\mathrm{CuP}=$ posterior Cubitus. Light lines were reconstructed.

Fig. 3. Moltenophlebia lindae gen. etsp. nov., from Carnian (Triassic) of Aasvoëlberg locality, Molteno Formation, Karoo Basin, South Africa, photographs. A, specimen PRE/F/20522, left wing (light-mirrored; holotype). B, specimen PRE/F/10626a, right wing (light-mirrored, flipped horizontally; paratype). C, specimen PRE/F/10615a left wing (flipped horizontally). White frame refers to Fig. 4B.

Fig. 4. Detail of the area of the pillar. A, Zygophlebia tonchuanensis Zheng, Nel, Wang, Jarzembowski, Chang and Zhang, 2017, detail of holotype, homology conjectures by Zheng et al. (2017). B, Moltenophlebia lindae gen. et sp. nov., detail of specimen PRE/F/20522, left wing base (light-mirrored; holotype). \mathbf{C}, as in \mathbf{A}, except for the course of AA, following the homology conjecture we favoured herein. D-E, simplified schemes of the respective positions of CuP and of the pillar as in \mathbf{B} and \mathbf{D}, as favored herein. $\mathrm{RA}=$ anterior Radius; $\mathrm{RP}=$ posterior Radius; MA $=$ anterior Media; $\mathrm{MP}=$ posterior Media; $\mathrm{CuA}=$ anterior Cubitus; $\mathrm{CuP}=$ posterior Cubitus; AA $=$ anterior Analis; small white arrows (bordered in green -gray in grayscale version) indicate the $\mathrm{CuA}-\mathrm{CuP}$ split; in $\mathbf{A - C}$, large black arrow indicates the pons, white arrows indicate the pillar; in

B, very large green arrow (grey in grayscale version) indicates the portion of CuP basal to the pillar (and see Fig. 3A).

