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A test of six simple indices to display the phenology of butterflies using a large multi-source database

Introduction

The rise of biological recording schemes including broad-scale citizen-science programs has brought new possibilities to conservation and ecological research over the last decades, producing large amounts of species occurrence data [START_REF] Dickinson | The current state of citizen science as a tool for ecological research and public engagement[END_REF][START_REF] Hochachka | Data-intensive science applied to broad-scale citizen science[END_REF][START_REF] Tulloch | Realising the full potential of citizen science monitoring programs[END_REF][START_REF] August | Emerging technologies for biological recording[END_REF], Pocock et al. 2015). When gathered into datasets that cover large temporal and spatial extents, these multi-source data (a combination of opportunistic and systematic records) may help unveiling important aspects of biodiversity state and changes [START_REF] Dickinson | Citizen Science as an Ecological Research Tool: Challenges and Benefits[END_REF][START_REF] Dickinson | The current state of citizen science as a tool for ecological research and public engagement[END_REF][START_REF] Hochachka | Data-intensive science applied to broad-scale citizen science[END_REF][START_REF] Isaac | Bias and information in biological records[END_REF][START_REF] Powney | Beyond maps: A review of the applications of biological records[END_REF], including species phenology. However, multisource data present different levels of standardisation (depending on the source of collection) and are by nature noisy and unstructured. They suffer from several biases [START_REF] Dickinson | Citizen Science as an Ecological Research Tool: Challenges and Benefits[END_REF][START_REF] Robertson | Getting the most out of atlas data[END_REF][START_REF] Isaac | Statistics for citizen science: Extracting signals of change from noisy ecological data[END_REF][START_REF] Isaac | Bias and information in biological records[END_REF] which primarily relate to variation in recording intensity [START_REF] Isaac | Statistics for citizen science: Extracting signals of change from noisy ecological data[END_REF]. In fact, sampling effort may vary throughout the year, between the years and among regions and this variability is usually unknown in opportunistic datasets [START_REF] Giraud | Capitalizing on opportunistic data for monitoring relative abundances of species[END_REF].

Phenology is the study of periodic biological events (such as plant flowering, insect emergence and bird migration) that are regulated by environmental factors. The simplest way to represent animal phenology is by counting the number of species occurrences per period, collating all years' data. This kind of representation is sometimes employed in broad distribution Atlases (some examples: [START_REF] Lumaret | Atlas des Coléoptères Scarabéides Laparosticti de France[END_REF] for dung beetles; the iNaturalist platform of crowdsourcing of data, for instance https://www.inaturalist.org/taxa/207977-Aglais-io; the Atlas of butterflies and zygens of Midi-Pyrénées, http://atlaspapillonsmidipyrenees.myspecies.info/) or in more specific studies (such as [START_REF] Bertone | Seasonal Activity and Species Composition of dung beetles inhabiting cattle pastures in North Carolina[END_REF][START_REF] Pozo | Seasonality and Phenology of the Butterflies (Lepidoptera: Papilionoidea and Hesperioidea) of Mexico's Calakmul Region[END_REF][START_REF] Archaux | Synthèse des observations récentes et anciennes de Libelloides coccajus (Denis & Schiffermüller) et L. longicornis (Linné) dans la moitié nord de la France (Neuroptera, Ascalaphidae)[END_REF]. Other works have reported phenology as weighted or mean counts [START_REF] Van Swaay | Monitoring butterflies in the Netherlands: how to get unbiased indices[END_REF][START_REF] Archaux | Papillons du Loiret: atlas des rhopalocères et zygènes du Loiret[END_REF][START_REF] Manil | Suivi Temporel des Rhopalocères de France (STERF) Bilan 2005-2014[END_REF] as well as modelled counts [START_REF] Dennis | Indexing butterfly abundance whilst accounting for missing counts and variability in seasonal pattern[END_REF][START_REF] Schmucki | A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes[END_REF], sometimes accounting for imperfect detection or uneven recording intensity [START_REF] Strebel | Studying phenology by flexible modelling of seasonal detectability peaks[END_REF].

Butterflies are relatively well known and well represented in citizen-science programs and national inventories. For this reason, they have frequently been the subject of studies based on monitoring and citizen-science data (see for example: [START_REF] Maes | Applying IUCN Red List criteria at a small regional level: A test case with butterflies in Flanders (north Belgium)[END_REF][START_REF] Dennis | Indexing butterfly abundance whilst accounting for missing counts and variability in seasonal pattern[END_REF][START_REF] Schmucki | A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes[END_REF]. Here, we focus on the representation of butterfly phenology patterns with multi-source opportunistic records while accounting for sampling effort. More precisely, this study aims to explore the potential of a national biodiversity reference system, the National Inventory of Natural Heritage of France (INPN -https://inpn.mnhn.fr), for displaying the phenology of butterflies at a national scale. The goal is to develop a phenology index with the following requirements: 1) the phenology is displayed using multi-source data, including opportunistic observations; 2) the index yields overall patterns that are consistent with standard knowledge on species phenology; 3) the index must be suitable for many species and different type of seasonality and voltinism (refer to [START_REF] Wolda | Insect Seasonality: Why[END_REF] for a precise classification of seasonality patterns); 4) the phenology charts will be presented to a general audience on a web portal, so the index must be simple, easily interpretable and fast-rendering.

Ideally, the index should inform on species activity over the year or display a lack of knowledge, inducing the community to collect more accurate occurrence data.

Some studies have highlighted the potential of opportunistic data to perform as well as standardised data (see for example, [START_REF] Van Strien | Siteoccupancy models may offer new opportunities for dragonfly monitoring based on daily species lists[END_REF][START_REF] Van Strien | Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models[END_REF]. This is generally true when opportunistic data are corrected for bias [START_REF] Van Strien | Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models[END_REF][START_REF] Isaac | Statistics for citizen science: Extracting signals of change from noisy ecological data[END_REF]. Measures that simply show the number of observations are sensitive to sampling effort and likely to reflect observer activity [START_REF] Dickinson | Citizen Science as an Ecological Research Tool: Challenges and Benefits[END_REF], while those that account for temporal and spatial variation in effort should better delineate the true phenology of a species. Under this assumption, six relatively simple indices, based on both non-corrected and corrected measures, were designed with butterfly records from the INPN. The indices were analysed against blind expert opinion and a set of monitoring data. We expected corrected indices to yield more realistic patterns than non-corrected ones. The results should lead to recommendations about selecting an accurate but simple index for displaying phenology with multi-source opportunistic data.

Materials and methods

General analysis process

The analysis started by selecting, with the help of a lepidopterologist (PD), a panel of butterfly species that are well known and well represented in the dataset. Their records come from different data sources (Appendix 1), were collected in several years and are assumed homogeneous over France. In order to assess the versatility of the indices, the selected panel had to be diverse in terms of phenology type, ecology and latitudinal range. Based on literature review, a series of non-corrected ("raw") and corrected indices were implemented on multi-source butterfly data and evaluated through two different approaches: a qualitative The INPN gathers multi-source data from scientific surveys, museum collections, citizen science programs, as well as opportunistic observations. These data are collected, standardised and synthesized in order to develop a national reference bank of biodiversity data. One record in the INPN corresponds to one species occurrence, collected by one observer whatever the number of individuals. A record contains a start and an end date of collection. The interval between the two dates ("temporal resolution") may vary from 1 day ("precise date of observation"), to several days (the duration of an inventory or sampling campaign) until several years, which is the case of observations derived from literature or museum collections with uncertain temporal information. On the other hand, data from several sources may have different spatial resolution. Nonetheless, when stored in the INPN, records are assigned to 10x10 km cells, according to a national reference grid and a standardised method, which allows for reliable spatial information.

Effort correction required data from a background or target group [START_REF] Ponder | Evaluation of museum collection data for use in biodiversity assessment[END_REF][START_REF] Phillips | Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data[END_REF], Kéry et al. 2010[START_REF] Ruete | Displaying bias in sampling effort of data accessed from biodiversity databases using ignorance maps[END_REF]. Although we focused on butterfly phenology, we extracted all INPN records of diurnal lepidopterans (i.e. butterflies and diurnal moths, hereinafter referred as the "group", see Table 1) by assuming that survey methods and collector specialties within this group are similar, hence data share similar bias [START_REF] Ponder | Evaluation of museum collection data for use in biodiversity assessment[END_REF][START_REF] Ruete | Displaying bias in sampling effort of data accessed from biodiversity databases using ignorance maps[END_REF]. The group includes seven families: Pieridae, Papilionidae, Nymphalidae, Lycaenidae, Hesperiidae, Riodinidae, Zygaenidae. The French taxonomic repository TaxRef version 11.0 [START_REF] Gargominy | TAXREF v11.0, référentiel taxonomique pour la France : méthodologie, mise en oeuvre et diffusion[END_REF]) was employed for taxonomic references. Assuming that naturalists and collectors have similar knowledge and bias and use analogous survey methods for the group of butterflies and diurnal moths, we defined a "field visit" as a 10x10 cell surveyed by one observer on a date, regardless of the number of species he or she had observed. In this manuscript, we refer to a species "quadrat" as a 10x10 km cell where the species was recorded at least once in a given period. In the same way, one "group quadrat" is a 10x10 km cell where at least one of the species of the group was recorded. The vocabulary used for this study is summarised in Table 1.

Data preparation and index design

In the last decades, biological recording has intensified [START_REF] Isaac | Bias and information in biological records[END_REF]. In France, the mission of the MNHN to centralize information and managing a national reference bank of biodiversity started in 1979. Since those years, the collection of records at a national scale have become more frequent and rigorous, in particular with the development of national inventories and atlases [START_REF] Touroult | Inventaires et atlas nationaux de distribution: pour une approche plus itérative et un rééquilibrage taxinomique[END_REF]. On this basis, we presumed data from 1980 onwards to be more uniform and representative of current overall phenological patterns (e.g. number, position, sharpness of peaks). We restricted, therefore, the analysis to those data. Moreover, 1980-today corresponds to the time span of knowledge of the experts who took part in the survey.

In order to minimize errors, outlier data, such as records on January 1 st and December 31 th (probable by-default dates when the day or the duration of observation, for some reason, is not known) were discarded a priori. Ultimately, data for the whole group of butterflies and diurnal moths consisted in 772,307 records (Appendix 1).

Since records had different temporal resolution, we fixed a temporal unit of ten days for displaying phenological patterns. Assuming that non-precise records are still relevant for outlining overall phenological patterns, we kept all data with a temporal resolution (time interval between start date and end date, Tab. 1) up to 15 days, in order to keep as much data as possible. The uncertainty of dates was compensated with pro rata calculation. First, a record was duplicated or triplicated when its start and end date of collection overlapped two or three successive ten-day periods. Then a pro rata was calculated for each period, according to the number of days covered by the record collection dates. For instance, a record with start date 2015-07-21 and end date 2015-08-03 (temporal resolution: 14-days), is converted to one observation in the last ten-day period of July with a pro rata of 11/14 ≈ 0.78 and one record in the first ten-day period of August with a pro rata of 3/14 ≈ 0.22. Whenever start and end date are within a ten-day period pro rata is 1.

Equation 1

WEIGHTED NUMBER OF RECORDSk = ∑ 𝑝𝑟𝑜𝑟𝑎𝑡𝑎 𝑖 𝑛 𝑖=1

Where i = 1 ... n records of a species and a ten-day period k, all years combined.

The weighting adjustment was also applied for counting quadrats (weighted number of 10x10 km cells where a species or the group was detected at least once in a ten-day period k) and field visits. For simplicity, all weighted counts are henceforth mentioned as "number of …" (records, quadrats, field visits, etc.). The number of records of all species of the group ("group records"), the number of group quadrats and the number of field visits (section 2.2; Fig. 2) can be employed as proxy for sampling effort [START_REF] Lobo | Database records as a surrogate for sampling effort provide higher species richness estimations[END_REF][START_REF] Phillips | Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data[END_REF][START_REF] Ruete | Displaying bias in sampling effort of data accessed from biodiversity databases using ignorance maps[END_REF] and used for normalising raw counts (see below).

Six indices (Tab. 2) were built using both species number of records (M1, M2, M3), and number of quadrats (M4, M5, M6). M1 and M4 are raw relative frequencies by ten-day period.

The other indices are less intuitive and data preparation requires more computing time to build them. Despite that, they should correct for bias due to uneven recording intensity over time or space (Tab. 2). They were built by normalising the number of species records or quadrats by: the number of field visits (M3); the number of group records (M2); the number of group quadrats (M5); the number of group quadrats within the species known distribution (M6), where "known distribution" is the set of 10x10 km cells where the species was recorded at least once since 1980. Mountains (ALMM), and Mediterranean (MD). For such species, we considered only biogeographic regions where at least 36 total records were available since 1980. The threshold was defined assuming that 36, an average of three records per month, was the minimum sample size for displaying patterns based on pooled counts. This threshold was also a tradeoff between avoiding unreliable, insufficient data and maximising information (i.e. keeping regions where some species are rarer). The indices were computed on pre-cleaned data (see previous section), yielding six different phenological patterns that were submitted in the form of bar plots to four experts. The bar plots displayed frequencies by ten-day periods and, in some cases, by biogeographic regions (Fig. 3 and Appendix 2). For every species, the four experts were asked to rate six charts, one per index, on a scale of 1 to 4 ("very poor", "poor", "fair", "good"), according to their quality in representing known seasonal activity (i.e. flight phenology, in the case of diurnal lepidopterans). In order to avoid conditioning and keep their judgment unbiased, experts were not aware of index design rules. In addition, the disposition of the bar plots was randomized, so that they could not individually identify the indices (Appendix 2). Every index was ranked by counting the number of times it had been rated as "fair" or "good" (i.e. "the phenology chart is representative enough") on the one hand, and as "very poor" (i.e. "the phenology chart is not representative at all") on the other hand. In addition, a Chi-squared (χ 2 ) test was performed on score frequencies to seek any significant difference between the phenology indices according to expert opinion.

Quantitative analysis: comparison with the STERF

A comparison with an independent sample was performed in order to quantitatively Since data collection before May and after August had not been systematic, only STERF records between May and August were kept. The analysis focused on the ATCONP biogeographic region, where phenology is supposed to be uniform and STERF data are more regular and abundant. As in the previous analysis (section 2.4), we fixed a threshold of 36 records in the ATCONP region.

For each species, annual phenologies were estimated using the rbms R package and the regional GAM (generalized additive model) method presented in [START_REF] Schmucki | A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes[END_REF]. For each species, weekly basis estimate counts were hence obtained for each week of each year.

These weekly and yearly count estimates were used to model the average phenology of each species across the period covered by the STERF. Thus, for each species, weekly count c recorded years i at week t were modeled using a GAM with a Negative-binomial distribution and log link function:

𝐸[𝑐 𝑖𝑡 ] = µ 𝑖𝑡 = 𝑒𝑥𝑝[𝑦 𝑖 + 𝑠(𝑡, 𝑓)]
where weekly count cit is a function of a year effect y and a penalized cubic regression splines smoothing effect over time (week) t with f degree of freedom. GAMs were computed thanks to the mgcv package [START_REF] Wood | Generalized additive models: an introduction with R[END_REF]) in R 3.5.2. The respective GAM for each species was finally used to predict ten-day period count estimates that could be compared to the phenology indices calculated with INPN data. The resulting flight curve were standardized to one (Σμt = 1). This curve could be calculated for 57 species. The others were excluded for lack of data and because the first GAM failed to yield annual phenologies.

STERF count estimates at ten-day periods were compared to the phenology indices in order to verify: 1) whether the patterns were similar, 2) which index produces a pattern that best matches STERF data and can be used for representing species phenology with INPN data.

Since STERF data are already integrated in the INPN database and start in 2005, the indices were calculated excluding all STERF-derived records and other records before 2005.

For each of the 57 species, STERF count estimates at ten-day periods were compared to each of the six phenology indices computed on INPN data, using the Pearson's correlation coefficient (rho). In order to highlight which index was most correlated to STERF pattern, all rho coefficients for the 57 species were analysed together and the indices were ranked by counting the number of times they obtained the maximum and minimum rho coefficient.

Table 3 illustrates with fictitious results how the indices were compared between each other according to the number of maximum and minimum coefficient obtained among several species: for example, M4 is the best correlated index to the STERF for species A and B, while it is the least correlated for species C. In this case, M4 obtains twice the maximum rho coefficient and once the minimum rho coefficient (Tab 3). In addition, the difference between rho distributions per index was tested by carrying out a one-way ANOVA (homoscedasticity assumption was met, according to a studentized Breusch-Pagan test: BP = 5.95, df = 5, pvalue = 0.31). 

Results

For each of the 32 species, charts were presented to the experts as in Fig. 3a or Fig. 3b, depending on whether a biogeographic effect was expected or not on species phenology.

Unlike Fig. 3, the order and the design rules of the indices were concealed from the experts (see an example in Appendix 3). M6 obtained the highest number of positive scores and the smallest number of negative scores: out of the 4 experts assessments, it was rated as "fair" or "good" 62 times and as "very poor" 11 times, followed by M4 with 61 positive scores and 11 negative scores (Fig. 4). M2 obtained most negative responses (Fig. 4), which affected Chisquared test results (χ 2 = 43.73, df = 5, p-value < 0.001). In fact, when the M2-score distribution was excluded from the test, no other significant difference was found among the score distributions of the remaining five indices (χ 2 = 3.1, df = 4, p-value = 0.54). Most of the times M2 resulted as the least correlated to STERF count estimates (Fig. 6b). M2

rho distribution varied also considerably, with values below the first quartile that range from -0.34 and 0.56 (Fig. 6a). Nevertheless, the statistical analysis did not highlight any significant difference (ANOVA F= 2.19, df=5, p-value=0.05). With a similar approach, we applied GAMs on butterfly monitoring data for outlining phenology patterns to compare with patterns from INPN data. However, GAMs are not suitable for multi-source opportunistic data, because they do not account for uneven recording intensity [START_REF] Rothery | Application of generalized additive models to butterfly transect count data[END_REF]. Other approaches, such as correction for sampling effort or imperfect detection in occupancy models, could inspire research for more appropriate measures (references in Table 2). M1 (proportion of records per period; Tab.2) is the most simple and intuitive, but may reflect effort variability over time and over space. M4

(proportion of quadrats per period; Tab.2), which is also easily interpretable, may correct for some errors (duplicates, oversampled quadrats), but still reflects temporal and spatial bias.

Conversely, M2 (ratio of records to the group; Tab.2) should correct for uneven recording intensity. However, this index seems to be particularly sensitive to "reporting bias" (van ). Owing to the unusual event, the species is almost the only one reported at such dates, generating artefact peaks in the phenological pattern (i.e. the ratio "species records/group records" is close to 1). The same may occur to species that are not easy to observe in general during the flight season (i.e. the ratio decreases instead of displaying a peak) and to those that are paradoxically underreported because considered too common [START_REF] Dickinson | Citizen Science as an Ecological Research Tool: Challenges and Benefits[END_REF][START_REF] Van Strien | Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models[END_REF]. The proxy for observation effort used for building M3 (number of records per field visit; Tab. 2; Fig. 2c) should also correct for uneven recording intensity. This index, as the following ones, is less intuitive and may not be precise, since observer names are not always well standardized in the INPN. Such as M2 and M3, M5 (ratio of quadrats to the group; Tab. 2) is based on a proxy for observation effort, the number of group quadrats per ten-day period (Fig. 2b). As shown in Figure 2b, compared to the other proxy distributions, the number of group quadrats per ten-day period grows and shrinks slower between winter and summer periods and the shape of the distribution is wider. This should limit reporting bias and allow for a better correction of temporal bias, but it does not account for spatial effects (for example, observer activity in coastal and mountain areas is higher during summer than during spring, due to holiday habits of naturalists). Moreover, the proxies for observation effort (Fig 2)

Strien
include those records or quadrats where the target species was never seen and might be actually absent. Managing data by biogeographic zone may help reducing spatial bias and over-correction. Additionally, quadrats should be restricted to those included in the known distribution of the species. This approach was applied to M6 (ratio of quadrats to the group within the species known distribution; Tab. 2), which was expected to perform better, since it deals with both temporal and spatial bias.

Which is the highest-ranked index according to the two approaches?

According to expert responses, none of the indices, except for M2 (the worst rated) could illustrate the phenology of 32 butterfly species better than the simplest index, M1 (Fig. 4). In order to refine the results and discriminate among the six methods, a quantitative analysis was carried out by comparing the phenology indices based on INPN opportunistic data to the pattern calculated from a monitoring scheme, the STERF. All indices were well correlated to the STERF in this analysis (Fig. 6). Surprisingly, in the two tests, the indices that correct for observation effort (M2, M3, M5 and M6) are not statistically better than the noncorrected ones (M1 and M4). However, even if no statistical difference was highlighted, the distribution of rho coefficients for M2 showed large variability (Fig. 6a). This result suggests that this index may perform well for some species, but it is not suitable for a large panel of species with different phenologies. In substance, the expert approach and the comparison with the STERF both lead to reject M2 as a suitable phenology index.

Other studies have compared opportunistic data with monitoring data (Dennis et al. 2017a;[START_REF] Van Strien | Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models[END_REF]. It is possible that our comparisons lack power. The STERF provides systematic counts of adult butterflies, which should provide phenological patterns that are relatively close to reality. Nevertheless, STERF protocol and measures themselves may not be free from bias, notably because counts are recorded on a monthly basis. However, given the two approaches adopted, the number of species that have been taken into account, as well as the amount of data and the variability of expert opinions, it is not unfounded to believe that, there are no major differences between the tested indices. A possible explanation lies in the large amount of data and sources available for butterflies, which may help attenuate the bias and make raw frequencies of opportunistic observations converge towards overall realistic phenological patterns. Our method may not be suitable for other lepidopterans or other clades for which knowledge and data are much scarcer than for the butterflies analysed here. If data are opportunistic and multi-source, we suggest selecting species with many records, covered by several data sources. We fixed a threshold of 36 total records in the studied area and during the entire period of study (in our case, all data from France or from a biogeographic region, recorded since 1980), and 5 data sources, knowing that for most of the species total records and sources were more numerous (Appendix 1). Ideally, the minimum number of records and sources should be calculated and standardised. Further work is required to re-define these thresholds on a statistical basis and give more recommendations about the use of our indices for other groups than butterflies.

recognize and they are regularly used for detecting the geographic presence of the butterfly.

These occurrences are often reported as all others in datasets when achieving the INPN. This caused the appearance of improbable peaks in winter (Fig. 7). Correcting for observation effort did not provide any added value, it rather accentuated the aberrations. This underlines the need to support data producers towards a better standardisation of information.

Several studies have documented the relationship between climate and phenological shifts [START_REF] Roy | Phenology of British butterflies and climate change[END_REF][START_REF] Walther | Ecological responses to recent climate change[END_REF][START_REF] Parmesan | A globally coherent fingerprint of climate change impacts across natural systems[END_REF][START_REF] Stefanescu | Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin[END_REF][START_REF] Menzel | European phenological response to climate change matches the warming pattern[END_REF][START_REF] Parmesan | Influences of species, latitudes and methodologies on estimates of phenological response to global warming[END_REF][START_REF] Altermatt | Climatic warming increases voltinism in European butterflies and moths[END_REF][START_REF] Prodon | A reversal of the shift towards earlier spring phenology in several Mediterranean reptiles and amphibians during the 1998-2013 warming slowdown[END_REF][START_REF] Bell | Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century[END_REF]. The impact of climate change on phenology may have major consequences on ecological systems and their conservation [START_REF] Schwartz | Phenology: An integrative environmental science[END_REF], hence the importance of longterm collection of observational and monitoring data. Phenological shifts of the order of some days may have occurred in the last decades [START_REF] Roy | Phenology of British butterflies and climate change[END_REF]. Admittedly, we could not point out phenological shifts due to coarse temporal resolution. A finer temporal resolution would entail the loss of useful data. Furthermore, we chose to collate all years' data in order to compensate for uneven recording intensity and species detectability across the years. This also precluded the study of phenological shifts. However, we believe that our methods are adequate to provide a simple measure for a general audience that bears overall phenological patterns for many species. Nevertheless, we will consider investigating with more accuracy the phenology of those butterflies for which precise dates of observation are abundant and 

Conclusion

Multi-source national databases such as the INPN may contain bias or redundant information but they compile large volumes of data, centralize and spread knowledge on biodiversity distribution and activity. The study showed, against all odds, that raw frequencies can perform as well as corrected measures, probably due to the characteristics and the large amount of butterfly multi-source data. This is so far the first attempt at correcting large amounts of opportunistic records in order to illustrate species seasonality in France through a simple phenology index.

For groups with large amount of data and replicated visits, such as butterflies, noncorrected multi-source records (i.e. that combine standardised and non-standardised observations) probably provide sufficient information about overall phenological patterns.

The next question is whether raw frequencies would fit as well on species with less available data, or on those that are aseasonal (e.g. occur constantly around the year or variations are irregular and not season-related, see Wolda, 1998). Further work will help investigate whether the properties of non-corrected and corrected indices are affected by the amount of data, as well as the variability of data sources and the type of phenology. Further analysis may also include the use of statistical models for estimating phenological shifts in connection with climate change. 

  analysis, based on expert evaluation of the phenological patterns drawn by the indices, and a quantitative analysis to seek for a match between the indices and the patterns based on monitoring data. The different steps of the analysis are developed in the next sections and summed up in Fig. 1. All analyses were carried out in R v.3.5.2 (R Core Development Team 2018).

Figure 1 .

 1 Figure 1. Scheme of the general analysis process for this study.

Figure 2 .

 2 Figure 2. Seasonal distribution by ten-day period of three proxies for observation effort in diurnal lepidopterans (after data preparation). The x-labels indicate months. (a) group records: number of records of all species of the group; (b) group quadrats: number of quadrats where whatever species of the group was seen; (c) number of field visits: number of quadrats surveyed by one observer on a date for the group.These values were used for normalising counts and building, respectively, index M2, M5 and M3.

  analyse the pertinence of the indices and complete the analysis based on expert opinion. This sample was provided by the French Butterfly Monitoring scheme (STERF), established from 2005 onwards by Vigie-Nature (http://vigienature.mnhn.fr/page/suivi-temporel-desrhopaloceres-de-france). The STERF provides systematic counts of adult butterflies, which should mirror true species phenology. Each observer performs at least four field visits per year: one visit per month from May to August (other visits during the year are possible). Each survey site is associated with one observer, and is either chosen by the observer or randomly selected. Butterflies are identified and individuals are counted along 5 to 15 transects selected by the observers inside the site, making sure that the habitat within each transect is uniform.

Fig. 5

 5 Fig. 5 shows an example of pairwise comparison between STERF count estimates and the six phenology indices for one of the species, while overall results of this comparison for 57 butterfly species are illustrated in Fig. 6. All indices showed a fair correlation with the STERF, rho coefficient being 0.77 on average (Fig 6a). Index M1 and M5 were the best ranked, with the highest frequencies of maximum rho coefficient and few minimums (Fig 6b).

Figure 3 .

 3 Figure 3. Phenology and distribution maps (based on INPN records after data preparation) of two butterfly species: (a) Provence chalk-hill blue (Lysandra hispana) and (b) Violet Fritillary (Boloria dia). Time unit is a ten-day period and the x-labels indicate months. Phenology is represented with six indices (see also Tab. 2): proportion of records per period (M1); ratio of records to the group (M2); number of records per field visit (M3); proportion of quadrats per period (M4); ratio of quadrats to the group (M5); ratio of quadrats to the group within the

Figure 4

 4 Figure4frequency of positive ("fair" or "good") and negative ("very poor") scores given by experts to six phenology indices. Index ranking according to the number of "fair or good" scores: M6, M4/M5, M1, M3, M2; index ranking according to the number of "very poor" scores: M2, M3, M5, M1, M4/M6. M2 is the only index that obtained more negative than positive scores. With M2: χ2 = 43.73, df = 5, p-value < 0.001; excluding M2: χ2 = 3.1, df = 4, p-value = 0.5.

Figure 5 .

 5 Figure 5. Comparison between the STERF and six phenology indices computed on INPN data by ten-day period for one of the species, the green-veined white (Pieris napi). A Pearson's correlation coefficient (rho) was calculated between every index (blue bar plots) and STERF count estimates from a GAM (red line). Indices and STERF count estimates were calculated with data collected from 2005, and displayed

Figure 6

 6 Figure 6 Comparison between the STERF and six phenology indices computed on INPN data by ten-day periods for 57 butterfly species (a) distributions and mean±se of rho coefficients by index. Dashed and dotted lines are respectively the overall median=0.83 and the overall mean=0.77 of all correlations. All phenology indices are equally correlated to STERF count estimates (ANOVA F=2.19, df=5, p-value=0.05); (b) number of times among 57 species that each index occurred to be the best or the least correlated to the STERF.

  et al. 2013). The number of group records increases sharply from near zero in winter months to near 80000 in summer months (Fig 2a), causing over-correction and making peaks shift from the centre to the edges of the distribution. This is particularly true for certain species, whose adults can emerge outside the habitual flight period, for instance on sunny winter days (such as Aglais io and Aglais urticae, Lafranchis and Geniez 2000; Lafranchis et al. 2015; phenological patterns of Aglais io are shown in Appendix 4

  consistent through the years by adapting methods that use statistical models, which account for phenological changes over time, observation effort, detection and reporting bias, such as those proposed by Dennis et al. (2017b) and Strebel et al. (2014).

Figure 7 .

 7 Figure 7. Phenology of the Brown Hairstreak (Thecla betulae). Egg and imago sightings are confused in the INPN, causing artificial peaks in winter, when the adult is not flying but eggs are easily detectable.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 1 .

 1 Vocabulary used in this study.RecordObservation or collection data of a species provided by one observer on a precise date or time interval, in one locality (a 10x10 cell), whatever the number of specimens Quadrat Spatial unit. A 10x10 km cell where the species was recorded at least once in a period. A group quadrat is a 10x10 km cell where at least one of the species of the group was recorded

		in a period
	Field visit	A unique survey event. One quadrat surveyed by one observer on a date for a group
	Species known distribution	Set of 10x10 km cells where the species was recorded at least once since 1980

Temporal resolution

Time interval between start date and end date of an INPN record. It may vary from one day (precise date) to several years Group A background or target group. Survey methods and collector specialties within a group are assumed to be similar and share similar bias

[START_REF] Ponder | Evaluation of museum collection data for use in biodiversity assessment[END_REF][START_REF] Ruete | Displaying bias in sampling effort of data accessed from biodiversity databases using ignorance maps[END_REF]

. Examples of target groups are orchids, ground beetles, dragonflies, bats. This study focuses on "butterflies and diurnal moths", a well-known group for which data are abundant and mostly reliable

Table 2 .

 2 Phenology indices designed for this study.

	178						
	Index	Definition	Formula (for a ten-day period k)	Description	Reference work that inspired the design of the index	A priori properties of the index
	M1	Proportion of records per period	∑ 𝑝𝑟𝑜𝑟𝑎𝑡𝑎 𝑖 / ∑ ∑ 𝑝𝑟𝑜𝑟𝑎𝑡𝑎 𝑖 𝑛 𝑖=1 36 𝑘=1 𝑛 𝑖=1	Number of records (1...n, see equation 1) for a species in a ten-day period k divided by the total number of records of the same species in the dataset	Lumaret, 1990 Archaux et al. 2011 ("number of observations") van Swaay (1990) ("number of records")	Advantages: very simple and intuitive. Disadvantages: probably biased by uneven recording intensity (spatial and temporal bias).
	M2	Ratio of records to the group	∑ 𝑝𝑟𝑜𝑟𝑎𝑡𝑎 𝑖 / ∑ 𝑝𝑟𝑜𝑟𝑎𝑡𝑎 𝑖 𝑚 𝑖=1 𝑛 𝑖=1	Number of records (1...n) for a species in a ten-day period k divided by the number of records of all species of the related group (1...m) in the same ten-day period	van Swaay (1990) ("percentage")	Advantages: simple and intuitive; temporal bias correction. Disadvantages: may be sensitive to reporting bias, emphasizing artefact peaks.
	M3	Number of records per field visit	∑ 𝑝𝑟𝑜𝑟𝑎𝑡𝑎 𝑖 / ∑ 𝑝𝑟𝑜𝑟𝑎𝑡𝑎 𝑖 𝑝 𝑖=1 𝑛 𝑖=1	Number of records (1...n) for a species in a ten-day period k divided by the number of field visits (1...p) in the same ten-day period	Archaux et al. 2015 ("mean abundance by field visit") Strebel et al. 2014 ("naïve detectability index")	Advantages: temporal bias correction. Disadvantages: does not correct for spatial bias; less simple and less intuitive.
	M4	Proportion of quadrats per period	𝑞 ∑ 𝑝𝑟𝑜𝑟𝑎𝑡𝑎 𝑖 / ∑ ∑ 𝑝𝑟𝑜𝑟𝑎𝑡𝑎 𝑖 36 𝑞 𝑖=1 𝑘=1		Archaux et al. 2015 ("number of occurrences")	Advantages: very simple and intuitive; may correct for some bias (e.g. duplicates, quadrat oversampling). Disadvantages: still reflects uneven
								recording intensity.
						Number of quadrats (1...q) where the species was seen	
			𝑞	𝑔		at least once in a ten-day period k divided by the	van Swaay (1990) ("percentage of	Advantages: temporal and reporting bias
	M5	Ratio of quadrats to the group	∑ 𝑝𝑟𝑜𝑟𝑎𝑡𝑎 𝑖 / ∑ 𝑝𝑟𝑜𝑟𝑎𝑡𝑎 𝑖 𝑖=1 𝑖=1	number of visited quadrats (1...g) in same ten-day period (i.e. quadrats where at least one species of the group was seen)	squares") Turin and den Boer (1988) ("corrected number of squares")	correction; should limit reporting bias. Disadvantages: does not correct for spatial bias; not too simple; less intuitive.
	M6	Ratio of quadrats to the group within the species known distribution	∑ 𝒑𝒓𝒐𝒓𝒂𝒕𝒂 𝒊 /[∑ 𝒑𝒓𝒐𝒓𝒂𝒕𝒂 𝒊 𝒈 𝒊=𝟏 𝒒 𝒊=𝟏	]skd	Same as M5, but takes into account only quadrats where the species was found at least once since 1980 (species known distribution: skd)	Kéry et al. 2010 ("detection history")	Advantages: may correct for temporal and spatial bias. Disadvantages: not too simple and not intuitive.

𝑖=1

Number of quadrats (1...q) where the species was seen at least once in a ten-day period k divided by the total number of quadrats where the species was observed

Table 3 .

 3 Fictitious Pearson's correlation coefficients (rho) table for three hypothetical species.

								Best	Least
		M1	M2	M3	M4	M5	M6	correlated	correlated
								index	index
	species A	0.94	0.8	0.95	0.98	0.92	0.97	M4	M2
	species B	0.77	0.5	0.82	0.93	0.75	0.77	M4	M2
	species C	0.89	0.85	0.78	0.68	0.82	0.91	M6	M4
	mean±SE	0.86±0.05	0.72±0.11	0.85±0.05	0.83±0.09	0.83±0.05	0.88±0.06		
	Number of								
	max rho	0	0	0	2	0	1		

Nymphalidae:

Pieridae:

Papilionidae

Papilionidae:
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Selecting a rigorous but simple index for large opportunistic data and a general audience: which compromise for butterflies?

Even though they are likely to reflect bias, in our case raw indices (M1 or M4) were not less convincing than corrected ones for butterflies. Following the results and considerations discussed above, and against expectations, it could finally be reasonable to consider the use of raw frequencies. Besides, the choice should head to the most parsimonious method. The best option would probably be to display phenology through raw indices (after data preparation and weighting adjustment), alongside a visual representation of recording intensity (Fig. 2b or 2c). Spatial bias may be attenuated by splitting data by biogeographic region. In this way, both experts and general public should be able to understand the graphics, while keeping a critical eye on them. Some authors have appealed to occupancy models for studying phenology and population trends with opportunistic data (see, for example, [START_REF] Kéry | Site-Occupancy Distribution Modeling to Correct Population-Trend Estimates Derived from Opportunistic Observations[END_REF][START_REF] Van Strien | Siteoccupancy models may offer new opportunities for dragonfly monitoring based on daily species lists[END_REF][START_REF] Strebel | Studying phenology by flexible modelling of seasonal detectability peaks[END_REF]. In fact, by estimating detectability, occupancy models help to correct for observation effort, detection and reporting bias [START_REF] Kéry | Site-Occupancy Distribution Modeling to Correct Population-Trend Estimates Derived from Opportunistic Observations[END_REF][START_REF] Van Strien | Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models[END_REF]). Although we drew inspiration from occupancy models for bias correction approaches, the aim of our study was not to assess occupancy of butterfly species. Nonetheless, we do not exclude the possibility of using a modelling approach in the future, should sufficient data be available, in order to get more unbiased estimates of phenology.

Other recommendations facing database limitations

Dates in the INPN are compulsory, so when the day of observation is not known a default date (such as January 1 st or December 31 st ) is assigned. We discarded outlier data (see section 2.3) in order to prevent the appearance of artefacts, although some small winter peaks persisted. In fact, as described in section, 4.1, some butterfly species may be recorded during winter days, even if the actual period of activity is later in the year. Unfortunately, we could not discriminate observations by stage of development or behaviour (activity versus hibernation), since this information is currently lacking in most INPN data sources. However, records of active adult butterflies in the INPN usually far exceed observations of young stage or wintering individuals, so the latter are unlikely to affect the displaying of major activity peaks. There are, however, some exceptions, such as those described in section 4.1 or the case of Thecla betulae (Linnaeus, 1758). This species is hardly detectable during its flight period (Lafranchis and Geniez 2000;Lafranchis et al. 2015). Conversely, the eggs are easy to 
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Appendix 2. Example of charts presented to the experts for rating the quality of the indices. The order of bar plots was randomized and the rules behind index building were kept from the experts so that they could not prejudge the index in itself or identify the same index among several species.