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Abstract

There has been a significant body of literature on species flock definition but not so much about practical means to appraise
them. We here apply the five criteria of Eastman and McCune for detecting species flocks in four taxonomic components of
the benthic fauna of the Antarctic shelf: teleost fishes, crinoids (feather stars), echinoids (sea urchins) and crustacean
arthropods. Practical limitations led us to prioritize the three historical criteria (endemicity, monophyly, species richness)
over the two ecological ones (ecological diversity and habitat dominance). We propose a new protocol which includes an
iterative fine-tuning of the monophyly and endemicity criteria in order to discover unsuspected flocks. As a result nine « full
» species flocks (fulfilling the five criteria) are briefly described. Eight other flocks fit the three historical criteria but need to
be further investigated from the ecological point of view (here called « core flocks »). The approach also shows that some
candidate taxonomic components are no species flocks at all. The present study contradicts the paradigm that marine
species flocks are rare. The hypothesis according to which the Antarctic shelf acts as a species flocks generator is supported,
and the approach indicates paths for further ecological studies and may serve as a starting point to investigate the
processes leading to flock-like patterning of biodiversity.
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Introduction

Thanks to the International Polar Year (IPY) 2007–2009 and

the Census of Antarctic Marine Life (CAML), the recent increase

of oceanographic explorations across the Southern Ocean has

confirmed the status of the Antarctic continental shelf as an area of

rich marine biodiversity [1–4]. The richness of the benthic

Antarctic fauna was known before [5–7] but considered as yet

underexplored. Such a richness was observed for many benthic

groups such as pycnogonids, ascidians and polychaetes [8], teleost

fishes [9], echinoderms [10–11], crustaceans [7], poriferans and

hydrozoans [12]. [8] reported that while some groups appear

more diverse there than elsewhere in terms of species richness

(some isopod lineages, pycnogonids, bryozoans, sponges, ascidi-

ans), others appear equally diverse (polychaetes, amphipods,

echinoderms), and others less diverse (decapods, molluscs, teleosts).

All these organisms are a boon for research concerning processes

generating biodiversity because they have flourished within a

relatively isolated area for long periods [13–16]. A substantial part

of the marine Antarctic species richness might well be the result of

species flocks, especially within the benthic fauna. Indeed, the

Antarctic continental shelf has been described as a giant species

flocks generator [17], as explained in more detail below. Species

flocks are bursts of closely related endemic species which are
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ecologically diverse and numerous relatively to surrounding areas

[18]. We can’t observe those bursts directly, however, they are

responsible for certain patterns in modern biodiversity. The first

steps to study species flocks are therefore in the detection of these

patterns, since knowledge of the present patterns of biodiversity is

necessary prior to further exploration of the processes having

generated it [16].

Eastman and McCune [17] noticed physical similarities in terms

of isolation, depth and age, between the Antarctic shelf and

ancient lakes where species flocks were found. Indeed currents,

sub-zero temperatures and distance isolate the Antarctic shelf from

all other shelves of the Southern Ocean. The Antarctic shelf is

approximately 450 m deep in average [8], i.e. eight times deeper

than the world shelves average, because of the weight of the ice

sheet on the continent [19]. The age of the shelf geological

isolation dates back at least 40 Ma, and the shelf has existed under

polar conditions for 14–12 Myr [20]. Moreover, repeated

advances and retreats of the ice sheet on the shelf probably

caused benthic faunal extinctions [21] but also stimulated

speciation events [22] through population fragmentation in

isolated areas of the shelf or population displacement in refugia

in sub-antarctic islands or in the deep sea [16], [23]. All these

physical and historical factors are likely to have promoted species

flocks at different times in a geographic area including the

Southern Ocean (i.e. south of the Polar Front) and the sub-

Antarctic islands. Therefore we can expect an important part of

benthic biodiversity to exhibit the genetic, geographical and

ecological patterns of species flocks at different taxonomic levels.

The aim of the present survey is to evaluate the hypothesis of a

species flock origin among different groups of the Antarctic

benthic fauna, using the criteria of Eastman and McCune [17] for

species flocks detection. We mainly focused on the rich sampling of

the French-Australian cruises CEAMARC (2007–2008) and the

French cruises REVOLTA (2009–2012) in the Eastern Antarctic

coastal waters to answer the following questions: how frequent are

species flocks? How useful and suitable are the criteria used by

Eastman and McCune to detect them? Consequently, is it

necessary to revisite the original criteria to identify a flock? The

project tries to approach these questions with four distantly related

taxonomic groups of the benthic fauna: notothenioid teleost fishes,

crinoids (feather stars), echinoids (sea urchins) and crustacean

arthropods. Some other groups (e.g. molluscs or pycnogonids) will

also be occasionally mentioned.

What is a Species Flock?
It is important to distinguish between the theoretical definition

of a species flock and the criteria to identify or detect them using

empirical data. As to theoretical definitions, Ribbink [18] defined

a species flock as « an assemblage of a disproportionately high number,

relative to surrounding areas, of closely related species which apparently evolved

rapidly within a narrowly circumscribed area to which all the member species

are endemic ». The definition is ambiguous because it mixes

empirical criteria (like high number of species, endemicity) with

conjectural processes that generate species flocks (« evolved rapidly

»). The former are embedded into the practice of identification,

the latter are not linked to direct practice but rather belong to a

theoretical scheme. Ribbink [18] did not put emphasis on

monophyly while it is essential for Greenwood [24]. Starting from

both definitions of Ribbink [18] and Greenwood [24], Eastman

and McCune [17] focused on criteria to detect species flocks and

retained five criteria: monophyly, high species diversity (called «

speciosity »), high level of endemism, morphological and ecological

diversity, and habitat dominance (in terms of biomass). Some of

these criteria imply to determine the historical and geographic

pattern of biodiversity (monophyly, endemism, speciosity), whereas

others rely on ecological studies (ecological diversity, habitat

dominance). The first three criteria deal with space and time, the

two others with present dynamic interactions. Each of these

criteria has to be assessed for a set of species in comparison to its

sister lineage of the surrounding areas, especially speciosity,

endemism [25], and ecological diversification. In spite of potential

difficulties in gathering sufficient reliable data for each of these

criteria, it is nevertheless possible to recognize sets of species that

clearly correspond to species flocks (for instance the Notothenioi-

dei at the scale of the Southern Ocean, as convincingly proposed

by Eastman and McCune [17], and sets of species that clearly do

not correspond to flocks (liparid fishes of the Antarctic shelf, see

below). The present study will detect such conspicuous cases, but

will also evaluate more intermediate situations, potentially due to

difficulties in applying the criteria.

Model Case
The standard case for the Southern Ocean has been described

by Eastman and McCune [17]. Notothenioid fishes are mono-

phyletic [26] at the scale of the Southern Ocean (including sub-

Antarctic islands). Within this area they have a level of endemicity

of 97%, which is exceptionally high for a marine group. The

species diversity of notothenioids (134 species, according to

Fishbase, [27] is very high with regard to other components of

the ichthyofauna. Notothenioids represent at least 50% of it. The

notothenioids are also morphologically and ecologically diversified

[9], [28]. This group is benthic in origin, and secondarily

diversified into niches in the water column, involving pelagic or

partially pelagic zooplanktivory and piscivory [28]. The group

contains benthic, epibenthic, cryopelagic and pelagic species, with

morphological diversification associated to vertical motion in the

water column and neutral buoyancy control rather than to

diversification in trophic morphology [28]. Finally, a number of

studies summarized by Eastman and McCune [17] have

confirmed that notothenioids clearly dominate the fish biomass,

of which they represent more than 90% [9]. The notothenioids are

therefore described as a giant species flock at the scale of the whole

Southern Ocean by Eastman and McCune [17], providing a

model and a point of reference for our further comparisons. The

question remains: can we recognize other benthic species flocks

within the Southern Ocean? If some sets of species fail to meet all

criteria, which are the failing criteria? How to apply the

multiplicity of criteria by which we recognize a flock?

Methods

We propose to rank the criteria in order to discover species

flocks at various geographic scales within a given taxonomic

group. Because evolutionary processes leading to flocks are not

known or not obvious at the first glance, putative flocks are

primarily recognized through the study of patterns of biodiversity:

speciosity is obtained through taxonomy, endemicity from

geographical distribution and monophyly from character distri-

bution (i.e. from phylogenies, either molecular or morphological).

Then, from a heuristic point of view, a flock can be primarily seen

as a set of patterns (taxonomic, geographical, phylogenetic)

associated with ecological diversity. The two ecological criteria

are also important, but require a larger number of studies to be

properly evaluated: when these criteria do not appear to be

fulfilled this can be an artifact, i.e. a lack of precise knowledge

hampering their assessment. The priority given here to historical

criteria is therefore more practical than based on theoretical

precedence. Geographic and taxonomic range seem to be the

Marine Species Flocks Detection
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easiest criteria to assess. The question is therefore the following: at

which geographic-taxonomic scales will all criteria be satisfied in

their entirety? Starting from a given group in a given area as a

candidate to be a species flock, we may reduce the taxonomic

range, or expand the geographic one to reach monophyly, high

endemism and speciosity within realistic limits, for example, those

of the Southern Ocean. This corresponds to the modulation loop

in Fig. 1, leading to the identification (or rejection) of a flock. A

similar approach may be applied to uncover other larger or

smaller flocks related to the firstly identified one. This approach

should facilitate the discovery of nested species flocks. For

example, the fact that notothenioids are described as a giant

species flock would not prevent discovery of smaller, more recent,

subflocks within the group. The two other criteria, which are more

difficult to assess, can then be evaluated for the group. We

provisionnally propose to call « core flock » a potential species

flock for which the first three geographical and historical criteria

are fulfilled, and « full flock » a potential species flock for which all

the five criteria are fulfilled. Some flocks will probably remain as «

core flocks » either because at least one ecological criteria failed or

because there is not enough available data to assess one of these

two criteria. The first three criteria are the ones that can be

evaluated the most consistently. The approach allows finding

where (and if) they are reached, and in which set of species. This

method of assessment is not an unselective means of finding flocks

everywhere. Instead, as shown below, some components of the

benthic fauna of the Antarctic shelf are definitively not species

flocks.

Fig. 1 depicts a flow chart showing the two-step protocol used to

detect species flocks. The three « historical-geographical » criteria

(monophyly, endemism, speciosity) are the first ones to be assessed.

It means that a failure to fulfill one of those three eliminates the

taxon as a potential flock. A loop modulates the geographical

range and the taxonomic rank to discover new flocks at not yet

investigated levels. The two « ecological » criteria (morphological-

ecological diversity, domination of habitat in terms of biomass) are

considered afterwards. Results are summarized in Fig. 2.

Results

True Species Flocks (or « full » flocks)
The ecological and morphological diversification of the

Nototheniidae, the most speciose notothenioid family (49 species)

is very high and well documented [28], and the habitat

domination at the scale of the Southern Ocean is not in doubt

[9]. Endemicity is above 97%. However, the monophyly of the

family, repeatedly considered as uncertain [29–32], has recently

been seriously challenged [33]: four other families are embedded

within it (Harpagiferidae, Artedidraconidae, Bathydraconidae and

Channichthyidae). As a result, the « nototheniid flock » could

actually be the flock of notothenioids with anti-freeze glycoproteins

(AFGPs), i.e. notothenioids less the 13 notothenioid species of the

subantarctic basal families Bovichtidae (11 species), Pseudaphriti-

dae (1 species) and Eleginopsidae (1 species) [9], [32]. These

proteins are sometimes seen as the key-innovation responsible for

the sudden burst of diversification [22], [26], [34], but see [35]. In

summary, there is evidence for a species flock here, but this flock

should no longer be termed the « nototheniid flock », but rather

the flock of the monophyletic group of notothenioids with the

antifreeze glycoproteins (the « AFGP bearing notothenioids »,

Fig. 2, line 2). This species flock contains at least three nested

flocks: the Trematominae, the Channichthyidae and the Artedi-

draconidae, which are detailed below.

With 13 species all endemic to the continental shelf and to some

peri-insular plateaus of the Southern Ocean, the subfamily

Trematominae (Teleostei, Notothenioidei, Nototheniidae) con-

tains 10% of the notothenioids. However it is possibly underes-

timated because several species exhibit intra-specific chromosomal

variability according to the geographic sector and sometimes

within the same sector [36–37]. Their chromosome numbers and

structures exhibit the highest diversity among the notothenioid

clades. Chromosome diploid numbers and formulae differ from

one species/population to another, except for Trematomus loennbergii

which shows a highly polymorphic, unstable karyotype. They

range from 2n = 24 (T. eulepidotus) to 2n = 58 (T. nicolai) and

change according to Robertsonian fusion or fission events

(reviewed in [37]). The group is monophyletic [30–31], [35],

[38]. There is a noticeable degree of ecological diversity that does

not reflect the phylogeny, i.e. niche changes do not appear to come

from common ancestry but rather occur several times indepen-

dently [31], [39–41]. The Trematoninae represent an important

part of the biomass of coastal ichthyofauna [42–44]. Moreover

they correspond to a sudden burst of diversification (to the

exclusion of Trematomus scotti which is the sister-group of the rest of

the subfamily) that occurred some 10 Ma [41], [45], though this

feature is not among the criteria of Eastman and McCune [17].

Therefore the Trematominae can be considered as a smaller and

more recent flock restricted to the Antarctic shelf and a few peri-

Figure 1. Protocol to use the five criteria of Eastman and
McCune [17] to detect and evaluate species flocks. The first three
criteria (3 K) are the species diversity (« speciosity ») of the taxonomic
component, its level of endemicity, and its monophyly. The two other
criteria (2 K) are habitat dominance (in biomass) and ecological
diversity. The modulation loop means that the geographical range
and the taxonomic rank may have to be redefined in order to discover
unsuspected flocks.
doi:10.1371/journal.pone.0068787.g001

Marine Species Flocks Detection
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insular shelves (e.g. South Georgia and South Sandwich islands

[46].

The icefishes (family Channichthyidae, Notothenioidei) are

endemic, monophyletic [32], [47] and display some degree of

speciosity (16 species [48]) with regard to related families. They

represent a very important part (more than 25%) of the Antarctic

fish biomass [9]. They exhibit a noticeable ecological diversity

[28], [49] linked to the ability to feed in the water column. Beyond

these fulfilled criteria, it is also interesting to notice that their

phyletic diversification seems to have occurred rapidly [35].

Artedidraconidae (plunderfishes) are speciose (30 species),

monophyletic [29–30], [47] and endemic to the Southern Ocean.

They show some degree of ecological diversification [50], though

they need to be studied further, and possess only modest

morphological diversity [9]. They are provisionally considered as

a species flock [51].

The peracarid Crustacea is the most speciose animal group of

the Southern Ocean, with more than 1000 strictly Antarctic

species. Among them, amphipods are the most diverse, comprising

919 species in the Southern Ocean, and 547 species from the

Antarctic region only (south of the Antarctic Polar Front), of which

417 species, or about 70%, are endemic [52–54]. In this

environment, they have colonised a wide variety of ecological

niches and achieved a successful eco-ethological diversification

[55]. The genera Eusirus and Epimeria, though present elsewhere,

each have components in the Southern Ocean that are mono-

phyletic, given the present state of knowledge, and meet the five

criteria for a species flock. A phylogenetic analysis of Antarctic

Epimeria species confirmed a monophyletic assemblage of 26

Antarctic species and placed two potentially closely related non-

Antarctic species (from New Zealand) as closest relatives [56].

Epimeria species are large, heavy, highly calcified and almost

entirely benthic animals, with low mobility. They display a high

diversity in morphology and trophic types. It is possible that the

biogeographic range of Epimeria reflects its tolerance to a limited

range of temperature, or cold stenothermy, which would provide

an important clue as to its potential isolation in Antarctica from

other parts of the world. To date, Epimeria provides the best

example of a species flock within Antarctic amphipods. Eusirus spp.

are medium- to large-sized predatory amphipods [57] with good

swimming capacities [58], found between 0 and .7000 m [59]

with benthic, pelagic or sympagic life styles [60–61]. Barnard and

Karaman [59] listed 22 nominal species, of which seven have been

recorded south of the Antarctic convergence. However, ongoing

research indicates the existence of at least 23 described and

undescribed species in the Southern Ocean [62–63]. The species

of the group perdentatus which are particularly large Eusirus (60–

100 mm), are found only south of the convergence; they include

three named species and at least three multiple cryptic/

pseudocryptic species [62–63]. The absence of dispersal across

the Polar Front of the group perdentatus could be explained by their

gigantism. It has been demonstrated that giant amphipods are

restricted to waters with a maximum oxygen concentration, i.e. in

truly icy waters [64]. Furthermore, all these species form a clade,

which is geologically young (4–14 Ma) [63]. Ecological differen-

tiation is present in this group, with most species benthic or

Figure 2. Results on species flocks estimation concerning four taxonomic components: teleosts, echinoids, crinoids, crustaceans.
Amphi: amphipods, SO: Southern Ocean, AS: Antarctic Shelf, �: newly discovered cryptic species are to be added.
doi:10.1371/journal.pone.0068787.g002
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benthopelagic, except for E. propeperdentatus which is entirely

pelagic. Even though this group is only moderately diverse, it

satisfies the criteria of a flock.

Although endemicity and speciosity of several Antarctic isopod

lineages is quite high, few of these meet all five criteria of species

flocks. One of them is the Serolidae whose Antarctic component is

monophyletic and comprises about half of the known serolid

species [65]. Serolid isopods exhibit a wide variety of habitat use

and lifestyles. They are known from the shallow waters to the deep

sea, have semi-sessile to highly mobile rafting species [66], and

inhabit soft-sediment and rocky bottoms. Antarctic serolids thus

also fulfill the two ecological criteria making them full species

flocks whereas many subordinate clades nested within the isopods

remain core flocks due to many, often pseudo-cryptic species,

which are only weakly differentiated ecologically. As the rate of

discovery of new species through the use of molecular methods

increases, it is expected that in the future more flocks at lower

taxonomic levels will be described which currently violate the

speciosity requirement only due to a lack of knowledge.

Core Flocks, but not « Full » Flocks
Some Antarctic isopod taxa appear to have radiated on the

Antarctic shelf, and molecular studies have proven useful in

demonstrating the presence of many morphologically similar, but

genetically highly differentiated species [67]. The species inside

these species complexes are monophyletic and can be locally very

abundant but are generally only poorly differentiated in ecological

terms, making them core but not full flocks (Fig. 2, e.g. Ceratoserolis

trilobitoides, C. meridionalis and Glyptonotus antarcticus species com-

plexes). Similarly species complexes are found using molecular

tools in pycnogonids (Colossendeis megalonyx sensu lato [68]), which

are not ecologically diverse. In other cases a lack of knowledge

with regard to ecological diversity (like in the radiation of the

gastropod Doris kerguelenensis, [69]) leads to the provisional

conclusion of a ‘‘core flock’’ but not a ‘‘full flock’’.

Echinoid taxonomic components fail to meet the five criteria,

most of them lacking either ecological diversity or domination of

habitat (Fig. 2). Two clades of echinoids fall within this category of

« core flocks ». The Antarctic schizasterids consist of 27

morphologically recognized species of sea urchins. Over all a

total of about 80 echinoid species have been recorded in the

Southern Ocean so far, and they represent one third of the

Antarctic echinoid speciosity. Molecular analyses based on several

molecular markers confirm that the brooding species within this

group of irregular sea urchins form a monophyletic group

restricted to the Southern Ocean but not to the Antarctic shelf,

some species being found in the Kerguelen Islands, Heard Island,

and the southernmost part of South America. All species of the

monophyletic brooding group are Subantarctic or Antarctic. Some

species can locally dominate the echinoid fauna in term of

abundance [70], but they display a limited ecological diversity (all are

infaunal or partly infaunal deposit feeders) and consequently are

not considered as a true flock. A recent population genetic study

[71] confirms that the brooding schizasterids display highly

reduced dispersal rates, a feature which may favour high

speciation rates [72], independently of any key innovation.

In the regular echinoid family Cidaridae, the Ctenocidarinae

form a monophyletic group of 21 morphologically recognized

species that are restricted to the Southern Ocean [10], [73]. The

genus Austrocidaris is found elsewhere in the Southern Ocean, but

except for this genus, the Ctenocidarinae (without Austrocidaris)

form a monophyletic group restricted to the Antarctic shelf. They

are ecologically and morphologically well diversified. Some species

are brooders while others are not, and their morphologically

diverse primary spines are covered with numerous and various

specific symbionts [74–75]. At both scales (Southern Ocean and

Antarctic shelf), however, these two cidarid embedded groups of

sea-urchins fail to be significant in terms of biomass, but this remains to

be evaluated with more precision. Therefore, it is prudent to

consider them as « core flocks », and not « full » species flocks.

We record as a « core flock » the Pogonophryne artedidraconid fish

subgroup of 22 species because it is a remarkable example of a

phyletic radiation without ecological or morphological diversifica-

tion [9]. The morphology is so characteristic and, with the

exception of the barbel, constant that the taxonomy of the group is

the most difficult of all notothenioids. Their chromosome numbers

and formulae are stable [76–78], whilst in other artedidraconids,

they show some important structural interspecific changes. There

has been sufficient collecting to indicate that their population

densities and biomass are low: they do not exhibit habitat

domination. However Pogonophryne are about 2-fold more diverse

than any other Antarctic notothenioid genus, all having circum-

Antarctic distributions and recently discovered species are coming

from upper slope waters 1000–2000 m deep. So Pogonophryne is a

large, recent, strictly benthic, non-adaptive (little morphological

and ecological diversity) radiation, at a depth not colonized by

most other clades of notothenioids. This is an interesting

phenomenon contrasting, for example, with the adaptive radiation

of trematomines on the shelf.

Criteria for a flock not met
For crinoids, the criterion of species diversity fails and ecological

diversity is often poorly documented. The two widespread and

most abundant species Promachocrinus kerguelensis and Florometra

mawsoni together form a monophyletic group (case 1 in Table 1,

Fig. 3) distinct from other Antarctic Heliometrinae [79–80]. These

species are not restricted to the continental shelf but are found

throughout the Southern Ocean [80–82]. Both of them show a

large morphological variability [79], [81] and live in a great

diversity of habitats [79]. Promachocrinus kerguelensis is composed of

at least seven genetic circum-Antarctic lineages [83–84]. However

these lineages represent two seperate species at best [84]. The

species diversity criterion for a flock is therefore not met. Species

from the genus Notocrinus are dominant among brooding crinoid

species [80]. This genus is monophyletic and endemic to the

Southern Ocean, from the continental shelf to Burdwood Bank

[80]. Molecular results indicate that the genus Notocrinus is

composed of more than the two morphologically known species:

two cryptic species within N. mortenseni and four cryptic species

within N. virilis [80] are suggested. Species diversity in Notocrinus

still needs to be precisely assessed and the present lack of

knowledge prevents the assignment of this group to a species flock.

Harpagiferids (Teleostei, Notothenioidei) are a good example of

a monophyletic family not corresponding to a flock: they consist of

ten species of ecologically similar fishes [9]. The non-notothenioid

family Liparidae (Teleostei, Cottoidei) also does not satisfy the

criteria, because of the absence of monophyly of its components

inhabiting the Antarctic shelf (bottom left in Table 1). Indeed,

some species of the Antarctic shelf are more related to Arctic

liparids than to other liparids of the Antarctic shelf [85–86] (but

see page 116 in [87] who considers some subgroups of Antarctic

liparids as probably forming flocks).

None of the decapod or euphausiid crustaceans of the Southern

Ocean studied during this survey (Notocangron, Euphausia respec-

tively) are species flocks: the monophyletic components are not

speciose and do not include cryptic species, though they are very

important in terms of biomass (for instance the krill species

Marine Species Flocks Detection
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Euphausia superba and E. crystallorophias). This also applies to other

eucarid taxa studied to date (Nematocarcinus and Chorismus [88]).

The peracarid taxa Liljeborgia and Orchomene sensu lato are also not

species flocks. Liljeborgia spp. are medium-sized benthic amphipod

crustaceans able to swim short distances [89] and are opportunistic

feeders [90], recorded between 0 and 6000 m [59]. Of the 67

nominal species of Liljeborgia [89], [91], 24 are known from the

cold parts of the Southern Hemisphere. Of these 24, 12 are only

known south of the Antarctic Convergence and three are found on

both sides of the convergence [92–93]. A high diversity of a genus

in a region can be considered as an indication of the possible

existence of a local flock. However, both the examination of

morphological characters and molecular data indicate that

Antarctic species do not form a clade ([92], bottom left in

Table 1), and suggests that they have relatives in distant seas like

the Norwegian Sea [89], [93]. In other words, it is an example of a

diverse Antarctic taxon, which does not fulfill the monophyly

criterion. Another example of a diverse Antarctic amphipod taxon,

which does not comply with the monophyly criterion, is provided

by the Antarctic species of the lysianassoid genus complex

Orchomene sensu lato. The taxon initially represented a possible

candidate for a species flock in the Southern Ocean, due to its

relative species diversity and high degree of endemism. This genus

complex harbours at least 28 endemic, valid species in the

Southern Ocean, belonging to 5 different genera. Havermans

et al. [94] identified three species new to science and four species

complexes each consisting of at least two cryptic species.

Furthermore, d’Udekem and Havermans [95] included one more

undescribed species, so that 36 potential endemic species are

present in the Southern Ocean sensu lato, with a rate of 39% of

endemicity in a total of 93 species. The Antarctic species of

Orchomene sensu lato also exemplify habitat dominance (shelf and

abyssal depths) and a significant diversity in trophic adaptations,

being opportunistic or exclusive scavengers, with corresponding

modifications in their mouthpart morphology [60], [96]. Further-

more, there are indications of a recent and rapid diversification of

the Antarctic component of Orchomene sensu lato ([94]). This group

of Antarctic species was initially thought to be monophyletic [96]

but further studies from the same team, including more non-

Antarctic species, show that this monophyletic orchomenid clade

also comprised strictly Atlantic and Magellan species. However,

among a majority of species restricted to the Southern Ocean, the

Atlantic and Magellan taxa have a derived, more apical position in

the phylogeny, which might suggest their origin within the

Southern Ocean (case 2 in Table 1, Fig. 4).

In the genus Sterechinus, which is a regular sea urchin, a

monophyletic group is obtained when the genus Dermechinus is

included into the clade. This group is mainly restricted to the

Southern Ocean, but some representatives are present both in the

Antarctic shelf and in South America as well as in the Kerguelen

and other subantarctic regions [97], likely due to dispersal via

planktotrophic larvae. The number of species in the clade

‘‘Sterechinus + Dermechinus’’ (case 1 in Table 1, Fig. 3) is rather

limited (weak speciosity). There are half a dozen morphological

species, but molecular data (mostly mitochondrial, complemented

Figure 3. Case 1 of Table 1. A set of species is paraphyletic (blue)
with a taxonomic entity embedded within (purple) it that is restricted to
the area of reference (red circle): A simple taxonomic decision could
fulfill the two criteria of monophyly and endemicity. Indeed the
taxonomic decision would render the whole set of species monophy-
letic (purple becomes blue).
doi:10.1371/journal.pone.0068787.g003

Table 1. Three situations for the taxon of reference (columns) are to be considered: it is monophyletic, paraphyletic or
polyphyletic.

Members of the taxon present in
the considered area: Taxon:

Monophyletic Paraphyletic Polyphyletic

Monophyletic Flock Case 1 No

Paraphyletic Case 2 Case 3 No

Polyphyletic No No No

There are also three situations to consider for the components of this taxon in the given area of reference (lines): monophyletic, paraphyletic or polyphyletic. To explain
the table, we consider again the example of the non-notothenioid fish family Liparidae. It is monophyletic as a family (first column), however its components of the
Antarctic shelf are polyphyletic because they are each related to Arctic liparids (bottom line). So the Antarctic liparid situation is the bottom left cell. Case 2 (when a
taxon originating in the area of reference secondarily ‘‘exports’’ a part of its descent outside this area, Fig. 4) is discussed in the text.
doi:10.1371/journal.pone.0068787.t001

Figure 4. Case 2 of Table 1. The set of species under focus is
monophyletic but contains an internal subpart that is secondarily «
exported » outside the area of reference (red circle). See text for
discussion.
doi:10.1371/journal.pone.0068787.g004
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by recent nuclear data) suggest only three to four genetic species

[98], and reveal a lack of congruence between genetics and

geography; monophyletic groups of species (or even of haplotypes

within species) do not correspond to geographical regions.

Discussion

Complex cases of « Nested Flocks » and « Exportations »
In some cases, when phylogenies are available, we detect an

acceleration of cladogeneses for more internal subsets of the flock.

These subsets may be regarded as nested flocks. For instance,

within notothenioids, AFGP-bearing species constitute a nested

flock probably allowed by the key-innovation of antifreeze

glycoproteins available in the blood [22], [26], [35]. In molecular

phylogenies this acceleration of cladogeneses corresponds to a

weak resolution (or no resolution at all) in the branching patterns

among the main nototheniid lineages with regard to the crown

group [31–32], [35], [38]. Another case is illustrated by the

subfamily Trematominae that contains a diversified set of 13

species of coastal fishes, which exhibit a later acceleration of

cladogeneses in the sister-group of Trematomus scotti [41], [45].

However, despite of the fact that most of the flocks described

exhibit a period of rapid cladogeneses (soft polytomy, [99]) or a

simultaneous diversification (hard polytomy, [99]), the rate of

diversification is not included among the criteria of Eastman and

McCune [17], while it is in Ribbink [18]. Here nested flocks show

situations where there is an acceleration (when studied): non-

Austrocidaris ctenocidarins within the Ctenocidarinae, Trematomi-

nae within the notothenioids [35], [41], possibly Artedidraconidae

and Channichthyidae within notothenioids [35].

When using the criteria in order to detect species flocks, a

diversity of situations appear which are liste in Table 1. When a set

of species is monophyletic within the area of reference to which it

is endemic, two criteria of species flocks are fulfilled (top left in

Table 1). For instance, this is the case for the Antarctic component

of the amphipod genus Epimeria. When a set of species is

monophyletic but its members in the area of reference are

polyphyletic, i.e. not closely related to each other, the monophyly

criterion fails and there is no species flock (bottom left in Table 1).

For instance, this is the case for liparid fishes of the Antarctic shelf:

liparids are monophyletic as a family but its Antarctic members

are polyphyletic because each of their diverse components is

directly related to Arctic liparids. Let’s consider the case 1 of

Table 1 (top middle cell): when a set of species is paraphyletic

(Fig. 3, blue) with a taxonomic entity embedded within (Fig. 3,

purple) it that is restricted to the area of reference (Fig. 3, red

circle), a simple taxonomic decision could fulfill the two criteria of

monophyly and endemicity. Indeed the taxonomic decision would

render the whole set of species monophyletic (purple becomes

blue). This is the case for the crinoids Promachocrinus kerguelensis, into

which the crinoids of the genus Florometra are embedded.

Renaming Florometra as Promachocrinus would render that genus

monophyletic.

These situations are clearcut (italics in Table 1). Other situations

are more complex. In the case 2 of Table 1 (middle left cell), the set

of species under focus is monophyletic but contains an internal

subpart that is secondarily « exported » outside the area of

reference (Fig. 4). That pattern corresponds to the amphipod

genus Orchomene sensu lato which Antarctic component contains an

Atlantic subpart and the criterion of endemicity fails. However,

viewed through time, the diversification could result from a two

phases historical process: an initial burst of species and ecological

diversity in a restricted area (i.e. the actual species flock), followed

by an expansion of derived members of the flock outside this area.

In such a case the species flock status could be maintained only

when the rapid diversification is documented (for instance as in

[41]). However, in the precise case of the Antarctic Orchomene sensu

lato, the tempo of diversification remains to be investigated. Case 3

(middle cell of Table 1, Fig. 5) is a mix of case 1 and case 2. A

taxonomic decision would simply lead to case 2, where supple-

mentary data about the tempo of diversification would then be

required.

Facing the case 2 of Table 1 (Fig. 4), two situations can be

distinguished depending on the degree of the exportation. First,

the status of species flock can be maintained by expanding the area

of reference, all other criteria being satisfied, as long as the

expanded new area remains within certain limits, consistent with

the geographic criterion. This is an easy way, but the appraisal of a

realistic expansion is a matter of empirism. In the present survey,

we defined the Southern Ocean as the maximal area. For

example, the icefishes (Channichthyidae) fit the definition of a

species flock on the Antarctic continental shelf. Biogeography

mapped onto their phylogeny (that is rather well resolved [47–49])

clearly shows that this benthic family originates on the shelf.

However, some species are found outside the shelf (e.g. Channichthys

rhinoceratus and Champsocephalus gunnari in Kerguelen Islands,

Chaenocephalus aceratus in Bouvet Island, Champsocephalus esox in

Magellan Strait). Consequently, the Channichthyidae is consid-

ered a species flock of the Southern Ocean.

The second way to answer is to rely on the history of the events.

This is the case for deep-sea serolids of the Southern Hemisphere.

Some of them occur outside the Southern Ocean (e.g. Acutiserolis

spp. in [65]), but the molecular phylogeny places all of them firmly

inside the radiation that took place in the shallow waters close to

the Antarctic continent. This suggests that, subsequent to

Antarctic speciations, the involved species had expanded their

distribution area northward, rather than having arisen outside the

Southern Ocean. This is also the case of the lysianassoid genus

complex Orchomene sensu lato which clearly originates within the

Southern Ocean, but has Atlantic and Magellan components well

embedded within the Southern Ocean clade. These examples

emphasize the importance of (1) reliable large-scale samplings and

(2) historical information derived from phylogenetic trees. If the

decision had rested exclusively on a geographic description of

where the species occurred today, the monophly criterion would

have been mistakenly violated even though the major evolutionary

event (a major radiation occurring inside a narrowly circumscribed

area) would have been true. Because a species flock is also defined

by Ribbink [18] as a historical evolutionary event characterized by

rapid species and ecological diversifications, the possibility for

secondary exportation of some components outside the area from

Figure 5. Case 3 of Table 1. This situation is a mix of case 1 and case
2. A taxonomic decision would simply lead to case 2, where
supplementary data about the tempo of diversification would then
be required (see text).
doi:10.1371/journal.pone.0068787.g005
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which it originates should be left open. This requires an early rapid

diversification of the flock within the original area. Indeed the «

flock » categorization within the initial geographic realm would be

maintained only if we have precise information about the tempo of

diversification: the « exported » subpart must originate crownward

in the phylogeny of the flock, and phylogenies must exhibit early

acceleration of cladogeneses at the base of the flock within the area

of reference (soft polytomies being possibly due to unappropriate

genetic markers or unsufficient data, the check for hard polytomies

can be done using several markers separately). For example, the

Antarctic species of Orchomene sensu lato are thought to have

undergone a rapid and recent diversification [94] and the AFGP-

bearing notothenioids exhibit a rapid tempo of diversification at

the base of their tree [32–33], [35]. Among them, the genus

Patagonotothen comprises 15 species branched crownwards, of which

14 have secondarily colonized northwards to the southern coasts of

South America and the Falkland Islands [9]. Therefore, by

recognizing notothenioids as a giant species flock, Eastman and

McCune [17] already implicitly tolerated those secondary

exportations. It is obvious that taking into account this phyloge-

netic-historical supplementary criterion, it may possibly contradict

the initial criterion of endemicity. This discrepency is due to the

fact that, even if a species flock is defined as a phyletic radiation

with ecological diversification, the five criteria of Eastman and

McCune [17] do not incorporate the radiation, i.e. do not estimate

the tempo of phyletic diversification. This is mostly due to the fact

that the species flock concept gets more complex when passing

from a typological application to its historical interpretation. It is

basically not a typological concept, but a historical one. The

present work could lead to the recognition of a sixth criterion, fully

recognizing the species flock concept as a historical one in the core

of its application, the high rate of phyletic diversification, to be

modulated with the criterion of endemicity, which consists in

tolerating «secondary exportations » outside the area of reference.

An amended detection of flocks
Eastman and McCune [17] noticed that the identification of

species flocks in the marine realm had received less attention than

in freshwater lakes or in islands. The present study fills the gap.

Our practice of Antarctic and subantarctic species flocks detection

in various taxonomic groups is based on multidisciplinary practical

experience (joining taxonomic expertise including morphology

and anatomy, field work, molecular phylogenetics and cytogenet-

ics, field ecology) that leads us to propose an improvement of

species flock recognition, aiming to make it more operational and

instrumental. First, it appears necessary to focus on the three

robust, easier to determine criteria: monophyly, endemism, and

speciosity. We recommend ranking the ecological criteria as

secondary, hence suggesting the distinction between ‘‘core’’ flocks

and ‘‘full’’ flocks. No criterion is actually easy to determine: species

diversity is a continuous parameter that must be compared to

species diversity of the sister-group and surrounding areas and

assessment of endemism and monophyly heavily depend on

reliable field samplings [25]. Species flocks may be underestimated

because of a lack of detection of cryptic species, but they can be

overestimated through overestimation of endemism due to

uncomplete field sampling. Ecological criteria are the most

difficult to document, because they require even more data to

be robustly appraised, and because these data are in themselves

complex to obtain in the field. Last but not least, there is a

component of arbitrariness in the spatial and taxonomic delinea-

tion in the estimation of « habitat dominance » or the « ecological

diversity ». For instance, notothenioids represent 90% of the fish

biomass of the Antarctic shelf: however it is negligible with regard

to the whole eukayote biomass. « Habitat dominance » depends on

the arbitrary taxonomic realm of « fishes », a non-monophyletic

group. Finally, in order to have more flexibility and to assess the

robustness of flocks, we suggest introducing the possibility to tune

up the spatial or the taxonomic ranges in order to meet the

endemism/monophyly criteria respectively. The difficulty is to

maintain the adjustments within realistic limits. Those limits can

be set by logical comparisons with surrounding areas as originally

suggested by Ribbink [18], but so far there is no more than a rule

of thumb. The confrontation of Eastman and McCune’s criteria

with real organisms encountered in the field compelled us to assign

priorities. The flow chart of Fig. 1 should be regarded as a guide in

the process leading to flock identification. It operates as a

prioritized protocol, as well as a synthesis, of our practical

approach to flocks. However this flow chart does not yet

encompass an aspect of Ribbink’s definition of a species flock:

the fact that the initial phyletic diversification occurred « rapidly ».

Despite not being a criterion retained by Eastman and McCune, it

could be an important, albeit difficult to obtain, complementary

information.
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74. Hétérier V, David B, De Ridder C, Rigaud T (2008) Ectosymbiosis is a critical

factor in the local benthic biodiversity of the Antarctic deep sea. Mar Ecol Prog
Ser 364: 67–76.

75. Hardy C, David B, Rigaud T, De Ridder C, Saucède T (2011) Ectosymbiosis
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d’Histoire naturelle, Paris.

86. Duhamel G, Hautecoeur M, Dettaı̈ A, Causse R, Pruvost P, et al (2010) Liparids

from the Eastern sector of Southern Ocean and first information from molecular
studies. Cybium 34(4): 319–343.

87. Stein DL (2012) Snailfishes (Family Liparidae) of the Ross Sea, and closely
adjacent waters. Zootaxa 3285: 1–120.

88. Raupach MJ, Thatje S, Dambach J, Rehm P, Misof B, Leese F (2010) Genetic

homogeneity and circum-Antarctic distribution of two benthic shrimp species of
the Southern Ocean, Chorismus antarcticus and Nematocarcinus lanceopes. Mar Biol

157: 1783–1797.
89. Udekem d’Acoz C d’ (2010) Contribution to the knowledge of European

Liljeborgiidae (Crustacea, Amphipoda), with considerations on the family and its
affinities. Bull Inst r Sci nat Belg 80: 127–259.

90. Dauby P, Scailteur Y, De Broyer C (2001b) Trophic diversity within the eastern

Weddell Sea amphipod community. Hydrobiologia 443: 69–86.
91. Udekem d’Acoz C d’ (2009) New records of Liljeborgia from Antarctic and sub-

Antarctic seas, with the description of two new species (Crustacea, Amphipoda,
Liljeborgiidae). Bull Inst r Sci nat Belg 79: 243–304.

92. Udekem d’Acoz C d’ (2008) Shelf and abyssal Liljeborgia Bate, 1861 of the

Southern Ocean (Crustacea, Amphipoda, Liljeborgiidae). Bull Inst r Sci nat Belg
78: 45–286.

93. Udekem d’Acoz C d’, Vader W (2009) On Liljeborgia fissicornis (M. Sars, 1858)
and three related new species from Scandinavia, with a hypothesis on the origin

of the group fissicornis. Journal of natural history 43: 2087–2139.
94. Havermans C, Nagy ZT, Sonet G, De Broyer C, Martin P (2011) DNA

barcoding reveals new insights into the diversity of Antarctic species of Orchomene

sensu lato (Crustacea: Amphipoda: Lysianassoidea). Deep Sea Res Part 2 Top
Stud Oceanogr 58: 230–241.

95. Udekem d’Acoz C d’, Havermans C (2012) Two new Pseudorchomene species from
the Southern Ocean, with phylogenetic remarks on the genus and related species

(Crustacea, Amphipoda, Lysianassoidea). Zootaxa 3310: 1–50.

96. Havermans C, Nagy ZT, Sonet G, De Broyer C, Martin P (2010) Incongruence
between molecular phylogeny and morphological classification in amphipod

crustaceans: A case study of Antarctic lysianassoids. Mol Phylogenet Evol 55:
202–209.
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