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Introduction

The condylarth-like mammal Ocepeia daouiensis from the Paleocene-Selandian [START_REF] Yans | First carbon isotope chemostratigraphy of the Ouled Abdoun phosphate Basin, Morocco; implications for dating and evolution of earliest African placental mammals[END_REF][START_REF] Kocsis | Comprehensive stable isotope investigation of marine biogenic apatite from the late Cretaceous-early Eocene phosphate series of Morocco[END_REF] of the Ouled Abdoun Basin, Morocco, is the best known of the earliest African placentals [START_REF] Gheerbrant | Primitive African ungulates ("Condylarthra" and Paenungulata)[END_REF][START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF]. Recently described material includes the well-preserved skull MNHN.F.PM45. Its study by [START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF] supported that Ocepeia daouiensis is related to the Paenungulata as a stem taxon (Paenungulatomorpha; see Fig. 1). The paenungulate stem relationship of Ocepeia was also found in recent works of [START_REF] Gheerbrant | Convergence of Afrotherian and Laurasiatherian Ungulate-Like Mammals: First Morphological Evidence from the Paleocene of Morocco[END_REF][START_REF] Gheerbrant | Early African Fossils Elucidate the Origin of Embrithopod Mammals[END_REF] and [START_REF] Zack | An enigmatic new ungulate-like mammal from the early Eocene of India[END_REF]. Ocepeia is actually the only known stem paenungulate together with Abdounodus hamdii [START_REF] Gheerbrant | Convergence of Afrotherian and Laurasiatherian Ungulate-Like Mammals: First Morphological Evidence from the Paleocene of Morocco[END_REF].

The skull MNHN.F.PM45 preserves in particular the braincase and labyrinth endocasts. In this work we describe and study in detail the petrosal morphology and the bony inner ear morphology of Ocepeia daouiensis that was reconstructed as a 3D endocast model from a micro CT scan of the skull MNHN.F.PM45. The reconstruction and study of the inner ear of Ocepeia daouiensis were made based on both left and right petrosals preserved in specimen MNHN.F.PM45 [START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF]. The right and left semicircular canals are perfectly aligned in profile in lateral view, showing that the petrosals are not distorted in MNHN.F.PM45.

The anatomy of the petrosal and inner ear of the afrotherians and its phylogenetic significance were only recently investigated, and mostly based on the study of extant taxa [START_REF] Ekdale | Comparative anatomy of the bony labyrinth (inner ear) of placental mammals[END_REF]. However, several recent important fossil discoveries in the Paleogene of Africa provided new key data on early afrotherians, including proboscideans (Schmitt & Gheerbrant, 2016), embrithopods (Benoit et al. 2013c), hyracoids (Benoit et al. 2015a) and macroscelideans (Benoit et al. 2013b). Ocepeia adds to these fossil discoveries and provides the first direct evidence on the ancestral petrosal and labyrinthine morphology of the Paenungulata. Scan, modelisation, softwares MNHN.F.PM45 was investigated by high-resolution computed tomography (μCT) at the AST -RX platform of the MNHN, Paris, using a GE Sensing and Inspection Technologies phoenix|xray v|tome|x L240-180 CT scanner. We used the microfocus RX source 240kV/320W, detector 400 × 400 mm with a matrix of 2024 pixels (pixel size: 200x 200µm). Scan parameters: Voltage=95 kV; Current=265 µA; Isotropic voxel size of 0.02550441 mm. Data were reconstructed using datos|x reconstruction software (Phoenix|x-ray, release 2.0) and then exported into 16 bits TIFF images. We used the softwares MIMICS (® Materialise 2007, Release 11.1) and Avizo 7. 1.1 (Visualization Science Group) for the analysis, 3D modelisation, visualisation and measurement of the tomographies. The 3D models of the petrosals and bony labyrinths will be deposited and freely accessible on the Morphomuseum repository at https://morphomuseum.com/.

Material and Methods

Collections

Measurements (Fig. 2)

The volume of the petrosal was measured directly on the 3D model with MIMICS. Volumes of the labyrinth were obtained using both the softwares MIMICS and Ariadne [START_REF] David | Assessing morphology and function of the semicircular duct system: introducing new in-situ visualization and software toolbox[END_REF] that computes volumes, lengths, areas and angles (see below). The main goal of the Ariadne software is to infer functional capacities of fossil taxa based on measurements of their bony labyrinth, and through comparisons with the membranous ducts of relatively close taxa. In addition, the Ariadne software can be used to simply provide several bony measurements (i.e. semicircular central streamline length, cochlear length) that may be useful for further comparisons and which are presented for Ocepeia in this paper. The cochlear volume was obtained by separating the cochlear part from the vestibular part using GEOMAGICS Studio Studio 2012. The superior extremity of the cochlear canal as well as the fenestra vestibuli were included in the cochlear part. On the other hand, the saccule was included in the vestibule part.

We measured with the software MIMICS the inner ear height (IEH) following [START_REF] Billet | Petrosal and inner ear anatomy and allometry amongst specimens referred to Litopterna (Placentalia)[END_REF] as the linear distance between the dorsal apex of the crus commune and the ventral apex of the cochlea. The petrosal size index of Ocepeia was measured following [START_REF] Billet | Petrosal and inner ear anatomy and allometry amongst specimens referred to Litopterna (Placentalia)[END_REF] as the mean of the longest linear dimensions of the petrosal (excluding the mastoid part): the medial length and anterior width of the tympanic face (PET L and PET W), and the cerebellar height (PET H).

The stapedial ratio (Fig. 2A) was calculated following [START_REF] Segall | Morphological parallelisms of the bulla and auditory ossicles in some insectivores and marsupials[END_REF] L/W with L = length and w = width of the fenestra vestibuli). Calculation of the cochlear curvature follows [START_REF] West | The relationship of the spiral turns of the cochlea and the length of the basilar-membrane to the range of audible frequencies in ground dwelling mammals[END_REF]. The number of turns of the cochlea is measured following the protocol of [START_REF] West | The relationship of the spiral turns of the cochlea and the length of the basilar-membrane to the range of audible frequencies in ground dwelling mammals[END_REF]. The aspect ratio of the cochlea (Fig. 2B) was calculated according to the formula found in Ekdale & Rowe (2011): H/W with H= height and W= width of the cochlea. Other linear measurements of the labyrinth were obtained using the same custom software used for the labyrinth volumes. The length of the cochlea was obtained through the sum of the distance of consecutive landmarks and semilandmarks placed along the cochlea using AVIZO 7.1.1 (Fig. 2C-D) and calculated with the Ariadne software. The first anatomical landmark was located at the point of the external portion of the cochlea located in the continuation of the major axis of the fenestra vestibuli. The semilandmarks were then placed manually at approximately regular distance along the external portion of the cochlea (which follows the basilar membrane) (n~50).

The last anatomical landmark was placed at the tip of the helicotrema. For both the cochlea and semicircular canals (see below), there was no sliding procedure for the semilandmarks as these were only used in order to mark curves for non-linear measurements (e.g., cochlea length, semicircular canal length).

Measurements of the semicircular canals were also landmark-based, but using central streamlines of the canals calculated with the AutoSkeleton feature of AVIZO 7.1.1 (following [START_REF] Gunz | The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach[END_REF]. The central streamline is the line that follows the center of the bony canal over its full length. It is obtained via the Autoskeleton functionality of the software Avizo. The internal landmarks of the semicircular canals (lighter grey landmarks that are also represented without the isosurface in Fig. 2C,D,E) are placed on this streamline. The central streamline length of a semicircular canal is the sum of the distances between these landmarks (central streamline landmarks) and the ampullar landmarks (the two very light grey landmarks on each 2). The crus commune length consists of the sum of the distances between consecutive internal landmarks, and the semilandmarks were placed manually at approximately regular distance along the central streamline of the crus commune (from the intersection of the anterior and posterior canals streamline to the basis of the crus commune). The average section radius of the crus commune was given directly by the Ariadne software. It corresponds to the mean of the crus commune radii taken at different sections of the crus commune. We used these two values to calculate the average thickness ratio (average section radius / crus commune length * 100). This ratio gives a quantitative value that expresses the global thickness of the crus commune. Crus commune with a high ratio tend to be thicker and stockier than crus commune with a low ratio.

The semicircular canal length was calculated as the sum of the distances between consecutive landmarks and semilandmarks of the slender canal. For the anterior and posterior canals, the measurement starts at the center of the ampulla (at the level of the crista ampullaris)

and ends at the level of the intersection of the two canals (first internal landmark of the crus commune). For the lateral canal, the measurement starts at the center of the ampulla and ends at the intersection with the lateral utricle. The average section radius was calculated in the same manner as for the crus commune average section radius. It expresses the mean section radius of the slender part of the canal. The average thickness ratio of each semicircular canal was calculated as the following formula: (average section radius / semicircular canal length) x 100.

The mean of these three ratios expresses the global thickness of the semicircular canals quantitatively.

The angles between the semicircular canals were also given directly by the Ariadne software. Measuring manually these angles can be tricky because the semicircular canals are rarely perfectly planar. The software uses the landmarks to determine the functional plane of each semicircular canal [START_REF] David | Assessing morphology and function of the semicircular duct system: introducing new in-situ visualization and software toolbox[END_REF]). The angles were then compared between the functional planes of the canals.

Calculation of the radii of curvature of the semicircular canals uses the Spoor-Zonneveld equation [START_REF] Spoor | Comparative review of the human bony labyrinth[END_REF]: R= ((L+W)/2) x 0.5, with L = length and W = width of the canals. Height and width of the semicircular canals were calculated from the center of the canal to the vestibule (which includes the ampullas) and following protocol of [START_REF] Macrini | Inner ear of a notoungulate placental mammal: anatomical description and examination of potentially phylogenetically informative characters[END_REF].

Figure 2 summarizes our measurement protocol of the bony labyrinth of Ocepeia daouiensis.

Comparisons

Anatomical comparisons were made with most early eutherians and placentals in which the petrosal and labyrinth are described based on the available CT observations: Kulbeckia [START_REF] Ekdale | Comparative anatomy of the bony labyrinth (inner ear) of placental mammals[END_REF], zhelestids (Ekdale & Rowe, 2011;[START_REF] Ekdale | Comparative anatomy of the bony labyrinth (inner ear) of placental mammals[END_REF], Zalambdalestes (Ekdale & Rowe, 2011), Protungulatum (Orliac & O'Leary, 2016), Carsioptychus [START_REF] Cameron | The Brain and Inner Ear of the Early Paleocene "Condylarth" Carsioptychus coarctatus: Implications for Early Placental Mammal Neurosensory Biology and Behavior[END_REF], Chriacus [START_REF] Bertrand | Virtual endocranial and inner ear endocasts of the Paleocene 'condylarth' Chriacus: new insight into the neurosensory system and evolution of early placental mammals[END_REF], Hyopsodus [START_REF] Ravel | The inner ear morphology of the 'condylarthran' Hyopsodus lepidus[END_REF], Diacodexis [START_REF] Orliac | The inner ear of Diacodexis, the oldest artiodactyl mammal[END_REF]), Alcidedorbignya (Muizon et al. 2015), Leptictis and Leptictidium [START_REF] Ruf | Digital reconstruction of the inner ear of Leptictidium auderiense (Leptictida, Mammalia) and North American leptictids reveals new insight into leptictidan locomotor agility[END_REF], Notostylops [START_REF] Macrini | Inner ear of a notoungulate placental mammal: anatomical description and examination of potentially phylogenetically informative characters[END_REF][START_REF] Macrini | Comparative study of notoungulate (Placentalia, Mammalia) bony labyrinths and new phylogenetically informative inner ear characters[END_REF], early diverging litopterns and notoungulates [START_REF] Billet | External and internal anatomy of a petrosal from the late Paleocene of Itaboraí, Brazil, referred to Notoungulata (Placentalia)[END_REF][START_REF] Billet | Petrosal and inner ear anatomy and allometry amongst specimens referred to Litopterna (Placentalia)[END_REF], Arsinoitherium (Benoit et al. 2013c), Prorastomus (Benoit et al. 2013a), the undetermined sirenian from Chambi (Benoit et al. 2013a), Chambius (Benoit et al. 2013d), Seggeurius (Benoit et al. 2015a), Eritherium (Schmitt & Gheerbrant, 2016), Phosphatherium (Schmitt & Gheerbrant, 2016), Numidotherium (Benoit et al. 2013c;[START_REF] Court | Cochlea anatomy of Numidotherium koholense: auditory acuity in the oldest known proboscidean[END_REF]. Comparative anatomical data for extant placentals and especially afrotherians come from Benoit et al. (2015b) and [START_REF] Ekdale | Comparative anatomy of the bony labyrinth (inner ear) of placental mammals[END_REF]. We used an anatomical terminology that generally follows the English equivalents of terms from the Nomina Anatomica Veterinaria, 5th edition [START_REF] Waibl | Nomina Anatomica Veterinaria[END_REF].

When this practice was not appropriate (see [START_REF] Wible | Petrosal anatomy of the nine-banded armadillo, Dasypus novemcinctus Linnaeus, 1758 (Mammalia, Xenarthra, Dasypodidae)[END_REF], terms were taken from the general comparative literature cited above. The basicranium of Ocepeia daouiensis preserves both right and left petrosals (see [START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF]. While the petrosal is damaged in the mastoid region, the part containing the inner ear is well preserved. Since there are no significant differences between the left and the right ears, the measurements given below are an average of the left and right ear measurements, except when mentioned otherwise.

The petrosal of Ocepeia

The overall position and extension of the petrosal, as well as its general morphology within the skull, are displayed in figure 3 With respect to [START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF], the comparisons are further developed with early paenungulates such as the hyracoid Seggeurius amourensis, the proboscideans Eritherium azzouzorum and Phosphatherium escuillei, and also the unnamed sirenian from Chambi (Benoit et al. 2013a). Ocepeia shares a noticeable general resemblance with early paenungulates such as Seggeurius, Eritherium and the unnamed sirenian from Chambi. It includes the shape and robust construction of the pars cochlearis (Benoit et al. 2015a) and the inflated and barrel-like tegmen tympani, although the latter is slightly more inflated in Eritherium. In rostro-ventral view, the morphology of the petrosal of Ocepeia and Eritherium is strikingly similar. Both taxa share in particular a large foramen in the tegmen tympani probably for the ramus superior of the stapedial artery (Fig. 4). It suggests the presence of the stapedial artery in Ocepeia, as in Seggeurius. In Ocepeia, the canal for the ramus superior is characterized by an original orientation from its ventral opening within the tegmen tympani: it runs dorsally, and slightly laterally (Fig. 5B). In Eritherium, it runs more anteriorly. Ocepeia is very similar to Eritherium in the morphology of the stylomastoid notch that is delimited anterolaterally by a large bony ridge, the tympanohyal (Fig. 4). This morphology, also seen in Phosphatherium [START_REF] Gheerbrant | Nouvelles données sur Phosphatherium escuilliei (Mammalia, Proboscidea) de l'Eocène inférieur du Maroc, apports à la phylogénie des Proboscidea et des ongulés lophodontes[END_REF], fig. 7), is likely plesiomorphic for paenungulates. The promontorium is characterized by a very anterior position in the petrosal, in association with a long and large mastoid apophysis in Ocepeia (Fig. 3A). The promontorium shows a thick rostral tympanic process and a concave medial border representing the sulcus of the inferior petrosal sinus (ips, Fig. 4). This sulcus is also well developed in Eritherium. Medial to the sulcus of the inferior petrosal sinus, there is a flattened medial edge that is reminiscent of a medial flange. The fenestra vestibuli of Ocepeia is elliptical. As in Eritherium, the cochlear canaliculus (aquaeductus cochleae) opens ventro-medially in the jugular fossa, more dorsally and more medially than the external aperture of the cochlear fossula (which leads to the fenestra cochleae; see Wible et al. 2009, Billet and[START_REF] Billet | External and internal anatomy of a petrosal from the late Paleocene of Itaboraí, Brazil, referred to Notoungulata (Placentalia)[END_REF]) (Fig. 4C).

The secondary facial foramen is visible on the right petrosal. It opens just laterally to the canal for the ramus superior, well anterior to the fenestra vestibuli (Fig. 4B). It covers the cavum supracochleare ventrally whose channel is directed somewhat more oblique than its posterior prolongation, the facial sulcus. Anteriorly, the hiatus Fallopii is present as a small opening on the anterior edge of the petrosal (Fig. 4A-B). Posterior to it, a large depressed area seems to be present on the anterolateral portion of the promontorium, which could then correspond to the tensor tympani fossa. However, this region has experienced some crushing and caution is thus required for this identification. Posterior to the secondary facial foramen, the facial sulcus borders the tympanic surface of the promontorium laterally. The facial sulcus is bordered laterally by a low crista parotica (possibly damaged). The exact outline of the epitympanic recess is unclear but it lies on the lateral aspect of the petrosal, dorsolaterally to the crista parotica and posterior to the tegmen tympani. In its posterior part, the fossa incudis forms an oval-shaped depression (Figs. 4B &5A). There is no clear distinction of the stapedial fossa from the facial sulcus posteriorly, showing that the former is not very well marked, except for a distinct widening of the sulcus (Fig. 4C). In Eritherium, the stapedial fossa is not only wider but deeper and thus more distinct from the facial sulcus. Ventromedial to the stapedial fossa, the external aperture of the cochlear fossula is bordered posteriorly by a much reduced postpromontorial tympanic sinus in Ocepeia (very thin anteroposteriorly and stretched mediolaterally). This space is bordered posteriorly by a large and anteroposteriorly thick medial caudal tympanic process that faces the entire external aperture of the cochlear fossula posteriorly (Fig. 4B). This appears to be different from Eritherium in which the external aperture of the cochlear fossula is not bordered by a postpromontorial sinus nor by a medial caudal tympanic process (contra Schmitt & Gheerbrant, 2016), but is just opening directly ventromedially to the stapedial fossa. This thick medial caudal tympanic process is present in Seggeurius where it is called "swelling on the septum metacochleare" by Benoit et al. (2015a). A notch is present on the medial aspect of the postpromontorial tympanic sinus of Ocepeia, between the medial caudal tympanic process and the medial buttress of the external aperture of the cochlear fossula, possibly for the passage of the tympanic nerve or for the auricular branch of the vagus nerve (see [START_REF] Macphee | Auditory regions of primates and eutherian insectivores. Morphology, ontogeny, and character analysis[END_REF][START_REF] Evans | Miller's Anatomy of the Dog[END_REF][START_REF] Billet | Petrosal and inner ear anatomy and allometry amongst specimens referred to Litopterna (Placentalia)[END_REF][START_REF] Muizon C De | Alcidedorbignya inopinata, a basal pantodont (Eutheria, Mammalia) from the early Palaeocene of Bolivia: anatomy, phylogeny, and palaeobiology[END_REF]. In cerebellar view (Fig. 5C), the fossa subarcuata of Ocepeia is deep as in Eritherium. However, the shape of the fossa differs between the two taxa: in Ocepeia, the fossa has the shape of a lightly flattened cone while it is almost spherical in Eritherium. The fossa subarcuata is much deeper in Ocepeia and Eritherium than in Phosphatherium, and a little deeper than in Seggeurius. The internal auditory meatus and the fossa subarcuata of Ocepeia are comparable in size, as in Eritherium. In Seggeurius and Phosphatherium the area of the fossa subarcuata is by contrast larger than the internal auditory meatus. The foramen acusticum superius and inferius of Ocepeia are separated by a distinct and short crista transversa. It is as thick and short as in Eritherium, and thicker than in Phosphatherium which displays a very narrow and long crista. The crista transversa is not distinct in the cerebellar views of the petrosal of Seggeurius figured in Benoit et al. (2015).

On the dorsolateral (or squamosal) surface of the petrosal, a large sulcus is present in continuation with the canal for the ramus superior of the stapedial artery. This sulcus runs in posterodorsal direction on the dorsolateral edge of the petrosal (labelled stb? on Fig. 5D). On the right petrosal, another sulcus seems to be present, and also runs towards the posterior direction, dorsal to the base of the tegmen tympani (labelled pts? on Fig. 5A,D). This sulcus is not clearly marked on the left petrosal, but the skull MNHN.F.PM45 is damaged in its left side, including the left petrosal (whereas the right side and right petrosal are better preserved). The sulcus running on the dorsolateral edge of the petrosal (stb? on Fig. 5D) likely represents a sulcus for a posterior temporal ramus as it seems to connect with the large posterior temporal foramen in Ocepeia (Gheerbrant et al. 2014: fig. 2). It may also have housed the capsuloparietal emissary vein on its posterior portion (see [START_REF] Billet | Petrosal and inner ear anatomy and allometry amongst specimens referred to Litopterna (Placentalia)[END_REF]. The sulcus running directly dorsal to the tegmen tympani (labelled "pts?" in Fig. 5) probably represents the posttemporal sulcus for the diploëtica magna vessels (it could not be firmly confirmed from observations of the virtual slices through the skull as the area that would correspond to the posttemporal canal is damaged, especially posteriorly).

In Eritherium, a sulcus similar to those described in Ocepeia and running dorsally and then posterodorsally on the dorsolateral edge of the squamosal surface of the petrosal is present, and was recognized as a prootic sinus (Schmitt & Gheerbrant, 2016). The prootic canal is generally absent in placentals, except in the extant Solenodon [START_REF] Wible | On the Cranial Osteology of the Hispaniolan Solenodon, Solenodon paradoxus Brandt, 1833 (Mammalia, Lipotyphla, Solenodontidae)[END_REF]. Here the course of this sulcus in Eritherium corresponds much better with the posttemporal canal and/or a sulcus for temporal rami [START_REF] Wible | Cranial circulation and relationships of the colugo Cynocephalus (Dermoptera, Mammalia)[END_REF][START_REF] Billet | Petrosal and inner ear anatomy and allometry amongst specimens referred to Litopterna (Placentalia)[END_REF][START_REF] Muizon C De | Alcidedorbignya inopinata, a basal pantodont (Eutheria, Mammalia) from the early Palaeocene of Bolivia: anatomy, phylogeny, and palaeobiology[END_REF], as found in Ocepeia. In addition, the presence of a sulcus of the sigmoid sinus dorsomedial to the aforementioned sulcus ( The pars mastoidea is remarkably expanded, it is longer than the pars cochlearis and it reaches the occipital face (Figs. 3,(5)(6). The pars mastoidea forms a mediolaterally compressed wing-like bony blade that is elongated and oblique anteroventral to posterodorsal (Fig. 3). The posterior extent of the pars mastoidea is hard to determine accurately as the bony sutures in the posteriormost part of the skull with the exoccipitals, parietal and squamosal are indistinct in a damaged area of the skull. There is likely a small sliver of bone of the pars mastoidea posteriorly exposed between the parietal and exoccipital (Fig. 3), that would thus participate to the external occipital face (mastoid exposure condition), but its extent is not determinable. The pars mastoidea of Ocepeia daouiensis is substantially pneumatized with numerous and large trabeculae, especially in its dorsal part toward the supraoccipital which is itself also highly pneumatized [START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF].

In conclusion, among paenungulates the petrosal of Ocepeia is more similar to that of Eritherium. Resemblances are seen in the general proportions, and in several detailed features (a deep fossa subarcuata which size is comparable to that of the internal auditory meatus, a very inflated barrel-like tegmen tympani, a short crista transversa, the presence of a large foramen for the ramus superior of the stapedial artery). As a whole, the middle ear of Ocepeia shows a combination of ( 1) plesiomorphic eutherians traits such as the deep fossa subarcuata, the promontorium weakly inflated and flanked by a flattened medial edge (associated to a thick rostral tympanic process of uncertain evolutionary polarity), and a postero-medial external aperture of the cochlear fossula (see Discussion), and (2) paenungulate features such as an inflated and large tegmen tympani. The pierced tegmen tympani (foramen for the ramus superior of the stapedial artery), known in several other eutherian groups, is also probably plesiomorphic amongst placentals [START_REF] Wible | Earliest eutherian ear region: a petrosal referred to Prokennalestes from the early Cretaceous of Mongolia[END_REF][START_REF] Billet | External and internal anatomy of a petrosal from the late Paleocene of Itaboraí, Brazil, referred to Notoungulata (Placentalia)[END_REF][START_REF] Muizon C De | Alcidedorbignya inopinata, a basal pantodont (Eutheria, Mammalia) from the early Palaeocene of Bolivia: anatomy, phylogeny, and palaeobiology[END_REF]. 

The inner ear bony labyrinth

Dimensions of the inner ear bony labyrinth

The total volume of the inner ear bony endocast of Ocepeia daouiensis is 17.53 mm 3 and its inner ear height (IEH; Billet et al. 2013) is 5.69 mm (Table 1). By comparison to the skull length and body size of O. daouiensis (SL~ 90 mm, estimated body mass 3.5 kg; [START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF], this is a relatively small inner ear. Among afrotherians, Procavia has a relative labyrinth volume to body mass and skull length noticeably greater than Ocepeia (Procavia specimen STIPB-M6605: lab. vol.= 33.84 mm 3 , SL= 76 mm, BM= 3800 g.; BM in [START_REF] Nowak | Walker's Mammals of the World[END_REF]. Comparison of the semicircular canals size (radius of curvature, SCR) relative to the body mass following the method of [START_REF] Spoor | The primate semicircular canal system and locomotion[END_REF] (see Fig. 8) also indicates that Procavia (taken from Benoit et al. 2015; see also similar values in Ekdale, 2013) has a larger inner ear, which is confirmed by its higher IEH (IEH of specimen STIPB-M6605 = 8.16 mm, i.e. 143% of Ocepeia). We extended the sample of the placental species studied by [START_REF] Spoor | The primate semicircular canal system and locomotion[END_REF] with the addition of several afrotherians for our comparison of the proportions of the labyrinth in Ocepeia. It shows that Ocepeia shares a relative small size of the semicircular canals with several tenrecoid afrotherians such as Potamogale, Tenrec, Hemicentetes and Chrysochloris (Fig. 8). By contrast other afrotherians such as Procavia (hyracoid), Orycteropus (tubulidentate), Macroscelides and Rhynchocyon (macroscelidids) have larger semicircular canals relative to their body mass.

The 3D reconstructed digital models display a relative small size of the inner ear of Ocepeia daouiensis within the skull (Fig. 3). It also displays a relative small size of the bony labyrinth within the petrosal (Figs. 3 and6). This is well distinctive from the small-sized Protungulatum where the bony labyrinth seems to occupy a large portion of the internal volume of the petrosal (Orliac & O'Leary, 2016). In comparison, the relative small size of the inner ear of Ocepeia daouiensis within the petrosal seems to be related to both its large and inflated tegmen tympani and its very large wing-like mastoid portion. The ratio of the petrosal index size (PET size) to the 1) indicates that the relative labyrinth and petrosal size does not depart from the general proportions and growth trend seen in other measured placental mammals [START_REF] Billet | Petrosal and inner ear anatomy and allometry amongst specimens referred to Litopterna (Placentalia)[END_REF]. This is also true for Eritherium and Phosphatherium (Fig. 8 andSI2). This suggests that this is actually the petrosal (pars cochlearis and pars canalicularis), and not only the labyrinth, that is small relative to the BM and skull length in Ocepeia. In this regard, it is worth noting that the petrosal index size is based on linear measurements that do not include the pars mastoidea which is large in Ocepeia especially relative to the pars cochlearis (Gheerbrant et al. 2014: p. 7).

Cochlea (Figs. 67)

Description and comparisons

The cochlea of Ocepeia daouiensis is large with respect to the vestibule size. The volume ratio of the cochlea with respect to the whole labyrinth is 66 %. This is similar to zhelestids (Ekdale & Rowe, 2011;Orliac & O'Leary, 2016), and this is greater than in the reconstructed ancestral morphotype of placentals and of afrotherians [START_REF] Ekdale | Comparative anatomy of the bony labyrinth (inner ear) of placental mammals[END_REF]. The relative great proportion of the cochlea in Ocepeia might be an eutherian plesiomorphic condition [START_REF] Ekdale | Comparative anatomy of the bony labyrinth (inner ear) of placental mammals[END_REF]. The cochlea length is 19.2 mm. By comparison, it is 16.05 mm in Leptictidium [START_REF] Ruf | Digital reconstruction of the inner ear of Leptictidium auderiense (Leptictida, Mammalia) and North American leptictids reveals new insight into leptictidan locomotor agility[END_REF]) which has a slightly larger IEH (6.44 mm) and a much smaller body size (BM: 466-627 g.). In the same way, the Leptictis species studied by [START_REF] Ruf | Digital reconstruction of the inner ear of Leptictidium auderiense (Leptictida, Mammalia) and North American leptictids reveals new insight into leptictidan locomotor agility[END_REF] has a close cochlear length (18.02 mm) and IEH (5.3 mm), for a much smaller body size (BM: 400-1000 g) than Ocepeia. As noted above, it confirms the small size of the bony labyrinth and petrosal (pars cochlearis and pars canalicularis) in Ocepeia daouiensis.

The number of coils of the cochlea measured following the method of [START_REF] West | The relationship of the spiral turns of the cochlea and the length of the basilar-membrane to the range of audible frequencies in ground dwelling mammals[END_REF] is 2.13 (765°). A cochlea with at least two turns is generally representative of the placental derived condition by contrast to most Cretaceous eutherians that have only 1-1.5 turns (Meng & Fox, 1995;Ekdale & Rowe, 2011). However, some early diverging crown paenungulates such as The ratio of the radius of the spiral base and spiral apex, also called grade of curvature of the cochlea, is low: R base /R apex = 2.75. The spiral plane (lower coil) is oblique antero-dorsally, with an angle of about 50-60° with respect to the plane of the LSC, depending of the angle of view. This is significantly greater than in Cretaceous eutherian mammals; in zhelestids for instance, the plane of the basal coil is tilted at 34° with respect to LSC plane (Ekdale & Rowe, 2011). The pantodont Alcidedorbignya also has a smaller angle of the basal cochlear coil to LSC plane (35-21°). The coiling is subplanar, as in the primitive eutherian condition: the basal coil is more or less below the upper coil but the spiral coils do not separate fully from each other along the coiling axis (Fig. 7C). The height to width aspect ratio of the cochlea cast is 0.72, close to the values of Carsioptychus, Hyopsodus and the afrotherians Moeritherium, the undetermined sirenian from Chambi and Chambius. In the coiling plan, the spiral coils are well separated from each other (Fig. 7B) as in the zhelestids, Carsioptychus, Hyopsodus and Alcidedorbignya. This character is uncommon amongst placentals. The spiral coils are in particular in contact (i.e. coalescing) in basal paenungulates such as Eritherium, Numidotherium, Prorastomus, the undetermined sirenian from Chambi (Benoit et al. 2013a), Seggeurius and Arsinoitherium. The basal coil is enlarged in the area of the fenestra cochleae. The apical coil has a section diameter comparable to the basal coil, and the helicotrema is large, but not inflated. This is distinctive from Notostylops, but of uncertain polarity among eutherians. In ventral view there is a quite distinct apical lacuna for the bony modiolus at the spiral apex.

The secondary bony spiral lamina extends on nearly all the basal coil (340-360° from f. vestibuli; i.e. about 46% of cochlear can. length). This is comparable to some Cretaceous eutherians such as zhelestids and zalambdalestids (Ekdale & Rowe, 2011), and to Protungulatum that the scala vestibuli was larger than the scala tympani (see [START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF], fig. 7). The primary spiral bony lamina is well developed (width from axial wall of modiolus estimated as 0.3 mm); the distance from the primary basal spiral lamina to the lateral wall of the cochlea (vestibular fissure), corresponding to the width of the basilar membrane (laminar gap), is about 0.3 mm (approximately same at base and apex). The modiolus appears in our CT scan sections of the petrosal as a darker area indicating bone of typically lower density. The ganglion canals (spiral canal) are poorly visible, but they seem distinct on some sections of the left petrosal (e.g., sections XZ 753, XY 491).

The fenestra vestibuli opens well below the lateral ampulla. It opens perpendicular with respect to the external aperture of the cochlear fossula, as in Seggeurius (Benoit et al. 2015). It is elliptical with a high stapedial ratio of 2.05. A high stapedial ratio value is also found in Protungulatum (2.1) and Cretaceous eutherians such as Kulbeckia (2.0). The stapedial ratio is lower in most paenungulates, even in the primitive genera such as Eritherium (1.57), Phosphatherium (1.62), Numidotherium (1.8) and Seggeurius (1.79). A high stapedial ratio might correspond to the primitive placental and eutherian condition [START_REF] Segall | Morphological parallelisms of the bulla and auditory ossicles in some insectivores and marsupials[END_REF][START_REF] Macrini | Inner ear of a notoungulate placental mammal: anatomical description and examination of potentially phylogenetically informative characters[END_REF]), but there is some variation amongst placentals [START_REF] Ruf | Digital reconstruction of the inner ear of Leptictidium auderiense (Leptictida, Mammalia) and North American leptictids reveals new insight into leptictidan locomotor agility[END_REF]. For instance, a high value of stapedial ratio is seen in some paenungulates such as the indeterminate sirenian from Chambi (1.95) and the extant genera Dendrohyrax (2.5; Benoit et al. 2015) and Procavia (2.1).

Although smaller than the external aperture of the cochlear fossula, the fenestra vestibuli is 14 rather large, especially relative to paenungulates such as proboscideans (Table 1). This is the generalized condition and this is distinctive from Phosphatherium and Numidotherium (Schmitt & Gheerbrant, 2016). The external aperture of the cochlear fossula is large and postero-medially located with respect to the f. vestibuli. Its outline is noticeably elongated dorso-ventrally.

The cochlear canaliculus (perilymphatic duct) is well separated (distant) from the external aperture of the cochlear fossula, with an opening on the dorsal face of the cochlea. It is long and extends postero-dorso-medially. A posterior orientation of this canal is also observed in the zhelestids and in Protungulatum. The canal is large in diameter with respect to many placentals (e.g., Notostylops, Protungulatum), but similar to some marsupials [START_REF] Schmelzle | Vestibular labyrinth diversity[END_REF]). Its cross-section is larger than that of the semicircular canals, and its opening enlarges nearly as the size of the external aperture of the cochlear fossula.

The aqueductus vestibuli (endolymphatic canal) is quite distinct. It originates from the vestibule just medial and anterior to the crus commune, as in zhelestids, Alcidedorbignya and Protungulatum. From the vestibule, it extends postero-dorsally, parallel to the crus commune to which it is closely appressed. Its base is bulged as in Protungulatum. It is very thin on most of its length, with a diameter much smaller than that of the semicircular canals. The cochlear size was shown to be related to the hearing sensitivity in mammals (e.g., [START_REF] West | The relationship of the spiral turns of the cochlea and the length of the basilar-membrane to the range of audible frequencies in ground dwelling mammals[END_REF][START_REF] Kirk | Cochlear labyrinth volume and hearing abilities in primates[END_REF]. We followed the predictive equations of [START_REF] West | The relationship of the spiral turns of the cochlea and the length of the basilar-membrane to the range of audible frequencies in ground dwelling mammals[END_REF] and Meng & Fox (1995) to estimate the frequency range of the hearing in extant and fossil mammals based on the dimensions of the cochlea. Our calculations based on these equations indicate that the range of audible frequencies of Ocepeia daouiensis is between 29.5 and 0.12 kHz at 60dB sound pressure level (number of cochlear coils: 2.125; length of cochlea: 19.2 mm; see Table 2).

By comparison to the values recorded by Meng & Fox (1995: Fig. 6), Ocepeia daouiensis is characterized by an intermediate sensitivity for low frequency sounds, between the lower limit of extant placental mammals and the higher limit of Cretaceous therian mammals studied by Meng & Fox (1995, Fig. 6). The low-frequency hearing limit of Ocepeia is also significantly lower than that in Protungulatum (1.21 kHz in Orliac & O 'Leary, 2016). Ocepeia consistently has a longer basilar membrane (cochlear canal length) than in Cretaceous eutherians and

Protungulatum. In addition, the weak development in width of the secondary bony lamina in Ocepeia agrees with a relative sensitivity for low frequency sounds. The low-frequency hearing limit of Ocepeia calculated following [START_REF] Manoussaki | The influence of cochlear shape on low-frequency hearing[END_REF] is 0.548 kHz (at 60 dB) which is higher than value calculated following [START_REF] West | The relationship of the spiral turns of the cochlea and the length of the basilar-membrane to the range of audible frequencies in ground dwelling mammals[END_REF] and Meng & Fox (1995) and close to Diacodexis (Orliac & O'Leary 2012). However, the reliability of the procedure of [START_REF] Manoussaki | The influence of cochlear shape on low-frequency hearing[END_REF] was questioned (e.g. Orliac & O'Leary 2016). Ocepeia also has lower value of the upper-frequency limit with respect to those of the Cretaceous therians studied by Meng & Fox (1995, Fig. 6).

We calculated the same hearing frequency range of Ocepeia using other published equations by [START_REF] Rosowski | What did Morganucodon hear?[END_REF] and [START_REF] Rosowski | Hearing in transitional mammals: Predictions from the middle-ear anatomy and hearing capabilities of extant mammals[END_REF] based on basilar membranous length (= length of cochlear canal): see Table 2. The resulting hearing range of Ocepeia at 60 dB was between 31.73 and 0.37 kHz. This is similar to the results calculated from [START_REF] West | The relationship of the spiral turns of the cochlea and the length of the basilar-membrane to the range of audible frequencies in ground dwelling mammals[END_REF] method for the high-frequency limit, but higher for the low-frequency limit (at 60 dB SPL). It should be however noted that the relevance of the prediction models of high frequency hearing in mammals such as those of [START_REF] Rosowski | Hearing in transitional mammals: Predictions from the middle-ear anatomy and hearing capabilities of extant mammals[END_REF] have been recently questioned (e.g., [START_REF] Harper | Petrosal morphology and cochlear function in Mesozoic stem therians[END_REF]).

The upper high frequency limit of Ocepeia was also estimated based on the interaural distance (Hefner & Hefner, 2008;[START_REF] Ravel | The inner ear morphology of the 'condylarthran' Hyopsodus lepidus[END_REF]. It provides a value ( dimensions. LF: Low-frequency limit; HF: High-frequency limit. 1. Equation of [START_REF] West | The relationship of the spiral turns of the cochlea and the length of the basilar-membrane to the range of audible frequencies in ground dwelling mammals[END_REF], Meng & Fox (1995), based on basilar membranous length (BML=cochlear canal length) and number of coiling (N); Frequency limits at 60 dB Sound Pressure Level: log(LF) = 1.76-1.66 log(BMLxN); log(HF) = 2.42-0.994 log(BML/N). 2. Equation of [START_REF] Rosowski | What did Morganucodon hear?[END_REF] and [START_REF] Rosowski | Hearing in transitional mammals: Predictions from the middle-ear anatomy and hearing capabilities of extant mammals[END_REF] 

Vestibule of Ocepeia daouiensis

Description and comparisons (Fig. 7)

The semicircular canals of Ocepeia daouiensis are well developed, but with a low value of 1.42 of the mean SCR (Table 3). Such low SCR value is usually found in small mammals, most having a BM much lower than 1 kg [START_REF] Spoor | The primate semicircular canal system and locomotion[END_REF][START_REF] Kemp | Eye size and visual acuity influence vestibular anatomy in mammals[END_REF]) (Fig. 8). It means that the semicircular canals are relatively small in Ocepeia daouiensis relative to its body size.

The ratio of the mean radius (SCR) to the inner ear height (IEH) is 0.25, which supports that the semicircular canals are not reduced relative to the inner ear size by comparison to other placental mammals (e.g., most xenarthrans, litopterns; Billet et al. 2013[START_REF] Billet | Petrosal and inner ear anatomy and allometry amongst specimens referred to Litopterna (Placentalia)[END_REF].

The semicircular canals are noticeably thin with an average thickness ratio of 2.15. In cross-section, the canals have a circular shape. All three semicircular canals display a slight undulation. No ridges were observed on the semicircular canals. The anterior semicircular canal (ASC) is the largest semicircular canal (Table 3), as most usual in mammals [START_REF] Cox | Semicircular canals and agility: The influence of size and shape measures[END_REF] and eutherians (Ekdale & Rowe, 2011), but the difference with the PSC is slight and it is seen mostly in height (=length of some authors). The ASC shape is round. It is slightly curved caudally at the junction of the anterior ampulla. It does not extend much more anteriorly than the anterior ampulla (subvertical connection). The central streamline length of the ASC is 6.87 mm (Table 3) and its average section radius is 0.15 mm.

Therefore, the thickness ratio of this canal is 2.22 making it quite slender.

The lateral semicircular canal (LSC) is the smallest semicircular canal (Fig. 7). Its radius of curvature is smaller than those of the anterior and posterior canals (Table 3). The angle of the coiling axis (modiolus) and the LSC is 112.6°. The LSC shape is oval. The slender part of the lateral semicircular canal is connected to the vestibule at a quite high position, above the PSCvestibule junction and the posterior ampulla. It is partly coalescent with the posterior ampulla and thus forms a partial secondary crus commune. A complete secondary crus commune is known in Cretaceous eutherians, as a plesiomorphic feature (Ekdale & Rowe, 2011). It is also known in several placentals (e.g., [START_REF] Ekdale | Comparative anatomy of the bony labyrinth (inner ear) of placental mammals[END_REF], including in afrotherians and paenungulates such as the proboscidean Phosphatherium and Numidotherium, the sirenian from Chambi, and the macroscelidean Chambius (Schmitt & Gheerbrant, 2016;Benoit et al. 2013aBenoit et al. , 2013d)). The estimated length of the central streamline and the average section radius (0.14 mm) of the lateral canal are similar to the other canals. The thickness ratio of the LSC is slightly lower (2.04) than for the anterior and posterior canals. The LSC is curved dorsally in lateral view, as seen in Diacodexis [START_REF] Ravel | The inner ear morphology of the 'condylarthran' Hyopsodus lepidus[END_REF]. In lateral view the LSC is ventrally canted of about 25° with respect to the skull ventral base (basicranium, esp. basioccipital plane) and skull roof (e.g., sagittal crest) (Fig. 3). The same orientation is observed in the left and right labyrinths, which indicates that it does not result from post-mortem distortion of the petrosals. It means that in

Ocepeia daouiensis, the head was significantly ventrally tilted when the LSC were horizontal (Fig. 3D). A strongly nose-down head posture with horizontally held LSC is observed in several other mammals such as armadillos [START_REF] Coutier | Orientation of the lateral semicircular canal in Xenarthra and its links with head posture and phylogeny[END_REF], Fig. 7) and Plesiorycteropus (Benoit et al. 2015b, Fig. 1). [START_REF] Coutier | Orientation of the lateral semicircular canal in Xenarthra and its links with head posture and phylogeny[END_REF] showed that a high LSC-basicranium angle is also related to some noticeable cranial characters such as strong nuchal crests for strong neck muscles in some xenarthrans, which are indeed also seen in Ocepeia. A high LSC -basicranium angle has also been proposed to be linked to a more ground-level based diet in some large mammals (e.g., rhinos in [START_REF] Schellhorn | A potential link between lateral semicircular canal orientation, head posture, and dietary habits in extant rhinos (Perissodactyla, Rhinocerotidae)[END_REF].

The posterior semicircular canal (PSC) is round (Fig. 7). It extends slightly more distally than the LSC. It also extends in lower position with respect to the LSC (Fig. 7D) by contrast to eutherians such as zhelestids, but much lower than in advanced paenungulates such as Procavia.

The posterior arc of the PSC is slightly curved ventrally. The central streamline length is similar to the value found for the anterior canal although slightly longer (7.49 mm). The average section radius is very similar to the anterior one (0.16 mm). Hence the thickness ratio of the posterior canal (2.18) is very close to the ratio of the anterior canal (2.22). The radius of curvature of the posterior canal is 1.25. The PSC does not extend significantly below the LSC.

The anterior and posterior semicircular canals meet high (at approximately 75% of the height of the anterior canal). Hence, the crus commune of the ASC and PSC is elongated (longer than the half height of the PSC), although less long than in generalized eutherians such as zhelestids and Zalambdalestes (Ekdale & Rowe, 2011). In lateral view, with the LSC oriented horizontal, the crus commune is noticeably inclined posteriorly as in zhelestid eutherians and in Protungulatum; this is a likely plesiomorphic disposition for placentals. The crus commune in Ocepeia has no marked basal thickening, and it is smooth without ridges. The average section radius of the crus commune of Ocepeia is small (0.30 mm) and its length is approximately 1.75 mm. Therefore, Ocepeia has a crus commune with a relatively low thickness ratio (17.35).

The ampullae of Ocepeia are well-defined and inflated (Fig. 7). They are smooth and display no ridges. The anterior ampulla is the most inflated and largest one. There is a distinct canal for nervus ampullaris posterior (a branch of the vestibular nerve), that diverges from the posterior ampulla and is directed anteriorly. It corresponds to the bony channel issued from the foramen singulare.

The angles of semicircular canals in Ocepeia do not show strong deviation with respect to the orthogonal orientation (Table 3), as in zhelestids. The greater deviation from the orthogonal orientation is found in the angle between the ASC and LSC (Table 3). We calculated the angle variance index from 90° of the three semicircular canals of Ocepeia following Malinzak et al.

(2012) and [START_REF] Ruf | Digital reconstruction of the inner ear of Leptictidium auderiense (Leptictida, Mammalia) and North American leptictids reveals new insight into leptictidan locomotor agility[END_REF] as log90 var = 1, 57.

On the vestibule, the spherical recess for the saccule and the elliptical recess for the utricle form quite distinct but connected bulgings below the ASC (Fig. 7C). The condition of Ocepeia is similar to Chriacus, Protungulatum and Diacodexis [START_REF] Bertrand | Virtual endocranial and inner ear endocasts of the Paleocene 'condylarth' Chriacus: new insight into the neurosensory system and evolution of early placental mammals[END_REF]). According to [START_REF] Bertrand | Virtual endocranial and inner ear endocasts of the Paleocene 'condylarth' Chriacus: new insight into the neurosensory system and evolution of early placental mammals[END_REF] this morphology corresponds to "distinct, but not separated, chambers" of utricle and saccule (their character 15-2). The position of the elliptical recess (and its chamber) for the utricle is closer to the anterior end of the ASC than to its posterior end 

(

Functional characters of the semicircular canals of Ocepeia daouiensis

The value of the variance from orthogonality of the semicircular canals in Ocepeia daouiensis falls within the range shown by primates with medium head angular velocity magnitude (AVM).

However, the poorly known intraspecific variation of the vestibular shape (e.g., [START_REF] Billet | High morphological variation of vestibular system accompanies slow and infrequent locomotion in three-toed sloths[END_REF][START_REF] Perier | Different level of intraspecific variation of the bony labyrinth morphology in slow-versus fast-moving primates[END_REF][START_REF] Gonzales | Intraspecific variation in semicircular canal morphology-A missing element in adaptive scenarios?[END_REF]) raises questions on the functional interpretation of the angular variation of the semicircular canals in mammals [START_REF] Ruf | Digital reconstruction of the inner ear of Leptictidium auderiense (Leptictida, Mammalia) and North American leptictids reveals new insight into leptictidan locomotor agility[END_REF], and especially in fossil taxa. Benson et al. (2016) have also shown that the semicircular canals angles of birds strongly deviate from orthogonality and thus do not follow the trend suggested by [START_REF] Malinzak | Locomotor head movements and semicircular canal morphology in primates[END_REF] for agile mammal taxa. Hence, the variation of the SC deviation from orthogonality certainly requires further study in extant mammals before stating on its potential functional meaning. **estimation = minimal size). Predictive allometric equations from [START_REF] Damuth | Problems in estimating body masses of archaic ungulates using dental measurements[END_REF], [START_REF] Damuth | Body Size in Mammalian Paleobiology[END_REF] for all ungulates, selenodonts, and selenodont browsers.

The best estimates (see [START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF] [START_REF] Spoor | The primate semicircular canal system and locomotion[END_REF] have proposed a link between the agility of mammals and the size of their semicircular canals (radius of curvature, SCR) relative to their body mass. They designed predictive equations of agility categories ("agility score") that could be used to infer the locomotory behaviour of extinct taxa (see also [START_REF] Silcox | Semicircular canal system in early primates[END_REF]). However, criticism has been expressed on the subjectivity of the defined agility categories, on the weakness of the link between SCR and agility and on the simplistic view that one morphological parameter of the SC could suffice to predict agility (e.g., [START_REF] David | Motion from the past. A new method to infer vestibular capacities of extinct species[END_REF][START_REF] David | Assessing morphology and function of the semicircular duct system: introducing new in-situ visualization and software toolbox[END_REF][START_REF] Malinzak | Locomotor head movements and semicircular canal morphology in primates[END_REF]). The significance of the "agility score" inferred from the semicircular canals size is indeed debated [START_REF] Graf | Le système vestibulaire: anatomie fonctionnelle et comparée, évolution et développement[END_REF][START_REF] Kemp | Eye size and visual acuity influence vestibular anatomy in mammals[END_REF][START_REF] David | Assessing morphology and function of the semicircular duct system: introducing new in-situ visualization and software toolbox[END_REF][START_REF] Benson | Comparative analysis of vestibular ecomorphology in birds[END_REF][START_REF] Gonzales | Intraspecific variation in semicircular canal morphology-A missing element in adaptive scenarios?[END_REF]. In particular, [START_REF] Kemp | Eye size and visual acuity influence vestibular anatomy in mammals[END_REF] evidenced a more significant relation of the variance of the semicircular canal size with those of the eye size and visual acuity. They showed that once variance linked to body mass is removed, larger semicircular canals are found in mammals with large eyes and higher visual acuity.

For these reasons, we do not discuss the significance for locomotion of the "agility scores" calculated for Ocepeia daouiensis (Fig. 8). Instead, we plotted the mean radius of curvature of the semicircular canals (SCR) and the body mass (BM in grams) in a graph containing a wealth of mammalian species as previously studied and figured by [START_REF] Spoor | The primate semicircular canal system and locomotion[END_REF]. The mean body mass of Ocepeia daouiensis was estimated as 3.5 kg (Table 4) based on the length of M1-3, of M3 and of the skull [START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF]). In the graph depicted in figure 8, Ocepeia plots at very low SCR values, close to extant sloths. For the sake of comparison, we added several extant afrotherians to the [START_REF] Spoor | The primate semicircular canal system and locomotion[END_REF] dataset. It shows that the insectivore-like afrotherians such as tenrecs and golden moles (tenrecoideans) share with Ocepeia a small labyrinth with respect to other mammals with similar body mass. This shows that both Ocepeia and some tenrecoideans share small semicircular canals relative to their body mass, and in fact also small inner ears and petrosals (at least for Ocepeia, see above). It is difficult to evaluate the size of the eyes in Ocepeia, but a gross estimate based on the morphology and relative size of the orbit [START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF], as preserved in MNHN.F.PM45, indicates rather small eyes relative to body mass (Kemp & Kirk, 2014, table 1), with an estimated eye diameter around 15 mm. Ocepeia seems indeed to fit well with [START_REF] Kemp | Eye size and visual acuity influence vestibular anatomy in mammals[END_REF] model that links relatively reduced semicircular canals and small eyes. The distribution of the small eyes character state in afrotherians and its phylogenetic significance remain to be investigated. 

Discussion

One remarkable feature of Ocepeia is the small size of its petrosal (pars cochlearis and pars canalicularis) and inner ear with respect to the skull and body size. The significance of a small petrosal remains poorly known. However, and interestingly, we found that the semicircular canals are also relatively small in tenrecoidean afrotherians which might be a shared phylogenetic feature. A relatively small petrosal and labyrinth may be original and derived within placentals, although more investigation is needed within this group. Its evolutionary state within afrotherians remains uncertain (see below).

Our comparisons evidence the mostly plesiomorphic morphology of the petrosal of Ocepeia among placentals, especially for the labyrinth; most noticeable symplesiomorphies are reported in Table 5. This is congruent with the skull morphology of Ocepeia [START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF]) that resembles the stem eutherian pattern in many characters.

The ancestral morphotype of the bony labyrinth of the Afrotheria and Paenungulata was previously characterized based on extant species [START_REF] Ekdale | Comparative anatomy of the bony labyrinth (inner ear) of placental mammals[END_REF]. Recent important fossil discoveries in the Paleogene of Africa provided new key data on the morphology of early afrotherians, especially with the Selandian and Ypresian proboscideans Eritherium and Phosphatherium (Schmitt & Gheerbrant, 2016), the early/middle Eocene hyracoid Seggeurius (Benoit et al. 2015a), the unnamed early/middle Eocene sirenian from Chambi (Benoit et al. 2013a), the early/middle Eocene macroscelidean Chambius (Benoit et al. 2013b), and the Oligocene embrithopod Arsinoitherium (Benoit et al. 2013c). The paenungulatomorph Ocepeia [START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF] adds to these early taxa and further helps to enlighten the ancestral labyrinthine morphology of the Paenungulata. It confirms several ancestral features inferred by Ekdale (2013) (Table 5: 1, 2, 7, 9) for the afrotherians. However, it also shows that the afrotherian and paenungulatomorph labyrinth morphotypes were closer to the eutherian morphotype in several characters listed in Table 5. In particular, the relative cochlear volume ( [START_REF] Ekdale | Comparative anatomy of the bony labyrinth (inner ear) of placental mammals[END_REF]. However, this character is subject to significant individual variation (e.g., Schmitt 2016) which reduces its phylogenetic value. The large and inflated tegmen tympani is derived with respect to stem eutherians and it is a remarkable shared trait with paenungulates (Schmitt & Gheerbrant, 2016). However, this trait is known in other placentals. A large and/or inflated tegmen tympani is known in some early euungulates (Ciffelli, 1982), artiodactyls (O' Leary, 2010) and some South American extinct euungulates such as litopterns and notoungulates [START_REF] Billet | Petrosal and inner ear anatomy and allometry amongst specimens referred to Litopterna (Placentalia)[END_REF][START_REF] Billet | External and internal anatomy of a petrosal from the late Paleocene of Itaboraí, Brazil, referred to Notoungulata (Placentalia)[END_REF]. It is unknown 1) if the state is exactly homologous in these taxa, and 2) if this is a convergent trait of the Paenungulatomorpha and other placentals. The distribution of this feature and its states among placentals actually need to be further investigated. Similarly, the large and distally extended mastoid process is derived with respect to eutherians. A large mastoid process is also known in proboscideans [START_REF] Gheerbrant | Nouvelles données sur Phosphatherium escuilliei (Mammalia, Proboscidea) de l'Eocène inférieur du Maroc, apports à la phylogénie des Proboscidea et des ongulés lophodontes[END_REF], but the distribution of this feature within other Paenungulata remains poorly known.

A remarkable feature of Ocepeia is the dorsoventral orientation of the large canal for the ramus superior. It may represent a derived feature, although here again it remains to be investigated in a larger sample of extinct and extant placentals. The thick medial caudal tympanic process described in Ocepeia is shared with Seggeurius in which it is called "a swelling on the septum metacochleare" (Benoit et al. 2015a). The latter was interpreted as a possible synapomorphy of the Sirenia and Hyracoidea (Benoit et al. 2015a). Its presence in Ocepeia argues for a more generalized feature within paenungulatomorphs. Finally, the distinct but still connected chambers of the utricle and saccule and the position of the utricle closer to anterior end of ASC seen in Ocepeia correspond to two derived features within placentals according to [START_REF] Bertrand | Virtual endocranial and inner ear endocasts of the Paleocene 'condylarth' Chriacus: new insight into the neurosensory system and evolution of early placental mammals[END_REF]characters 15-2, 16-2). They suggested that these two traits support relationships of The relatively small petrosal (pars cochlearis and pars canalicularis) and its labyrinth might be a basal afrotherian synapomorphy retained in tenrecoideans and in Ocepeia, and lost in crown paenungulates and in other afroinsectiphilians. This hypothesis is favoured against the alternative one of an exclusive synapomorphy of the tenrecoideans and Ocepeia because it is consistent with the paenungulates relationships of Ocepeia (clade Paenungulatomorpha) supported by a large set of other craniodental features [START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF][START_REF] Gheerbrant | Convergence of Afrotherian and Laurasiatherian Ungulate-Like Mammals: First Morphological Evidence from the Paleocene of Morocco[END_REF][START_REF] Gheerbrant | Early African Fossils Elucidate the Origin of Embrithopod Mammals[END_REF]. The distribution among placentals of a relatively small labyrinth and petrosal as seen in Ocepeia, and its phylogenetic significance remain, however, to be investigated in a cladistic analysis.

Several plesiomorphic traits of Ocepeia are also found in early crown paenungulates (Table 5: 1, 2-5, 8-11, 15, 18). The petrosal and bony labyrinth of early crown paenungulates is as a whole poorly specialized with respect to known stem paenungulates (paenungulatomorphs) such as Ocepeia. This is especially true for the earliest known one, Eritherium (Schmitt & Gheerbrant, 2016). 

Conclusion

The labyrinth morphology indicates that Ocepeia has a nose-down head posture when the LSC is held horizontally. The functional study of the cochlea evidences a higher sensitivity for low frequency sounds and a lower sensitivity for high frequency sounds of the hearing of Ocepeia with respect to Cretaceous eutherians. The petrosal of Ocepeia shows some remarkable traits such as its relatively small pars cochlearis, pars canalicularis, and labyrinth (esp. SCs), a large wing-like pars mastoidea, a large and inflated tegmen tympani, and the dorsoventral orientation of the large canal for the ramus superior. The relative small size of the SCs and petrosal is shown to be an interesting shared trait with tenrecoidean afrotherians.

Ocepeia further shows that the ancestral morphotype of the petrosal and labyrinth in the Paenungulatomorpha retained many plesiomorphic features of the generalized eutherian pattern. This is in fact true for the whole skull morphology of Ocepeia [START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF]. It is also consistent with the plesiomorphic morphology of the earliest known proboscidean Eritherium found in the same Selandian Ouled Abdoun phosphate beds [START_REF] Gheerbrant | Paleocene emergence of elephant relatives and the rapid radiation of African ungulates[END_REF]Schmitt & Gheerbrant, 2016). In this regard Ocepeia is among the very few available fossils documenting morphological features at the base of the Paenungulata and Afrotheria that should help to further test the relationships of the major clades diverging at the placental root, which are currently mostly based on molecular data (e.g., [START_REF] Madsen | Parallel adaptive radiations in two major clades of placental mammals[END_REF][START_REF] Murphy | Molecular phylogenetics and the origins of placental mammals[END_REF][START_REF] Springer | Molecules consolidate the placental mammal tree[END_REF][START_REF] Foley | Mammal madness: is the mammal tree of life not yet resolved?[END_REF]. The formal phylogenetic significance of the labyrinthine features of early crown and stem paenungulates such as Ocepeia remains to be tested with a phylogenetic analysis. [START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF][START_REF] Gheerbrant | Convergence of Afrotherian and Laurasiatherian Ungulate-Like Mammals: First Morphological Evidence from the Paleocene of Morocco[END_REF][START_REF] Gheerbrant | Early African Fossils Elucidate the Origin of Embrithopod Mammals[END_REF]. Table 1. Measurements of the cochlea and fenestrae of the bony labyrinth of Ocepeia daouiensis

F

(mm)
Table 2. Estimation of the hearing frequency range of Ocepeia based on its labyrinth dimensions. LF: Low-frequency limit; HF: High-frequency limit. 1. Equation of [START_REF] West | The relationship of the spiral turns of the cochlea and the length of the basilar-membrane to the range of audible frequencies in ground dwelling mammals[END_REF], Meng & Fox (1995), based on basilar membranous length (BML=cochlear canal length) and number of coiling (N); Frequency limits at 60 dB Sound Pressure Level: log(LF) = 1.76-1.66 log(BMLxN); log(HF) = 2.42-0.994 log(BML/N). 2. Equation of [START_REF] Rosowski | What did Morganucodon hear?[END_REF] and [START_REF] Rosowski | Hearing in transitional mammals: Predictions from the middle-ear anatomy and hearing capabilities of extant mammals[END_REF], based on basilar membraneous length (BML); frequency limits at 60 dB Sound Pressure Level: log(LF)=13(BML-1.2); log(HF) = 391 (BML -0.85). 3. Equation of Hefner & Hefner (2008): log of high-frequency limit = -0.4381 x log (functional interaural delay) + 2.7137); with functional interaural delay (microseconds)= interaural distance/0.3434 (see also [START_REF] Ravel | The inner ear morphology of the 'condylarthran' Hyopsodus lepidus[END_REF]. 4. Equation of [START_REF] Manoussaki | The influence of cochlear shape on low-frequency hearing[END_REF] for calculation of lowfrequency hearing limit based on the radii ratio (p) of the cochlea: LF = 1.507exp. [-0.578(p-1)]. **estimation = minimal size). Predictive allometric equations from [START_REF] Damuth | Problems in estimating body masses of archaic ungulates using dental measurements[END_REF], [START_REF] Damuth | Body Size in Mammalian Paleobiology[END_REF] for all ungulates, selenodonts, and selenodont browsers. The best (i.e., lower)

estimates are in bold (mean for all ungulates = 3.5 kg; see text).

Table 5. Plesiomorphic features of Ocepeia, with indication of the putative ancestral morphotype taxonomic rank and primary reference inferring character polarity within mammals. . Abbreviations: aav, external aperture of the vestibular aqueduct; ab. X n.?, possible notch/sulcus for the auricular branch of the vagus nerve (X); acan n, notch housing the external aperture of the cochlear canaliculus; acf, external aperture of the cochlear fossula; br., broken area; cp, crista parotica; fai, foramen acusticum inferius; fas, foramen acusticum superius; fi, fossa incudis; fs, facial sulcus; fsa, fossa subarcuata; fv, fenestra vestibuli; hf, hiatus Fallopii; iam, internal auditory meatus; ips, sulcus for the inferior petrosal sinus; mctp, medial caudal tympanic process; mfe, medial flattened edge; mp, mastoid part of the petrosal; pfc, prefacial commissure; pps, postpromontorial tympanic sinus; pts?, possible postemporal sulcus; rsup c, canal for the ramus superior (of the stapedial artery); rtp, rostral tympanic process; sff, secondary facial foramen; smn, stylomastoid notch; ttf, tensor tympani fossa; stf, stapedial fossa; stb?, possible sulcus for temporal branch; stf, stapedial fossa; thyl, tympanohyal; tt, tegmen tympani. , broken area; cp, crista parotica; er, epitympanic recess; fai, foramen acusticum inferius; fas, foramen acusticum superius; fi, fossa incudis; fs, facial sulcus; fsa, fossa subarcuata; fv, fenestra vestibuli; hf, hiatus Fallopii; iam, internal auditory meatus; ips, sulcus for the inferior petrosal sinus; mctp, medial caudal tympanic process; mfe, medial flattened edge; mp, mastoid part of the petrosal; pfc, prefacial commissure; pps, postpromontorial tympanic sinus; pts?, possible postemporal sulcus; rsup c, canal for the ramus superior (of the stapedial artery); rtp, rostral tympanic process; sff, secondary facial foramen; stb?, possible sulcus for temporal branch; stf, stapedial fossa; ttf, tensor tympani fossa; thyl, tympanohyal; tt, tegmen tympani. 

  , institutional abbreviations OCP DEK/GE: Collections of the Office Chérifien des Phosphates, Khouribga, Morocco MNHN.F: fossil collection of the Museum National d'Histoire Naturelle, France. STIPB: Steinmann Institut Paläontologie Bonn.

  AbbreviationsASC: anterior semicircular canal, LSC: lateral semicircular canal, PSC: posterior semicircular canal, SC: semicircular canal.

  . Figures 4-5 provide detailed views of the petrosal. The petrosal index size measured following Billet et al. (2015) is 8.44 mm. The main features of the middle ear were previously described by Gheerbrant et al. (2014) -only new observed anatomical characters are described and compared below.

  (IEH) of Ocepeia (Table

  -576°), Prorastomus (550°) and Seggeurius (688°), and also some Paleocene placentals such as Protungulatum (553°), Carsioptychus (600°) and the pantodont Alcidedorbignya (540°) have a less coiled cochlea, with less than two turns.

  The secondary bony spiral lamina is a little shorter along the cochlear canal in Phosphatherium, and more so in other crown placentals such as Notostylops, Hyopsodus and Diacodexis. The width of the secondary bony spiral lamina within the cochlear canal is very small (width from lateral wall of cochlear canal of about 0.1 mm). The secondary bony spiral lamina is located high (dorsal) on the cochlear canal, indicating asymmetric development of the scalae. The horizontal (XZ 740-760) and transverse (coronal) sections (XY 489) show indeed

  euungulates such as the Artiodactyla. Nevertheless, Ocepeia demonstrates a wider distribution of these features among placentals which are occurring at least in paenungulatomorphs and euungulates.

Fig. 2 .

 2 Fig. 2. Measurement protocol of the endocast of the inner ear of Ocepeia daouiensis.

Fig. 3 .

 3 Fig. 3. 3D digital model of the skull MNHN.F.PM45 of Ocepeia daouiensis showing by transparency the petrosal and labyrinth, and the skull posture with the lateral semicircular canal horizontally held (E, F, G).

Fig. 4 .

 4 Fig. 4. 3D digital model of the petrosals of Ocepeia daouiensis, skull specimen MNHN.F.PM45.

Fig. 6 .Fig. 7 .

 67 Fig. 6. 3D digital model of the petrosals of Ocepeia daouiensis, specimen MNHN.F.PM45, with the labyrinth by transparency.

Fig. 8 .

 8 Fig. 8. Graphical relationship between the size of the semicircular canals (SCR, radius of curvature) versus body-mass (BM), with the indication of agility estimates in various mammals as measured and compiled by Spoor et al. (2007). Measurements for Ocepeia daouiensis, and several extant afrotherians such Orycteropus, Macroscelides, Rhynchocyon, Procavia, Dendrohyrax, Potamogale, Tenrec, Tenrec, Chrysochloris, Hemicentetes were added to the dataset (silhouettes from PhyloPic website) (see SuppDataS3). This diagram shows that Ocepeia and the insectivore-like afrotherians (Tenrecoidea) are characterized by a relative small size of the semicircular canals with respect to other mammals of the same body mass.

Fig. 1 .Fig. 2 .Fig. 3 .Fig. 4 .

 1234 Fig. 1. Simplified cladogram showing the phylogenetic relationships of Ocepeia within Afrotheria (after[START_REF] Gheerbrant | Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal[END_REF][START_REF] Gheerbrant | Convergence of Afrotherian and Laurasiatherian Ungulate-Like Mammals: First Morphological Evidence from the Paleocene of Morocco[END_REF][START_REF] Gheerbrant | Early African Fossils Elucidate the Origin of Embrithopod Mammals[END_REF].

Fig. 5 .

 5 Fig. 5. 3D digital model of the petrosals of Ocepeia daouiensis, skull specimen MNHN.F.PM45. (A), lateral view; (B), lateral view with transparency of the petrosal, and with the canal for the ramus superior of the stapedial artery highlighted; (C), cerebellar view; (D), dorsal view. Scale-bar: 4mm Abbreviations: aav, external aperture of the vestibular aqueduct; ab. X n.?, possible notch/sulcus for the auricular branch of the vagus nerve (X); acan n, notch housing the external aperture of the cochlear canaliculus; acf, external aperture of the cochlear fossula; br., broken area; cp, crista parotica; er, epitympanic recess; fai, foramen acusticum inferius; fas, foramen acusticum superius; fi, fossa incudis; fs, facial sulcus; fsa, fossa subarcuata; fv, fenestra vestibuli; hf, hiatus Fallopii; iam, internal auditory meatus; ips, sulcus for the inferior petrosal sinus; mctp, medial caudal tympanic process; mfe, medial flattened edge; mp, mastoid part of the petrosal; pfc, prefacial commissure; pps, postpromontorial tympanic sinus; pts?, possible postemporal sulcus; rsup c, canal for the ramus superior (of the stapedial artery); rtp, rostral tympanic process; sff, secondary facial foramen; stb?, possible sulcus for temporal branch; stf, stapedial fossa; ttf, tensor tympani fossa; thyl, tympanohyal; tt, tegmen tympani.

Fig. 6 .Fig. 7 .Fig. 8 .

 678 Fig. 6. 3D digital model of the petrosals of Ocepeia daouiensis, specimen MNHN.F.PM45, with the labyrinth by transparency. (A), right petrosal in cerebellar view; (B), left petrosal in cerebellar view; (C), right petrosal in anterior view; (D), left petrosal in anterior view; (E), right petrosal in tympanic view; (F), left petrosal in tympanic view. In red the labyrinth, in green the canal for the ramus superior (of the stapedial artery) within the tegmen tympani. Scale-bar: 4mm

F

  

  

  

  

  

  

  

Table 1 :

 1 Measurements of the cochlea and fenestrae of the bony labyrinth of Ocepeia daouiensis (mm)

	Cochlea of Ocepeia daouiensis	
	Volume of the labyrinth	17.5 mm 3
	Volume of cochlea	11.65 mm 3
	IEH Inner Ear Height	5.69 mm
	PET size	8.44 mm
	Number of coils	2.13 (765°)
	Relative volume of the cochlea	66%
	Length of cochlear canal	19.2 mm
	Stapedial ratio	2.05
	Ext. apert. coc. fossul. area	0.312 mm 3
	Aspect ratio	0.72
	Max Width of cochlea (diameter)	3.55 mm
	Max Height of cochlea	2.1 mm

Table 2

 2 of the secondary bony lamina to the cochlea first turn indicates that Ocepeia obviously was not specialised for high frequency hearing.

	although the restriction
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) in the range of ultrasounds sensitivity (sound frequencies > 20 kHz, e.g.

[START_REF] Ravel | The inner ear morphology of the 'condylarthran' Hyopsodus lepidus[END_REF]

,

Table 2 :

 2 Estimation of the hearing frequency range of Ocepeia based on its labyrinth

  , based on basilar membraneous length (BML); frequency limits at 60 dB Sound Pressure Level: log(LF)=13(BML -1.2 ) ; log(HF) = 391 (BML -0.85 ). 3. Equation of Hefner & Hefner (2008): log of high-frequency limit = -0.4381 x log (functional interaural delay) + 2.7137); with functional interaural delay (microseconds)= interaural distance/0.3434 (see also[START_REF] Ravel | The inner ear morphology of the 'condylarthran' Hyopsodus lepidus[END_REF]. 4. Equation of[START_REF] Manoussaki | The influence of cochlear shape on low-frequency hearing[END_REF] for calculation of low-frequency hearing limit based on the radii ratio (p) of the cochlea: LF = 1.507exp.[-0.578(p-1)].

	Equations bases	LF	HF (kHz) Comments
		(kHz)		
	1 Basilar membranous length (BML=cochlear canal	0.1219	29.4980 BML= 19.2 mm
	length) and number of coiling (N)			N= 2.125
	2 Basilar membraneous length (BML)	0.3749	31.7227 BML= 19.2 mm
	3 Interaural distance (ID) and delay	--	72.9805 ID= 30 mm
	4 Radii ratio (p= Rbase/Rapex).	0.5481	--	p= 2.75

Table 3a :

 3a Dimensions of the semicircular canals of Ocepeia daouiensis

	Angle ASC/PSC	91.6°A
	ngle ASC/LSC	80.1°A
	ngle PSC/LSC	87.8°L
	ength of crus commune	1.75 mm
	Crus commune average section radius	0.30 mm
	Crus commune average thickness ratio	17.4
	Table 3b: Width (W) and height (H) of the semicircular canals of Ocepeia daouiensis (in mm;
	measurement extending to mid canal section)
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[START_REF] Bertrand | Virtual endocranial and inner ear endocasts of the Paleocene 'condylarth' Chriacus: new insight into the neurosensory system and evolution of early placental mammals[END_REF]

).

Table 3c :

 3c Radius of curvature and other measurements of the semicircular canals of Ocepeia

	Left labyrinth Right labyrinth	ASC W F ASC H 3.26 3.01 3.12 3.06 o r	PSC W 3.05 2.77 2.38 2.63 PSC H LSC W LSC H 3.05 2.83 2.41 2.61
		P
		e e r
	ASC PSC LSC Mean 1.52 1.50 1.25 1.42 R e v 6.87 7.49 6.79 7.05 2.22 2.18 2.04 2.15 Average cross-section diameter 0.15 0.16 0.14 0.15 Radius of curvature (mean right and left labyrinths; mm) Central streamline length (slender part; mm) Average thickeness ratio i e w
			O n
			l
			y
			20

daouiensis. Radius of curvature calculated following the Spoor-Zonneveld equation

[START_REF] Spoor | Comparative review of the human bony labyrinth[END_REF]

: R= ((H+W)/2) x 0.5, with H= height and W = width of the canals

Table 4 .

 4 Body mass estimates of Ocepeia daouiensis in grams (*mean of upper and lower teeth;

  are in bold (mean for all ungulates = 3.5 kg; see text).

	Measurements base	All ungulates	Selenodont	Selenodont
			s	browsers
	Area M1*	9306,15	8769,99	7881,27
	Area M2*	7556,50	7130,07	6358,69
	Area M3*	5756,35	5188,77	4830,70
	Length M1*	6924,72	6934,83	6357,63
	Length M2*	4394,59	4037,88	3691,52
	Length M3*	3484,46	2741,06	2687,64
	Length M1-3*	4043,51	3846,18	3417,84
	Skull length**	2950,34	--	--

Table 5

 5 of the cochlea of Ocepeia (0.72) is higher than in non-placental eutherians, several early placentals such as Protungulatum and Alcidedorbignya, and several paenungulates, including early taxa such as Eritherium (0.35), Numidotherium (0.51), Seggeurius (0.48), and Arsinoitherium (0.45). It is close or identical to Chambius, the sirenian from Chambi, and Moeritherium¸ as a likely convergence. The incomplete separation of the posterior arm of the LSC with the PSC is derived with respect to the true secondary crus commune known in eutherians and also in afrotherians and paenungulates (e.g., Phosphatherium, Numidotherium, the sirenian from Chambi, Orycteropus and Chambius). Ocepeia has an intermediate state of the relative position of the PSC and LSC: the posterior arm of the PSC enters the vestibule in lower position with respect to the LSC plane than in eutherians, but it is even lower in more derived placental taxa such as Procavia. The cochlea of Ocepeia is slightly more coiled than in some early paenungulates such as Seggeurius (688°) and Numidotherium (540 to 584°) and several extant afrotherians

	: 8) is greater in Ocepeia (66%) than in the ancestral morphotype reconstructed by
	Ekdale (2013) for paenungulates (56 %), afrotherians (56 %) and placentals (58%). It is actually
	close to the Afroinsectiphilia (64% in Ekdale, 2013), and to stem eutherians, which could
	support it is a generalized feature of the Afrotheria. Another noticeable plesiomorphic trait
	present in Ocepeia is the posteriorly inclined crus commune (Table 5: 6).

With respect to eutherians and afrotherians, few specialized features are identified in Ocepeia. The angle of the cochlea and LSC planes is larger in Ocepeia (60-50°) than in zhelestids (29°-41°), but it remains still smaller with respect to most placentals. The aspect ratio

Table 5 .

 5 Plesiomorphic features of Ocepeia, with indication of the putative ancestral morphotype taxonomic rank and primary reference inferring character polarity within mammals.

	References: (1) Billet et al. (2015), (2) Billet et Muizon (2013), (3) Coutier et al. (2017), (4) Ekdale
	(2013), (5) Ekdale & Rowe (2011), (6) Gheerbrant et al. (2014), (7) Macrini et al. (2007), (8) Macrini et
	al. (2010), (9) Macrini et al. (2013), (10) Meng & Fox (1995), (11) Muizon et al. (2015), (12) Orliac &
	O'Leary (2016), (13) Schmitt & Gheerbrant (2016).	
	#K Structure Character states seen	Hypothetical	References
	in Ocepeia	ancestral	
		morphotype	
	1 Labyrinth Largest SC: ASC	Theria, Eutheria	(1) (4) (9)
	2 Labyrinth Thin semicircular canals Theria, Eutheria	(1) (13)
	3 Labyrinth High Crus Commune	Eutheria	(5)
	4 Labyrinth Ampulla well inflated	Theria, Eutheria	(5)
	5 Labyrinth Crus Commune posteriorly	Theria?, Eutheria	(12)
	canted, far from anterior		
	ampulla		
	6 Labyrinth Cochlea with 2 turns	Placentalia	(5) (10)
	(765°)	convergences	
	7 Labyrinth Cochlea vs labyrinth	Theria, Eutheria	(4)
	volume > 64 %		
	8 Labyrinth Closed angle of cochlea	Theria, Eutheria	(12)
	and LSC planes		
	9 Labyrinth Secondary bony lamina	Theria, Eutheria,	(1)(10) (13)
	present, extended on all	Placentalia?	
	cochlea first turn		
	10 Labyrinth High stapedial ratio	Eutheria	(8)
	(H>1.7)		
	11 Labyrinth Aq. vestibuli located	Eutheria?, Placentalia	(12)
	antero-medial to the crus		
	commune		
	12 Labyrinth Aq. cochlearis posteriorly	Eutheria?	(12)
	oriented		
	13 Labyrinth Fen. vestibuli far ventrally	Eutheria?	(12)
	from lateral ampulla		
	14 Labyrinth Fen. vestibuli large (but	Eutheria	(13)
	smaller than external		
	aperture of the cochlear		
	fossula)		
	15 Labyrinth Spiral turns of cochlea	Eutheria, Placentalia?	(11)
	loosely connected		
	16 Petrosal Large and inflated tegmen	Paenungulatomorpha?	(6)
	tympani	But also known in	
		euungulates such as	
		Meniscotherium,	
		artiodactyls, litopterns,	
		notoungulates	
		(convergences?)	
	17 Petrosal tegmen tympani pierced	Eutheria, Placentalia?	(1) (2) (11)
	by a large canal for the		
	ramus superior		
	18 Petrosal Deep and rounded fossa	Theria, Eutheria	(1) (7) (13)
	subarcuata		

Table 3a .

 3a Dimensions of the semicircular canals of Ocepeia daouiensis.

Table 3b .

 3b Width (W) and height (H) of the semicircular canals of Ocepeia daouiensis (in mm; measurement extending to mid canal section).

Table 3c .

 3c Radius of curvature and other measurements of the semicircular canals of Ocepeia

daouiensis. Radius of curvature calculated following the Spoor-Zonneveld equation

[START_REF] Spoor | Comparative review of the human bony labyrinth[END_REF]

: R= ((H+W)/2/) x 0.5, with H= height and W = width of the canals.

Table 4 .

 4 Body mass estimates of Ocepeia daouiensis (*mean of upper and lower teeth;

Data Set 1. Species mean values used in analyses of semicircular canal dimensions

  Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Billet et al 2015 Benoit et al 2016 + BM from Walker's Mammal of the World 0.346 Benoit et al 2016 + BM from Walker's Mammal of the World 0.518 Benoit et al 2016 + BM from Walker's Mammal of the World 0.153 Benoit et al 2015 + BM from Handbook Mammals of the World 0.059 Benoit et al 2015 + BM from Handbook Mammals of the World -0.135 Benoit et al 2015 + BM from Handbook Mammals of the World (same as C stuhlm -0.051 Ekdale et al 2013 + BM from Handbook Mammals of the World

		Taxon logAGILITY logASCR logPSCR logLSCR logSCR	Order	Family		BM, g	ASCR, mm PSCR, mm LSCR, mm SCR, mm logBM
		Ocepeia				0.152	morphotype VIII			3500 this study	1.42	3.544
		Measurements and Ratios (mm) Macroscelides Potamogale velox MNHN 1898-1576 Tamandua tetradactyla UMCZ E581 Choloepus didactylus UMCZ E81 Megatherium Mimoperadecte s houdei USNM 482355 0.025 sp. MNHN-F-TAR 1291 Alcidorbignya Metatheria Itaborai MNRJ 6735-V (with PET H estimated from other inopinata MHNC 8360 Baioconodon morphotype euth. I Tiupampa MHNC uncatalogued nordicum YPM-PU 14234 Didelphodus morphotype Ruf et al 2016 euth. II Tiupampa MHNC 600 uncatalogued altidens USNM 18369 Deltatherium sp. AMNH 16610 Procavia capensis STIPB M6605 Astrapotherium sp. MNHN-F-SCZ 8 Notoungulata MNHN-F-BRD 23 Notoungulata UFRJ-DG 1039M Elephantimorph 1 TMM 933-950 Leptictis sp. AMNH 80213 Mus musculus STIPB M1082 Sciurus vulgaris STIPB M887 Myocastor coypus GB coll. Erinaceus europaeus STIPB M174 Sorex cinereus STIPB M119 Martes sp. GB coll. Felis chaus ZFMK 2008.214 Panthera tigris sumatrae ZFMK 86.118 Pipistrellus pipistrellus ZFMK 2014.461 Coelodonta antiquitatis STIPB M1655 Diceros bicornis MNHN-ZM-AC 1996.2520 Miguelsoria UFRJ-DG 1036M Miguelsoria UFRJ-DG 1035M Miguelsoria UFRJ-DG 119M Miguelsoria UFRJ-DG 347M Miguelsoria UFRJ-DG 275M Macrauchenia patachonica MNHN-F-PAM 69 Diadiaphorus sp. MNHN-F-SCZ 3 Proterotherium sp. MNHN-F-SCZ 205 Pleuraspidotheri um aumonieri MNHN-F-BR uncatalogued Panameriungula te? GROUP 1 UFRJ-DG 127M Panameriungula te? GROUP 1 UFRJ-DG 1044M Panameriungula te? GROUP 1 UFRJ-DG 354M Panameriungula te? GROUP 2 UFRJ-DG 124M Panameriungula te? GROUP 2 UFRJ-DG 1046M Panameriungula te? GROUP 3 UFRJ-DG 1045M Panameriungula Rhynchocyon 0.289 Ruf et al 2016 Panameriungula te? GROUP 3 uncatalogued Orycteropus afer SMF 15605 60000 UFRJ-DG 125M te? GROUP 4 RHcoll Ocepeia Phosphatheriu m Dendrohyrax 3000 Eritherium Procavia 3800 0.283	1.56 3.53 2.30 2.12	1.30 3.04 1.97 1.66	1.41 3.31 2.38 1.97	1.42 3.29 2.22 1.92	1.732 2.778 2.690 4.778 3.477 3.580
		o r P e e r R e v specimens) 4.41 1.34 6.23 1.43 6.66 2.67 (PET L + W + H) /3 = PET size PET L PET W PET H 5.77 1.81 IEH 4.23 2.32 log PET size 0.76 0.26 log IEH 0.63 0.37 F o r P e e r R e v 8.11 10.71 51.50 5.25 5.55 11.89 11.15 45.10 5.96 5.67 14.76 13.51 54.40 7.80 7.98 11.59 11.79 50.33 6.34 6.40 9.06 8.52 20.37 4.33 4.71 1.06 1.07 1.70 0.80 0.81 0.96 0.93 1.31 0.64 0.67 F o r P e e r R e v 9.10 9.93 20.84 7.03 8.51 9.20 7.98 23.19 6.16 8.95 11.72 9.94 42.71 7.31 9.81 10.01 9.28 28.91 6.83 9.09 5.67 8.08 13.27 5.26 6.15 1.00 0.97 1.46 0.83 0.96 0.75 0.91 1.12 0.72 0.79 F o r P e e r R e v 6.51 3.62 7.99 10.90 5.57 7.21 4.01 5.26 12.50 6.25 8.67 4.16 10.61 17.20 9.54 7.46 3.93 7.95 13.53 7.12 5.33 3.67 6.38 9.45 5.71 0.87 0.59 0.90 1.13 0.85 0.73 0.56 0.80 0.98 0.76 F o r P e e r R e v 8.99 13.25 25.21 2.26 22.40 6.69 9.72 17.94 1.62 30.07 7.79 13.10 19.36 2.25 31.58 7.82 12.02 20.84 2.04 28.02 6.48 8.74 13.60 2.43 14.61 0.89 1.08 1.32 0.31 1.45 0.81 0.94 1.13 0.39 1.16 F o r P e e r R e v 6.84 7.15 6.81 7.51 7.61 7.18 6.18 6.72 7.89 6.86 9.68 8.36 8.63 9.31 9.18 7.90 7.23 7.39 8.24 7.88 5.62 5.61 5.64 6.63 5.69 0.90 0.86 0.87 0.92 0.90 0.75 0.75 0.75 0.82 0.76 F o r P e e r R e v 19.57 15.86 10.81 16.28 13.96 11.55 9.99 10.42 12.45 -24.68 17.76 14.51 17.02 -18.60 14.54 11.91 15.25 13.96 11.05 9.55 6.09 7.32 7.81 1.27 1.16 1.08 1.18 1.14 1.04 0.98 0.78 0.86 0.89 F o r P e e r R e v 9.73 8.67 12.49 14.95 8.22 10.22 6.39 10.03 12.42 9.07 14.73 10.73 15.50 15.49 10.72 11.56 8.60 12.67 14.29 9.34 6.44 5.62 7.09 6.37 6.06 1.06 0.93 1.10 1.15 0.97 0.81 0.75 0.85 0.80 0.78 F o r P e e r R e v 11.88 5.53 9.88 6.89 10.91 8.92 10.89 7.11 7 5 IEH estimated for Eritherium and Phosphatherium (petrosal damaged 1.04 0.85 0.85 0.70 0.40 0.60 0.80 1.00 1.20 1.40 log 'IEH' F o r P e e r R v e log'PET size' vs. log'IEH' y = 0.679x + 0.147 7.23 5.93 9.67 7.61 5.15 0.88 0.71 R 2 = 0.936 F o r P e e r R e v i e w 5.08 4.40 6.65 5.38 3.51 0.73 0.55 5.22 4.64 6.29 5.38 3.77 0.73 0.58 40.00 51.25 56.25 49.17 19.00 1.69 1.28 2.17 2.38 3.62 2.72 3.07 0.44 0.49 30.76 16.00 37.50 28.09 13.49 1.45 1.13 25.97 21.01 38.29 28.42 15.66 1.45 1.19 11.79 11.46 17.82 13.69 7.31 1.14 0.86 8.91 6.29 10.13 8.44 5.65 0.93 0.75 Tenrec ecaudatus UMZCTenrec6 Chrysochloris SMF26853 Hemicentetes semispinosum (in Ekdale 2013) BM, body mass; ASCR, anterior semicircular canal radius; PSCR, posterior semicircular canal radius; LSCR, lateral semicircular canal radius; SCR, average semicircular radius. F o r P e e r R e v i e w	log'PE O n l y 300 1.29 42 0.920 90 1.100 O n l y	1.01 0.660 0.680	1.14 0.620 0.890	1.15 0.73 0.89	2.477 1.623 1.954
						i i i i i i i i i i				
						e w e w e w e w e w e w e w e w e w e w	0.20			
	0.20	0.40	0.60	0.80	1.00	1.20	O O O O O O O O O 0.00 0.00 O 1.60 1.40	1.80	0.20	0.40	0.60
				log 'PET size'		n l y n l y n l y n l y n l y n l y n l y n l y n l y y l n			
					Ocepeia					
					log IEH		0.755				
					log PIMS	0.987				
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