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1  | INTRODUC TION

Selfish genetic elements are biological entities that favor their own 
transmission across generations. Examples include transposons 
that insert copies of themselves at other places in the genome, 

homing endonuclease genes that copy themselves at targeted 
genomic sites, segregation distorters that destroy competing 
chromosomes during meiosis and maternally heritable microor-
ganisms such as Wolbachia that favor progeny of infected females 
(Agren & Clark, 2018). In recent years, researchers have started to 
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Abstract
The probability D that a given clustered regularly interspaced short palindromic 
repeats (CRISPR)-based gene drive element contaminates another, nontarget spe-
cies can be estimated by the following Drive Risk Assessment Quantitative Estimate 
(DRAQUE) Equation: D=(hyb+ transf)×express×cut×flank× immune×nonextinct with 
hyb = probability of hybridization between the target species and a nontarget spe-
cies; transf = probability of horizontal transfer of a piece of DNA containing the gene 
drive cassette from the target species to a nontarget species (with no hybridization); 
express = probability that the Cas9 and guide RNA genes are expressed; cut = prob-
ability that the CRISPR-guide RNA recognizes and cuts at a DNA site in the new 
host; flank  =  probability that the gene drive cassette inserts at the cut site; im-
mune = probability that the immune system does not reject Cas9-expressing cells; 
nonextinct = probability of invasion of the drive within the population. We discuss 
and estimate each of the seven parameters of the equation, with particular emphasis 
on possible transfers within insects, and between rodents and humans. We conclude 
from current data that the probability of a gene drive cassette to contaminate an-
other species is not insignificant. We propose strategies to reduce this risk and call 
for more work on estimating all the parameters of the formula.
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develop clustered regularly interspaced short palindromic repeats 
(CRISPR)-based gene drives, named here gene drive for short, 
with the intention to spread synthetic genetic elements into wild 
populations. Potential applications of gene drives are numerous 
and include the elimination of mosquitoes to fight malaria, Zika, 
and other mosquito-borne diseases, or alternatively the modifi-
cation of mosquitoes from vector to nonvector so that they no 
longer transmit human pathogens (Esvelt, Smidler, Catteruccia, 
& Church, 2014). Applications are not restricted to public health 
issues and also include agriculture, with for instance the elimina-
tion of invasive and pest species such as Drosophila suzukii or the 
suppression of herbicide resistance in weeds (Scott et al., 2018). 
Potential uses of gene drive are also reaching the field of conser-
vation biology, with the targeting of rats (Rattus rattus and Rattus 
norvegicus) in New Zealand (Leitschuh et al., 2018; Rode, Estoup, 
Bourguet, Courtier-Orgogozo, & Débarre, 2019). So far, CRISPR-
based gene drives have only been tested in laboratories or in large 
indoor cages. They have been shown to efficiently boost their own 
transmission in yeasts (DiCarlo, Chavez, Dietz, Esvelt, & Church, 
2015), Drosophila flies (Champer et al., 2017; Gantz & Bier, 2015; 
KaramiNejadRanjbar et al., 2018), mosquitoes (Gantz et al., 2015; 
Hammond et al., 2016; Kyrou et al., 2018), the pathogenic fungus 
Candida albicans (Shapiro et al., 2018) and mice (Grunwald et al., 
2019).

A CRISPR gene drive cassette is a piece of DNA that comprises 
several elements: (a) a gene encoding a guide RNA (gRNA) that can 
recognize a specific target DNA sequence, (b) a Cas9 gene encoding 
a Cas9 endonuclease that can cut DNA at the site specified by the 
gRNA, (c) sequences at the extremities that are homologous to se-
quences flanking the target site, so that the gene drive cassette can 
copy itself at the cleavage site via homology-directed repair, and (d) 
optional sequences, for example conferring a trait of interest such as 
malaria resistance (Esvelt et al., 2014). By converting heterozygotes 
for the gene drive allele into homozygotes, the gene drive cassette 
alters Mendelian transmission and can thus spread into wild popula-
tions. The release in the wild of a few individuals carrying gene drive 
constructs is thus expected to be sufficient to transform an entire 
population after a dozen generations (Deredec, Burt, & Godfray, 
2008). Gene drives can be designed to introduce a phenotype of in-
terest in a targeted population either through the introduction of 
a new gene, or by the inactivation of an endogenous gene via the 
insertion of the gene drive cassette into it (Esvelt et al., 2014). With 
introduced genetic changes that decrease viability or fertility, a gene 
drive can be used to eradicate a targeted population or to reduce its 
size, while with other types of genetic changes, it is possible to alter 
the characteristics of a population.

The possibilities offered to humanity in terms of benefits by 
the new molecular techniques of genome edition CRISPR-Cas are 
innumerable but also associated with risks which should be care-
fully monitored (Zhang, 2019). One obvious risk associated with 
gene drive is that the sequence may escape from the target species 
and spread into other species. Such spillover could have devastat-
ing effects, such as the extinction of a species, or the modification 

of a large number of individuals, with potentially important ecolog-
ical consequences. Compared to natural bacterial CRISPR systems, 
gene drive cassettes are more compact and contain eukaryotic 
cis-regulatory elements, so that they are one step closer to po-
tential contamination of nontarget eukaryote species. The risk of 
gene drives contaminating another species has been mentioned by 
several authors (Benedict et al., 2008; Esvelt et al., 2014; National 
Academies of Sciences & Medicine, 2016; Rode et al., 2019; 
Webber, Raghu, & Edwards, 2015), but to our knowledge, it has not 
been examined in detail. Risk assessment studies classically pres-
ent the value of a risk as a product of two terms: Risk = Probability 
of occurrence  ×  Damage in case of occurrence. The aim of this 
paper is to derive a formula to evaluate the probability of occur-
rence of a drive sequence escaping from the target species and 
contaminating another species. The damage resulting from such 
an unwanted event will obviously depend on the concerned spe-
cies. If it is simply another mosquito, the damage might be limited 
or could even be seen as a serendipitous positive externality. If it 
were a keystone species or humans for instance, damages could 
be very important and hard, not to say impossible to mitigate. This 
paper does not address these questions but concentrates on the 
probability that a drive escapes from the target species and con-
taminates another species. Such an outcome results from a suc-
cession of events, and the probability is thus the product of the 
corresponding conditional probabilities. Certain of these probabil-
ities are still poorly known so that the estimates provided here are 
very rough. However, producing this formula can have two import-
ant effects. First, it can help developers of gene drive technology 
to contemplate the risk associated with their action and consider 
its potential magnitude. Second, it can trigger further research 
for better assessment of these probabilities. A famous example of 
such an approach is the Drake Equation which aimed at estimating 
the number of active, communicative extraterrestrial civilizations 
in the Milky Way galaxy (Burchell, 2006). The equation was written 
in 1961 by Frank Drake, mainly as a way to stimulate scientific di-
alogue. A weakness of the Drake equation is that some factors are 
poorly known. However, it certainly promoted numerous research 
studies and thoughts among scientists.

Here, we examine CRISPR-based gene drives and we review the 
different parameters to be considered to evaluate the risk of transfer 
to another species. We focus on gene drives that can spread auton-
omously and we do not consider here binary systems, whose genetic 
elements are located on different chromosomes. Such binary sys-
tems have been proposed as a solution to prevent contamination of 
nontarget populations. However, they are expected to spread less 
efficiently than autonomous gene drives (Akbari et al., 2015; Esvelt 
et al., 2014).

2  | RESULTS

For a given gene drive construct to contaminate another species, 
six consecutive steps are required (Figure  1). The probability of 
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contamination can be estimated by multiplying the probability of 
occurrence of each event, as defined with the following Drive Risk 
Assessment Quantitative Estimate (DRAQUE) formula:

The bulk probability D of the gene drive to contaminate a non-
target species includes (a) the probability that the given piece of 
DNA passes from the target species to the nontarget species. This 
can occur by hybridization (hyb) or by other means (transf). Then, 
(b) the Cas9 gene and the guide RNA gene have to be expressed in 
the new host, with probability express. A target sequence must then 
be recognized and cut by CRISPR-Cas9 (c) with probability cut. The 
gene drive cassette should insert at the cut site (d) with probability 
flank; the immune system (e) must not eliminate it, with probability 
immune, and finally, it must not be eliminated by stochastic or selec-
tive processes (f) with probability nonextinct.

This formula could be estimated for one given nontarget species. 
However, for ease of estimation and practical purposes, we think 
that it is more relevant to directly define D as the probability that 
at least one nontarget species is contaminated. We examine below 
each term of the DRAQUE formula.

2.1 | Probability of hybridization between the target 
species and a nontarget species (hyb)

The probability that individuals of the target species hybridize with 
a nontarget species and produce fertile progeny has to be evalu-
ated for each target species, as it may vary among species. We treat 
here two taxa for which gene drive technology is most advanced, 
Drosophila flies and Anopheles mosquitoes.

Drosophila suzukii is an invasive pest species originating from 
Southeast Asia that invaded both America and Europe since 2008 
and that attacks ripe fruits (Scott et al., 2018). This species is one 
of the most advanced systems for potential gene drive applica-
tions (Scott et al., 2018). Two closely related species have been 
described, Drosophila pulchrella and Drosophila subpulchrella; they 
are found in Japan, China, India, and Nepal ([Takamori, Watabe, 
Fuyama, Zhang, & Aotsuka, 2006] and references therein). Recent 

genome data suggest that hybridization probably occurred re-
cently between D. suzukii and D. subpulchrella, which diverged 
about 1–9 million years ago (Conner et al., 2017). Furthermore, 
fertile hybrids between D. suzukii and D. subpulchrella have been 
obtained in the laboratory ([Fuyama, 1983], note that D. subpul-
chrella was erroneously named D. pulchrella in the 1983 paper 
[Muto, Kamimura, Tanaka, & Takahashi, 2018]). Because hybrid-
ization between closely related species usually produces hybrids 
with reduced fitness, it can lead to reinforcement, that is, the in-
crease of reproductive isolation as closely related species diverge 
(Turelli, Lipkowitz, & Brandvain, 2014). Given that reinforcement 
is prevalent in Drosophila, one might reasonably speculate that hy-
bridization is common in the wild. Current data thus suggest that 
gene drives targeting D. suzukii may end up in D. subpulchrella/D. 
pulchrella if a gene drive ever reaches areas of contact on the Asian 
continent.

To control malaria with gene drive, two major strategies are cur-
rently being developed. One relies on the reduction or suppression 
of the population of vectors and the other on genetically modifying 
populations of wild vectors so that they no longer transmit patho-
gens. The most technically advanced approach is the one conducted 
by the Consortium Target Malaria aiming at reducing the population 
of several mosquito species of the Anopheles gambiae complex. This 
complex consists of at least 8 species of the Anopheles genus, morpho-
logically indistinguishable and present in sub-Saharan Africa ([Coetzee 
et al., 2013] and references therein). Some have a large afro-tropical 
distribution (An. gambiae s.s.) while others are restricted to savannah 
area (An. arabiensis) or coastal regions (An. merus and An. melas). It also 
includes the species An. quadriannulatus that is not considered as a ma-
laria vector. The work by Target Malaria is conducted on 3 species of 
this complex: Anopheles gambiae s.s., Anopheles coluzzii, and Anopheles 
arabiensis (https://targe​tmala​ria.org/our-work/). An. coluzzii, formerly 
known as An. gambiae M molecular form, is defined as a separate spe-
cies since 2013 (Coetzee et al., 2013). Among the Anopheles gambiae 
complex, the question of hybridization has been a subject of interest 
for geneticists and public health practitioners for decades (Fontaine 
et al., 2015). Hybridization is of high concern and interest in these mos-
quito populations due to the potential spread of insecticide resistance 
between species, and now, with the development of gene drives, of 
laboratory-made transgenes.

D=(hyb+ transf)×express×cut×flank× immune×nonextinct.

F I G U R E  1   Summary of the different 
events whose probability must be 
estimated to assess the risk of gene drive 
contaminating another species

Express

Cut Flank

Immune

NonextinctTransfHyb

https://targetmalaria.org/our-work/
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A classical example of transfer is the geographic expansion and 
adaptation to arid environment by An. gambiae that is associated 
with an introgression from An. arabiensis into An. gambiae, resulting 
from past hybridization between the two species (Besansky et al., 
2003; Sharakhov et al., 2006). The presence of the kdr resistance 
(a mutation conferring resistance against pyrethroids, insecticides 
largely used in impregnated bednets) in the S form of An. gambiae 
(now An. gambiae s.s.) and then later in the M form (now called An. 
coluzzi) has also been explained by an introgression rather than by an 
independent, novel mutation (Weill et al., 2000). This highlights the 
existence of gene flow between these two species. Recent studies 
have also highlighted high frequency of hybridization between An. 
coluzzi and An. gambiae in West Africa (Caputo et al., 2011; Marsden 
et al., 2011; Oliveira et al., 2008) and an asymmetric introgression 
from An. coluzzi to An. gambiae (Mancini et al., 2015). Genetic ex-
changes have also been detected between An. gambiae s.s. and An. 
arabiensis and led to the idea of particular genomic regions being 
more prone to cross species boundaries than others (Crawford et al., 
2015). In the laboratory, introgression of a synthetic sex ratio distor-
tion system has even been possible from An. gambiae to its sibling 
species An. arabiensis (Bernardini, Kriezis, Galizi, Nolan, & Crisanti, 
2019). In summary, multiple species inside the An. gambiae complex 
appear to cross-hybridize, and developers of gene drive technology 
may aim to develop a system able to target several of them. The 
higher the number of species, and thus individuals, harboring gene 
drive constructs, the higher the probability that the gene drive con-
taminates other species.

Hybridization is common in plants (Goulet, Roda, & Hopkins, 
2017; Whitney, Ahern, Campbell, Albert, & King, 2010). Therefore, 
since the use of genetically modified (GM) plants, the risk of trans-
gene transfer to other species via hybridization has been a general 
concern (Rizwan et al., 2019; Ryffel, 2014). Unfortunately, despite 

extensive discussions about this risk, natural populations have 
rarely been monitored by researchers to search for such transgene 
escapes from GM fields. Unintended transgene transfers to other 
species have been demonstrated in rice, canola, sugar beet, soybean, 
cotton and bentgrass (Table 1). With the diminishing costs of DNA 
sequencing it is now possible to quantify more broadly the extent 
of transgene escape events, but whether the necessary funds will 
be engaged for such investigations is unclear. Conditions have been 
proposed to decrease the risk of gene transfer, including change in 
flower color or flowering date (Rizwan et al., 2019; Ryffel, 2014). 
However, no system totally preventing gene exchange has yet been 
proposed.

2.2 | Probability of horizontal transfer of a 
piece of DNA containing the gene drive cassette 
from the target species to a nontarget species with no 
hybridization (transf)

DNA can be naturally transferred from one eukaryote species to an-
other via so-called horizontal transfer (HT), through unknown means 
that may involve vectors such as viruses, microsporidia, mites or 
parasitoids (Gilbert et al., 2014; Gilbert, Schaack, Pace, Brindley, & 
Feschotte, 2010; Houck, Clark, Peterson, & Kidwell, 1991; Parisot 
et al., 2014). In particular, viruses can carry over nucleic acid loads 
that do not directly belong to the viral-specific genetic setup, but 
from the virus host (Gasmi et al., 2015; Gilbert & Cordaux, 2017). 
Bacteria probably also constitute an important vector to trans-
fer DNA material from one Eukarya species to another. Horizontal 
gene transfer (HGT) from Bacteria to Eukarya is frequent (Lacroix 
& Citovsky, 2016), and from Bacteria to Bacteria, it is the norm. 
Bacteria release their DNA in the environment because they keep 

Crop From To Reference

Bentgrass Agrostis 
stolonifera

Polypogon monspeliensis Zapiola and Mallory-Smith 
(2012)

Canola Brassica napus Brassica rapa Yoshimura, Beckie, and 
Matsuo (2006), Warwick, 
Legere, Simard, and James 
(2008), Londo, Bautista, 
Sagers, Lee, and Watrud 
(2010), Aono et al. (2011)

    Brassica juncea Zhang et al. (2018)

    Brassica carinata Séguin-Swartz et al. (2013)

Cotton Gossypium 
hirsutum

Gossypium barbadense Van Deynze, Hutmacher, and 
Bradford (2011)

Rice Oryza sativa weedy rice Chun et al. (2011)

    Oryza rufipogon Wang et al. (2006)

    Oryza sativa f. spontanea Serrat et al. (2013)

Soybean Glycine max Glycine soja Mizuguti et al. (2010)

Sugar beet Beta vulgaris 
ssp. vulgaris

Beta vulgaris ssp. 
maritima)

Saeglitz, Pohl, and Bartsch 
(2000)

TA B L E  1   Reported cases of transgene 
escape from different crops
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lysing either under the action of bacteriophages or during the sporu-
lation process (which entails lysis of the mother cell). This implies that 
fragments of DNA in the environment or in bacteria can be rapidly 
contaminated by any novel construct. As cases in point, apparition 
of antibiotic resistance spreads rapidly from locations where it has 
first appeared (see, e.g., [Schultz et al., 2017]). HGT from Eukarya 
to Bacteria has been illustrated in some cases, with viruses as inter-
mediates (Bordenstein & Bordenstein, 2016). Eukaryotic genes in 
bacteria (EUGENs) are frequent in intracellular parasitic or symbiotic 
bacteria (e.g., [Hilbi, Hoffmann, & Harrison, 2011]); they may play an 
efficient role in gene exchange. The DNA pieces that have been ob-
served to undergo HT are usually between 1 kb and several dozens of 
kb (see HTT-DB database [Dotto et al., 2015]), which is comparable 
to the size of gene drive constructs, and can go up to 150 kb in plants 
and animals (Dunning et al., 2019; Inoue et al., 2017).

Two types of HT can be distinguished, horizontal transfer of 
transposable elements (HTT) and HGT. Although transposable ele-
ments (TEs) also carry genes, this distinction reflects the fact that we 
know many cases of HTT and relatively few cases of HGT. Most HGT 
events that occurred in the past between distantly related species 
are not expected to be detected through comparison of present-day 
genomes because most newly inserted DNA sequences are likely to 
be lost by genetic drift or by selection against the insertion if it is del-
eterious (i.e., the probability nonextinct is zero). The breadth of HGT 
that can be approached based on comparative studies of actual ge-
nome sequences is thus largely underestimated. As a matter of fact, 
identified HGT events involve pieces of DNA that appear to increase 
host fitness (HGT, e.g., carotenoid synthesis genes from fungi to pea 
aphids [Moran & Jarvik, 2010]). Compared to other DNA sequences, 
TEs have particular characteristics that allow them to integrate into 
DNA more frequently, and they can also self-replicate in the new 
host after HT, so that they are more likely to be noticed. Whether 
the higher rate observed for HTT than for HGT is only due to the 
integration and replicative properties of TE is unknown. If viruses 
are important vectors for HT, the propensity of TE to jump from 
eukaryote genomes to viruses, and reversely, more frequently than 
random pieces of DNA (Gilbert et al., 2016) may also explain their 
higher rate of HT. Compared to TE, a gene drive cassette can also 
insert itself into a host genome, but its integration into DNA may 
be less likely and its number of copies in a genome should be lower, 
so that gene drives may transfer horizontally between genomes less 
frequently than TEs. However, if TEs are present in the vicinity of 
the gene drive cassette in the target species, they could end up facil-
itating the transfer and integration of the DNA in another host via a 
hitchhiking process. To limit this risk, gene drives should be designed 
to target genomic regions that are devoid of TEs, if such regions exist 
in the target species.

Better than TEs, laboratory-made gene drive constructs resem-
ble homing endonuclease genes, which are naturally occurring mobile 
elements that bias their inheritance by cutting and inserting them-
selves at targeted sites within genomes (Agren & Clark, 2018; Burt 
& Koufopanou, 2004). So far, homing endonucleases have only been 
found in unicellular organisms and in eukaryotes organelles. Compared 

to bacterial restriction enzymes, they recognize a long sequence motif, 
whose size (14–44 bp) is comparable to the one of CRISPR/Cas9 tar-
get sites (Hafez & Hausner, 2012). A homing endonuclease gene that 
specifically targets the cox1 mitochondrial gene has been transferred 
independently 70 times between 162 plant species within 45 different 
families (Sanchez-Puerta, Cho, Mower, Alverson, & Palmer, 2008). This 
element is also present in several species of fungi, green algae and liver-
worts, highlighting extensive HT (Cho, Qiu, Kuhlman, & Palmer, 1998). 
Unfortunately, no estimate of HT rates for homing endonuclease genes 
is available.

Cases of HTT have been detected between extremely distantly 
related species (Gilbert & Feschotte, 2018). For example, the BovB 
element moved at least 11 times between snakes, lizards, ruminants 
and marsupials (Ivancevic, Kortschak, Bertozzi, & Adelson, 2017) 
and the Mariner element moved between nematodes, arthropods, 
fungi, molluscs, vertebrates and plants ([Palazzo et al., 2019] and 
references therein). Numerous stable introductions of virus DNA 
into the germline of various eukaryote species have also been re-
ported (Chen, Wu, Zhang, Jiang, & Chen, 2016; Feschotte & Gilbert, 
2012; Holmes, 2011; Katzourakis & Gifford, 2010). In vertebrates, 
endogenous retroviruses (ERVs) can insert into their host genome 
and generate copies of themselves through germline reinfections or 
retrotransposition events (Gilbert & Feschotte, 2018; Greenwood, 
Ishida, O’Brien, Roca, & Eiden, 2018). A comparison of ERV se-
quences in 65 genomes identified no less than 1,000 HT events be-
tween distantly related species of vertebrates (Hayward, Cornwallis, 
& Jern, 2015). Pan-phylogenomic analyses of ERV sequences re-
vealed that rodents are a major source of retroviruses which they 
can transmit to other mammals such as livestock (Cui, Tachedjian, & 
Wang, 2015).

Horizontal transfer events are also ongoing now. The best known 
case is the worldwide invasion of D. melanogaster populations by a TE 
(P-element) originally present in the distantly related species D. willis-
toni (Clark & Kidwell, 1997; Daniels, Peterson, Strausbaugh, Kidwell, 
& Chovnick, 1990). This invasion has been carefully recorded and 
occurred within a few decades during the second half of the last cen-
tury. Nowadays, the P-element is invading two other Drosophila fly 
species worldwide, D. simulans, originating from D. melanogaster (Hill, 
Schlötterer, & Betancourt, 2016) and D. yakuba (Serrato-Capuchina 
et al., 2018). D. simulans flies sampled before 2010 do not carry the 
P-element, indicating that this invasion is very recent. The P-element 
arose in D. simulans most likely through hybridization with D. mela-
nogaster, but could also have occurred via the unintended escape 
of a few laboratory-raised D. simulans flies genetically engineered 
to carry the D. melanogaster P-element. In Mammals, the ERV se-
quence KoRV-A is currently observed to invade natural populations 
of koala (Phascolarctos cinereus) (Xu & Eiden, 2015) and herpes virus 
DNA has started to integrate into human chromosomes (Morissette 
& Flamand, 2010).

Rough estimates of HTT rates have been obtained recently. 
Systematic surveys of TEs in complete genomes have inferred 
HTT events that essentially occurred during the last 10  My. 
They counted more than 2000 HTT events in 195 insect species 
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(Peccoud, Loiseau, Cordaux, & Gilbert, 2017) and more than 330 
HTT in 460 arthropod species (Reiss et al., 2019). (El Baidouri et al., 
2014) estimated that more than 2 million HTT occurred between 
plant species. A study of three Drosophila species estimated an 
average rate of 0.035 HTT per TE family per million years between 
these three species, with LTR RTs and DNA transposons display-
ing a higher rate of 0.046 (Bartolomé, Bello, & Maside, 2009). 
Note that the power to identify HTT events decreases as the HTT 
events approach the time of species divergence, so that existing 
quantifications are conservative.

In order to obtain an estimate of the number of contacts a spe-
cies can have with other eukaryotic species, we used data from 
the all-taxa biodiversity inventory (ATBI) conducted in the Great 
Smoky Mountains National Park (Nichols & Langdon, 2007). As it 
hosts more than 450 vertebrate species and >8,000 insect species 
(Discover Life in America website, accessed January 2020 https://
dlia.org/smoki​es-speci​es-tally), we can assume that a given spe-
cies can be in contact with approximately 1,000 distinct Eukaryote 
species, either directly or indirectly via viruses, bacteria or other 
microorganisms. As a result, the rate of HTT can be approximated 
to a minimum of 0.035 transfer events to at least one species per 
thousand of years (1,000 species × 0.035 HTT events per million 
years—see paragraph above). This estimate is conservative as it 
does not take into account horizontally transferred DNA that have 
disappeared from the recipient genome since their transfer nor 
HTT events that occurred right after reproductive isolation of the 
two lineages of interest. In addition, due to the broad geographic 
distribution of viruses and bacteria that can act as vectors, the 
probability of transfer to any species among the total estimated 
10 millions in the world is probably much higher than this figure. 
Furthermore, there is no reason to believe that the rate of HTT is 
constant across time. It is possible that the number of HTT events 
increases under certain conditions, such as ecological stress or 
pervasive pathogen infections (Demanèche et al., 2001; Horváth, 
Merenciano, & González, 2017).

The risk of transfer to nontarget species also depends on the 
persistence time of gene drives. For replacement/rescue drives, the 
drive is expected to reach all individuals of the targeted population. 
Then, in the long term, since there is no selective pressure to maintain 
a functional endonuclease, the CRISPR-cas9 cassette can eventually 
accumulate mutations and thus lose its self-replicating activity and 
should eventually disappear from the target population. However, 
the persistence time of the gene drive cassette should still be rela-
tively long, of the order of several thousands of generations, leaving 
time at the human scale for possible HGT. The long-term presence of 
rescue/replacement drive constructs in the population increases the 
odds of transfer to nontarget species. As far as we know, no strategy 
has been proposed to completely remove the gene drive cassette 
once a population has been fully targeted by a replacement drive.

For eradication/suppression drives, the target population is ex-
pected to go extinct, so that no gene drive construct is expected 
to remain in living organisms. Nevertheless, DNA is a very stable 
molecule and DNA from dead organisms can make up reservoirs 

of gene drive constructs. Just taking into account viruses, aquatic 
ecosystems typically contain 106–108 virus-like particles per mL 
(Cunningham, Brum, Schwenck, Sullivan, & John, 2015) and sedi-
ments 108–109 particles (Filippini & Middelboe, 2007). DNA is found 
in all kinds of environments (see [Hunter, Ferrante, Meigs-Friend, & 
Ulmer, 2019] for techniques allowing recovery of 1–500 ng of DNA 
per microliter of water). Some organisms, such as Acinetobacter 
baylyi are able to take it spontaneously into their genome (Mantilla-
Calderon et al., 2019), further amplifying and propagating DNA se-
quences. Gram-negative bacteria are cases in point as it has been 
shown that they rapidly transfer antibiotic resistance to a large num-
ber of recipients (Oliveira & Reygaert, 2019).

In summary, recent data indicate that DNA can transfer exten-
sively between distantly related species in all taxon groups. Current 
quantifications of the probability of transfer of a particular DNA 
piece to another species are rare and underestimated, and provide 
a probability of a minimum of 0.035 transfer events to at least one 
species among 1,000 per thousand years. Whereas the probability 
of hybridization discussed above is relatively high and concerns a 
small number of species, the probability of HT discussed here is 
relatively low but involves a larger number of potential nontarget 
species. These nontarget species can be very distant both phyloge-
netically and geographically, due to vectors which can be ubiquitous.

2.3 | Probability that the guide RNA and Cas9 
genes are expressed in the new host (express)

For the CRISPR-Cas9 gene drive system to be active in the non-
targeted species, the guide RNA gene and the Cas9 gene must be 
expressed in the newly formed zygote or in the new host germline 
(Figure 2). In other words, potent enhancer regions should be pre-
sent in the vicinity of the two genes, and promoters should be ac-
tive to drive expression in the new host (Wittkopp & Kalay, 2012). 
Experiments swapping enhancers between species suggest that ro-
dent sequences are active across Mammals, while fly/mosquito se-
quences function across Diptera and sometimes throughout insects. 
Human enhancers generally drive similar expression in mice (88 My 
divergence—all divergence times are from TimeTree [Kumar, Stecher, 
Suleski, & Hedges, 2017]) (Cheng et al., 2014). Enhancers have also 
been observed to drive expression in corresponding homologous or-
gans in more distantly related species such as mice and bats (94 My 
divergence [Booker et al., 2016; Cretekos et al., 2008]) or even fish 
species and humans (465 My divergence [Yuan et al., 2018]). A par-
ticular enhancer was shown to drive comparable expression across 
9 species of vertebrates including fishes, lizards, snakes and mice 
(Kvon et al., 2016). In insects, several enhancers have been tested 
and observed to drive similar expression patterns in Drosophila, 
mosquitoes (248 My divergence) and Tribolium (309 My divergence 
[Cande, Goltsev, & Levine, 2009; Lai et al., 2018]). Several native pro-
moters of Drosophila have been tested and they have been found to 
function in Lepidoptera (286 My divergence [Imamura et al., 2003; 
Ramos, Kamal, Wimmer, Cartwright, & Monteiro, 2006; Tamura 

https://dlia.org/smokies-species-tally
https://dlia.org/smokies-species-tally
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et al., 2000]) but not in Tribolium (Schinko et al., 2010). Native mos-
quito enhancers are thus unlikely to function in humans (790 My 
divergence) or in the malaria parasite (1552 My divergence).

To activate expression, published gene drive constructs har-
bor endogenous cis-regulatory sequences of germline-specific 
genes for the Cas9 gene and of constitutively expressed genes 
for the guide RNA genes (Table  2). Therefore, present-day con-
structs designed for flies or mosquitoes can be expected to drive 

expression in the germline across Diptera/insects, and for mice 
across Mammals.

Synthetic regulatory elements containing multiple adjacent 
binding sites for a small number of transcriptional activators have 
not been used so far in published gene drive constructs but they 
might in the future. In general, such synthetic pieces tend to be 
more universal than endogenous regulatory elements (Schetelig & 
Wimmer, 2011). For example, the Drosophila-derived 3xP3 artificial 

F I G U R E  2   Succession of putative 
events leading to the insertion of a 
functional gene drive cassette in another 
distantly related nontarget species 
(in case of horizontal transfer with no 
hybridization). DNA of the nontarget 
species is indicated in gray and DNA from 
the target species in warm colors: pink: 
Cas9 gene, orange: gRNA gene and brown: 
neighboring sequences. On the right are 
different parameters of the DRAQUE 
equation. In the represented scenario, 
one LINE (Long Interspersed Element) and 
one transposable element (TE) serve as 
flanking sequences for homology-directed 
repair. Note that other sequences present 
in the nontarget host may also be used

Cas9 gRNA Gene drive cassette
from target species

Cas9 gRNA

Expression of Cas9 and gRNA

DNA of nontarget species

transf
+hyb

Cas9 gRNA

LINE TE

TELINE

Homology-directed repair

TELINE

Cas9-gRNA Cut of nontarget
host DNA

Cas9 gRNA TELINE

Express

Cut

Flank

Cas9 gRNA TELINE

SINE

SINE

Second insertion:
Gene drive cassette at the CRISPR target site

First insertion:
Gene drive cassette at a random site

Nontarget host

Environment

TA B L E  2   List of cis-regulatory sequences used in published gene drive constructs

Target Species
Cis-regulatory sequences for Cas9 
expression

Cis-regulatory sequences for 
guide RNA expression Reference

Drosophila melanogaster D. melanogaster vasa D. melanogaster U6:3 Gantz and Bier (2015)

Anopheles stephensi A. stephensi vasa A. stephensi U6A Gantz et al. (2015)

Anopheles gambiae A. gambiae vasa2 A. gambiae U6 Hammond et al. (2016)

Drosophila melanogaster D. melanogaster vasa
D. melanogaster nanos

D. melanogaster U6:3 Champer et al. (2017)

Drosophila melanogaster D. melanogaster Sry-alpha
D. melanogaster DNApol-α180
D. melanogaster Rcd-1r

D. melanogaster U6:3 KaramiNejadRanjbar et al. (2018)

Anopheles gambiae A. gambiae zpg A. gambiae U6 Kyrou et al. (2018)

Mus musculus M. musculus vasa
M. musculus Stra8

H. sapiens U6 Grunwald et al. (2019)

Information is presented in the chronological order of the publications. All are endogenous cis-regulatory sequences. The genes whose cis-regulatory 
sequences were used to drive Cas9 expression are expressed specifically in the germline. U6 is a ubiquitously expressed gene encoding a small RNA 
involved in mRNA splicing. For Cas9 expression in M. musculus, the germline-specific cis-regulatory sequences were used in combination with the 
Cre-loxP system and constitutive cis-regulatory sequences
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element drives expression in the eyes not only in insects but also in 
arthropods (Pavlopoulos & Averof, 2005) and planarians (Gonzalez-
Estevez, Momose, Gehring, & Salo, 2003).

The guide RNA gene and the Cas9 gene can also be activated 
by enhancers located further away, outside of the original gene 
drive cassette. Reciprocally, vectors used for gene therapy have 
been shown to misregulate endogenous genes neighboring the in-
serted DNA, thereby causing harmful side effects such as leukemia 
(Browning & Trobridge, 2016). The addition of chromatin insula-
tors into retroviral vectors, to block the activation of nearby genes, 
seems to be a good solution to this problem, as shown by a recent 
successful gene therapy (Mamcarz et al., 2019). To our knowledge, 
none of the published gene drive constructs contain insulators. To 
limit the activity of gene drive constructs in nontargeted species, we 
suggest that gene drive vectors should include insulators.

2.4 | Probability that the CRISPR-guide RNA 
recognizes and cuts at a DNA site in the new host (cut)

So far, the CRISPR-Cas9 system has been shown to cut at target 
sites specified by the guide RNA in all species that have been tested, 
including animals, plants, bacteria and parasites (Zhang, 2019). We 
therefore consider here that the probability cut that the CRISPR-
guide RNA recognizes and cuts at a DNA site in the new host is 
simply the probability that the host genome contains a site targeted 
by the CRISPR-guide RNA of the gene drive construct. Constructs 
with multiple guide RNAs have a greater chance for cutting the DNA 
in a foreign host compared to single-gRNA constructs. The target 
site recognized by CRISPR-Cas9 is 20 nucleotides long followed by 
a protospacer adjacent motif (PAM), typically NGG (Zhang, 2019). 
Importantly, studies in yeast and human cells indicate that CRISPR-
Cas9 cleavage activity can still occur with three to five base pair mis-
matches in the 5′ end (Fu et al., 2013; Hsu et al., 2013; Roggenkamp 
et al., 2018). As a consequence, we need here to estimate the prob-
ability of finding a particular sequence of 17–19 nucleotides (plus 
one nucleotide that can be either base, located two bases before the 
3′ end of the segment) in genomes of interest. The existence of other 
off-target cuts with lower sequence similarity to the on-target site is 
still under exploration and not entirely understood (Gao, Chuai, Yu, 
Qu, & Liu, 2019; Zhang, Tee, Wang, Huang, & Yang, 2015). The num-
ber of off-target cuts tends to accumulate with longer and stronger 
expression of the Cas9 gene (Kim, Kim, Cho, Kim, & Kim, 2014), sug-
gesting that the range of off-targets may differ between gene drive 
cassettes. We consider here only the sequences that are closely re-
lated to the on-target site and therefore provide a lower estimate of 
the probability cut.

A very rough estimate of the probability for a given sequence of 
19 nucleotides to be present in a genome of a billion nucleotides can 
be estimated as follows. Assuming that the 4 nucleotides A, C, G and 
T are equiprobable, the probability of finding each sequence is 2/419 
(the factor 2 stands for the fact that DNA has two strands) which is 
about 7.10−12. In a genome of 3.109 nucleotides such as the human 

haploid genome, such a sequence should be present with a proba-
bility 7.10−12 × 3.109, which is approximately 2% (about 30% for a 
sequence of 17 nucleotides). Note that this is a very crude estimate. 
It could be higher if one took into account the fact that the DNA con-
tents of AT and GC are different. Also, it does not take into account 
that an extant DNA sequence is never random. The nonrandom 
character of genomes is illustrated by the omnipresence of repeated 
sequences (for example in the human genome the repeats Alu, SINE, 
LINE etc.) so that if a given sequence is present in a genome, it is 
likely to be present more than once. Overall it appears that genomes 
behave as n-plications of a core set of sequences followed by re-
duction. This has been observed in yeasts (Escalera-Fanjul, Quezada, 
Riego-Ruiz, & González, 2018), plants (Clark & Donoghue, 2018) and 
animals (Hermansen, Hvidsten, Sandve, & Liberles, 2016).

The fact that the target sequence is not an arbitrary sequence 
can increase or decrease the probability according to whether the 
bias for the sequence of interest and the bias for the sequences in 
the genome both go in the same direction or not. The probability cut 
would be lower if the existence of repeated sequences was taken 
into account and if the targeted sequence did not match some of the 
repeated sequences. By contrast, it would be higher if the sequence 
matched the “style” of the DNA of a particular organism, that is, its 
nonrandom content in particular motifs (Fertil et al., 2005). Different 
mechanisms can lead to the occurrence of repeated sequences in 
the genome (gene conversion, unequal gene exchanges, transposi-
tion, etc.); they have been grouped under the name of “molecular 
drive” (Dover, 1982). “Molecular drive” is likely to be widespread, as a 
sizeable proportion of individuals carry local duplications of any se-
quence of the genome. Furthermore, some conserved repeats may 
maintain the coexistence of stable rearrangements in some species 
(Smalec, Heider, Flynn, & O’Neill, 2019), increasing the possibility of 
unexpected cuts in certain species. All these features may consid-
erably impact the probability of cuts in particular genomes. If the 
targeted site is present in multiple copies, there is a risk for the gene 
drive construct to spread across the entire genome. We urge the 
researchers developing gene drive constructs to make sure that they 
choose a target site that is very distinct from sequences such as ret-
roelements, LINE, SINE elements that are present in large quantities 
in genomes (see [Breitwieser, Pertea, Zimin, & Salzberg, 2019] for an 
updated view of repeats in the human genome).

A recently proposed gene drive that aims at ster-
ilizing mosquito females has the following target site, 
GTTTAACACAGGTCAAGCGGNGG, which is a highly conserved se-
quence within the Doublesex gene, displaying a 3’ terminal end that 
contains either a repeated CGG triplet or variant of it. We should note 
that CGG repeats are quite frequent in genomes (Pan, Man, Roland, 
& Sagui, 2018; Rabeh, Gaboun, Belkadi, & Filali-Maltouf, 2018). The 
23-bp sequence is present in 7 species of Anopheles mosquitoes, and 
with one mismatch in at least 6 additional Anopheles species (Kyrou 
et al., 2018). Sequencing of 765 wild-caught Anopheles gambiae 
mosquitoes identified only one single nucleotide variant within this 
sequence, and this variant was still permissive to gene drive. Our 
BLAST searches for this target sequence and for the one used in the 
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published mouse gene drive found fragments of up to 20 bases iden-
tical to the 3′ part of the sequence in several genomes, belonging to 
all three domains of life (Table S1). While a target sequence which 
accommodates little nucleotide variation such as the Doublesex locus 
can be useful to prevent gene drive resistance, it is then also asso-
ciated with an increased risk of spread to nontarget species. This 
trade-off exists not only for the Anopheles gambiae mosquito com-
plex but for any species targeted by a gene drive system.

2.5 | Probability that the gene drive cassette inserts 
near the targeted site (flank)

The gene drive cassette is designed to bias its transmission by copy-
ing itself on the paired chromosome, so that heterozygous individu-
als carrying initially one copy of the gene drive cassette end up with 
two copies in their germline cells (Esvelt et al., 2014). This homing 
process occurs through homology-directed repair, using homology 
arms flanking both the gene drive cassette and the guide RNA target 
site. Therefore, for the gene drive to be active in nontarget species, 
the DNA containing the Cas9 gene and the gRNA gene should be 
inserted at the guide RNA target site. Flank is the probability that the 
gene drive cassette lands up at the guide RNA target site.

In case of hybridization, the nontarget species being closely 
related to the species carrying the initial gene drive, the genomic 
regions harboring the gene drive cassette are expected to be compa-
rable, so that the probability flank should be close to 1.

In case of HT to a distantly related species with no hybridiza-
tion, the gene drive cassette is likely to insert at a random site in the 
genome. In this case, flank is the probability that it moves from this 
initial position to a site targeted by its guide RNA (Figure 2). There 
are several ways such a transposition can happen. Double-strand 
DNA breaks, such as the one created at the guide RNA target site by 
the CRISPR system, are known to induce recombination and various 
DNA repair mechanisms (Hartlerode & Scully, 2009; Jasin, 1996).

First, the gene drive cassette may move to the guide RNA target 
site via homology-directed repair (Figure 2). Such phenomenon has 
been observed with gene drive constructs that were not inserted ini-
tially at the target site but at another position in the genome (Gantz 
& Bier, 2015; Guichard et al., 2019). The probability of such an event 
will depend on the length of the flanking homology arms, their per-
centage of identity, the length of the DNA sequence in between and 
the position of the donor sequence relative to the cut site (Kanca 
et al., 2019; Wang, Lee, & Haber, 2017). Unfortunately, as far as we 
know, no extensive survey of these parameters has been done with 
respect to homology-dependent repair using another chromosomal 
locus as template. A gene drive cassette of 21 kb was found to spread 
effectively in mosquitoes (Gantz et al., 2015), suggesting that rela-
tively large pieces of DNA can be inserted via homology-directed 
repair. In any case, larger inserts tend to show lower efficiency of 
recombination (Li, Wang, Andersen, Zhou, & Pu, 2014). Gene drive 
constructs published to date have used flanking sequences of about 
1 kb (Gantz & Bier, 2015; Gantz et al., 2015; Grunwald et al., 2019). 

When linear double-stranded DNA is used as a template for repair, 
efficient targeted genome integration can be obtained using flank-
ing sequences that are only 50-bp long in mammalian cells (Li et al., 
2014; Wierson et al., 2018), 100-bp long in D. melanogaster (Kanca 
et al., 2019) and even 20–40-bp long in zebrafish (Auer & Del Bene, 
2014; Hisano et al., 2015; Wierson et al., 2018), Xenopus laevis 
(Nakade et al., 2014), Bombyx mori (Nakade et al., 2014) or the nem-
atode C. elegans (Paix et al., 2014). Whether such short sequences 
could also favor transposition of the gene drive cassette to the guide 
RNA target site remains unknown. If repeat sequences exist both 
near the initial insertion site of the gene drive and the guide RNA 
site, they may facilitate such transposition (Figure 2). Evaluating the 
parameter flank thus requires an assessment of the distribution of 
repeats in potential nontarget species.

As emphasized by Salzberg and coworkers, the human genome 
sequence, while far more complete than most animal genomes, is still 
made of 473 scaffolds and comprises 875 gaps (Breitwieser et al., 
2019). As expected, the gaps encompass regions with a variety of 
repeats, some of them still poorly characterized, in particular in cen-
tromeric and pericentromeric regions. This precludes accurate anal-
ysis of their distribution, and the situation is even worse for other 
genomes. For instance, the transposon-derived Alu repeats (~300 bp 
long), that are present in primate genomes at more than one million 
copies, are widely variable, within and among chromosomes (Grover, 
Mukerji, Bhatnagar, Kannan, & Brahmachari, 2004). Interestingly 
this distribution is biased toward proximity of protein-coding gene 
regulatory regions (Lavi & Carmel, 2018). In addition to our some-
what limited knowledge of the distribution of repeats in mammalian 
genomes, we have to consider that when a species is represented by 
a large number of individuals there are many copy number variants, 
in particular in repeated regions (Monlong et al., 2018).

Second, the gene drive cassette may move to the guide RNA tar-
get site via a TE. It is well established that TEs play a considerable 
role in displacement of genes or regulatory regions across genomes 
(Chen & Yang, 2017). As a matter of fact, TEs are recognized as a 
frequent cause of genetic diseases (see, e.g., [Larsen, Hunnicutt, 
Larsen, Yoder, & Saunders, 2018; Song et al., 2018] and references 
therein).

The events discussed above may seem extremely rare, but they 
do not have to occur right after the gene drive inserted in a genome. 
The gene drive cassette may stay dormant for a few generations, 
and there can be many trials and errors in various individuals be-
fore an insertion occurs at the guide RNA target site. Of note, gene 
drive constructs containing several guide RNAs (Esvelt et al., 2014) 
increase the chance that the drive moves to a targeted site.

2.6 | Probability that the immune system does not 
eliminate Cas9-expressing cells (immune)

The Cas9 protein is derived from the bacteria Streptococcus pyo-
genes (Zhang, 2019) and can trigger an immune response in mice 
(Chew, 2018; Chew et al., 2016). During the gene drive multiplication 
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process, germline cells produce Cas9 proteins to cut the DNA and 
insert the gene drive cassette (Figure 2). These germline cells may 
thus present Cas9 fragments on their surface.

In insects there is no adaptive immune system (Lemaitre & 
Hoffmann, 2007), so the presence of Cas9 is unlikely to trigger an im-
mune response. However, double-stranded RNAs larger than 30 bp 
can be recognized by Dicer2 and activate the RNA interference 
pathway, leading to their degradation (Elbashir, Lendeckel, & Tuschl, 
2001; Gammon & Mello, 2015). Guide RNAs are about 100 nucleo-
tide long including the target site and they contain hairpins shorter 
than 15 bp (Bassett & Liu, 2014), so they should not be recognized 
by Dicer2. In summary, present knowledge suggests that gene drives 
would not be hampered by the immune system in insects.

In vertebrates, if Cas9 proteins accumulate in somatic tissues at 
a late stage during development due to leakage of the cis-regula-
tory regions controlling Cas9 gene expression, Cas9 fragments may 
be recognized as foreign molecules and trigger an adaptive immune 
T cell response, leading to the potential elimination of the Cas9-
expressing cells and a probable decrease in fitness of the individual 
carrying the gene drive (Chew, 2018). The expression of Cas9 at an 
early stage of development may also activate an immune response 
if the gene drive carrier has inherited anti-Cas9 antibodies from its 
mother, as maternal immunoglobulins G have been shown to cross 
the placental barrier and the intestine, and to be maintained for a 
long time in the fetus after birth (Madani & Heiner, 1989; Roopenian 
& Akilesh, 2007). However, testes—and maybe ovaries—appear 
to readily accept foreign antigens without the induction of an im-
mune response in several mammals (Li, Wang, & Han, 2012; Mellor 
& Munn, 2008; Simpson, 2006), so that germline cells expressing 
Cas9 may not be eliminated by the immune system. Furthermore, 
guide RNAs produced from gene drive constructs are not expected 
to elicit an immune response in vertebrates, as they do not carry 
5’-triphosphate ends (Kim et al., 2018; Wienert, Shin, Zelin, Pestal, & 
Corn, 2018). Clearly, our knowledge in immunology is presently too 
sparse to anticipate how gene drive systems will interact with the 
immune system in vertebrates.

S. pyogenes is a facultative pathogenic bacteria mostly restricted 
to humans, with about 10%–20% of the population being asymp-
tomatic carriers (Roberts et al., 2012; Shaikh, Leonard, & Martin, 
2010). It is thus no surprise that recent investigations have found 
anti-Cas9 antibodies and Cas9-reactive T cells in several human 
populations (Charlesworth et al., 2019; Wagner et al., 2019). It is 
thus possible that certain humans are immune to gene drives, and 
future studies will undoubtedly shed light on this question. The 
presence of S. pyogenes has also been documented in a few animals 
such as macaques, mice, dogs, hedgehogs, rabbits and sheep ([Chen 
et al., 2019; Vela et al., 2017] and references therein). Whether 
these vertebrates may also be immune to gene drives remains to 
be investigated.

So far, all published gene drive constructs have used Cas9 from 
S. pyogenes (SpCas9). Other Cas proteins with activity similar to 
SpCas9 are available (Zhang, 2019) and could potentially be used 
for gene drive technology. As they are derived from other types of 

bacteria, their immunogenicity and their associated probability im-
mune would have to be specifically assessed.

2.7 | Probability of nonextinction of the drive 
(nonextinct)

Once the drive successfully introduced into the genome, its fate will 
depend on its ability to distort its segregation, on chance, on its as-
sociated selective value and on the probability that the nontarget 
population evolve resistance to the gene drive. Several stochastic 
and deterministic models have been composed to assess the dy-
namics of gene drive alleles once they are introduced in substantial 
amount in a targeted population, taking into account the possible 
costs of harboring a gene drive as well as the appearance of resist-
ance to gene drive (Deredec et al., 2008; Marshall, 2009; Unckless, 
Messer, Connallon, & Clark, 2015).

For simplicity, we treat here the probability that a drive, initially 
present in a single individual or so, is not eliminated immediately by 
mere chance due to sampling effect and reach significant numbers of 
individuals in the nontarget population. Even if an allele manages to be 
present in more than one half of the gametes from heterozygous indi-
viduals, it can still disappear rapidly due to random processes. If not, 
then it can invade the population. This process has been modeled as a 
branching process by Bienaymé (1845), actually published by Cournot 
(1847), and Watson and Galton (1875), see (Bru, 1991; Kendall, 1975). 
The probability of extinction, starting with one replicator, is the lowest 
root of equation G (x)=x, where G (x) is the generating function of the 
law describing the number of copies left per generation by one repli-
cator. Here, it is relevant to assume the distribution to follow a Poisson 
law. If the population as a whole is stable, each “normal” gene leaves on 
average one copy of itself in the next generation, that is, on average 1/2 
through male gametes and 1/2 through female ones. The drive will then 
leave a number of copies of itself equal to the sum of the proportions 
which it represents in male (λm) and in female (λf) gametes: �=�m+�f

. Typically, �m and �f are around 0.7–0.9 for gene drives tested in mice 
and insects (Gantz & Bier, 2015; Gantz et al., 2015; Grunwald et al., 
2019; Hammond et al., 2016; KaramiNejadRanjbar et al., 2018; Kyrou 
et al., 2018) so that a reasonable estimate of � is 1.4–1.8. According to 
the “Bienaymé, Galton, Watson” model, the extinction probability for 
a Poisson law of parameter � is such that G (x)=e�(x−1)x. With �=1.4 
(resp. 1.8), it gives x≃0.5 (resp. 0.27) and the probability of invasion 
(1 − x) is thus around 0.5–0.7.

For GM plants methods allowing to reduce the risk of contamina-
tion of non-GM plants have been proposed (see above). However, no 
experimental situation has yet allowed to test the efficiency of such 
measures. Moreover, despite a strong concern about these questions 
from citizens and biosafety agencies, none of the methods which could 
reduce contamination has been developed in commercialized varieties.

A mathematically elegant solution aimed at preventing a drive 
from invading a nontarget species has been proposed (Barton & 
Turelli, 2011; Tanaka, Stone, & Nelson, 2017). It is inspired from 
the population genetics of hybrid zones where a gene can invade 
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only if it reaches a sufficiently high frequency locally. Such thresh-
old-dependent gene drives appear as a good solution to prevent 
contamination of nontarget populations. Calculations show that 
the selective disadvantage of such drives should be more than 0.5 
to invade the target population and less than 0.697 so that it can-
not invade nontarget populations when starting from a low initial 
frequency. Note that these values hold only when the segregation 
distortion of the drive is 100% and that the range is narrower if seg-
regation distortion is lower. One can hope that any drive released in 
nature will display these characteristics (100% efficiency conversion 
and 0.5 < s < 0.697). However, given the narrow range of values for s, 
it will not be easy to achieve such drives, especially when gene drive 
individuals are released in diverse places in nature where various 
ecological factors can affect fitness values.

3  | DISCUSSION

Based on our examination of the seven parameters of the DRAQUE 
equation (Table 3), the probability that a gene drive transfers to an-
other species can have values ranging from 0 to 0.5 per year in the 
worst-case scenario (one hybridization event occurring per year, the 
guide RNA site is present in the nontarget genome, the nontarget 
species has high levels of homologous recombination). Our current 
estimate of the overall risk (Table 3) remains nevertheless very crude 
and asks for further studies to refine this estimate.

We did not treat here the risk of contamination of another pop-
ulation, within the targeted species, but the same formula could 
be used in principle for this case. Furthermore, our equation does 
not take into account the phenotypic effect of the drive on the 
contaminated species. A drive may display no phenotypic effects 
in the nontarget species that it invaded. If the gene drive was de-
signed to eliminate a target population, then it is more likely to 
eliminate the nontarget species. The drive may also have unex-
pected effects, for example the creation of nontarget mutations 

in somatic cells due to perdurance of Cas9 expression (Guichard 
et al., 2019).

To prevent contamination, several containment strategies for 
laboratory experiments have been proposed (Akbari et al., 2015; 
Benedict et al., 2008; National Academies of Sciences & Medicine, 
2016) as well as gene drives split in two different constructs 
(Benedict et al., 2008; DiCarlo et al., 2015) and synthetic target 
sites (Champer et al., 2019). Based on our survey of the various pa-
rameters, we suggest further design strategies to minimize the risk 
of transfer to a nontarget species: the addition of insulators (see 
above), and the choice of a guide RNA target site that is not close to 
repeated sequences or to the centromere, to avoid rearrangements 
and increased probability of creating an active gene drive in a non-
target species.

Here, we treated probabilities for a standard gene drive con-
struct, but the risk should be estimated for each particular gene 
drive construct. New types of self-limiting gene drives have been 
proposed in recent years to try to limit the spread of gene drives 
spatially or temporally: toxin-antidote systems including Medea 
(Buchman, Marshall, Ostrovski, Yang, & Akbari, 2018), CleaveR 
(Oberhofer, Ivy, & Hay, 2019), Killer-Rescue (K-R) (Gould, Huang, 
Legros, & Lloyd, 2008; Webster, Vella, & Scott, 2019), one or 
two-locus underdominance (Dhole, Vella, Lloyd, & Gould, 2018) 
and Daisy-Chain drives (Noble et al., 2019). The DRAQUE param-
eters would have to be evaluated specifically for these particular 
cases.

We have restricted our evaluation of the probability of acci-
dental spread of gene drive constructs to genomes considered as 
fairly stable entities. However, genomes are dynamic structures. 
The process of gene duplication (or even n-plication) is common-
place (Clark & Donoghue, 2018; Harari, Ram, & Kupiec, 2018; 
Moriyama & Koshiba-Takeuchi, 2018). Local amplification of se-
quences is also very frequent (Liu et al., 2019; Traynor et al., 2019) 
and this may increase the probability of accidents to a further un-
known level.

Parameter Rough estimate

transf 0.035 transfer events or more to at least one species per 
thousand years for a given transposable element; may 
be lower for a gene drive construct

hyb unclear, such events are possible in species closely 
related to the target species

express close to 1 in vertebrate species for gene drives targeting 
mice,

close to 1 in Diptera species for gene drives targeting 
mosquitoes or flies

cut 0.02 in a random genome of human size

flank unclear

immune close to 1 for nontarget insect species, may be lower for 
nontarget vertebrate species

nonextinct 0.5–0.7

TA B L E  3   Overview of the various 
parameters of the DRAQUE equation
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The DRAQUE formula does not cover all the risks associated 
with gene drive. In addition to the risk of transfer to another species, 
gene drive designed to eliminate a target population may have addi-
tional ecological consequences that are not treated here.

Living with highly evolved technologies entails high risks for indi-
viduals and societies. Here, we have attempted to evaluate circum-
stances where risks could be identified, but this assumes that we are 
aware of all the natural processes coupled with the technologies of 
interest. Besides the technology itself—which can be properly mon-
itored and steered—there is an additional risk that is seldom taken 
into account, the risk derived from the way the organizations that 
implement the technologies manage them (Perrow, 2011). We have 
not tackled this question here, but it is an obvious place of much 
concern. The way novel biological technologies have been used re-
cently—see modification of human babies with deletion of a surface 
cell receptor (Sand, Bredenoord, & Jongsma, 2019)—should remind 
us that rogue or reckless scientists may use gene drive approaches 
without proper risk assessment.

Overall, our study reveals that there is a need for more detailed 
investigations of the different factors influencing the probability 
of a gene drive contaminating another species before any release 
in the wild population is ever considered. We hope that our paper 
will trigger discussions and progress in the ethics of gene drive 
technology.
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