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 25	
ABSTRACT 26	

Despite multiple studies and advances, sociality still puzzles evolutionary biologists in 27	

numerous ways, which might be partly addressed with the advent of sociogenomics. In 28	

insects, the majority of sociogenomic studies deal with Hymenoptera, one of the two groups 29	

that evolved eusociality with termites. But, to fully grasp the evolution of sociality, studies 30	

must obviously not restrict to eusocial lineages. Multiple kinds of social system transitions 31	

have been recorded and they all bring complementary insights. For instance, cockroaches, the 32	

closest relatives to termites, display a wide range of social interactions and evolved 33	

convergently subsocial behaviours (i.e. brood care). In this context, we emphasize the need 34	

for natural history, taxonomic and phylogenetic studies. Natural history studies provide the 35	

foundations on which building hypotheses, whereas taxonomy provides the taxa to sample to 36	

test these hypotheses, and phylogenetics brings the historical framework necessary to test 37	

evolutionary scenarios of sociality evolution. 38	

 39	

Keywords: fieldwork, life history traits, natural history, phylogeny, social categories, 40	

sociality evolution, systematics, taxonomy 41	

 42	

RESEARCH HIGHLIGHTS 43	

Sociogenomics must diversify its targeted taxa and extends to non-eusocial organisms. 44	

Taxa can only be targeted when known, but many lineages lack natural history data or are just 45	

unknown, especially in non-charismatic organisms like cockroaches. 46	

 47	

GRAPHICAL ABSTRACT 48	

Multiple subsocial and wood-eating cockroach lineages placed in a phylogenetic context 49	

50	
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 50	

INTRODUCTION 51	

 52	

Sociality and social groups are common terms, broadly understood, but not so easily defined 53	

(Wilson and Wilson, 2007; Bourke, 2011). One of the earliest explicit definition emphasized 54	

reciprocal stimulation among individuals of a social group (Grassé, 1952). These reciprocal 55	

stimulations encompass a wide array of behaviours, and the most integrated level of 56	

organization, as observed in termites for instance, is called eusociality. Eusociality is defined 57	

by cooperative brood care, overlapping generations within a colony of adults, and division of 58	

labour (Wilson and Hölldobler, 2005). This social system, arguably the most spectacular, is 59	

widely investigated from its multiple origins within the tree of life (reviewed in Bourke, 60	

2011) and the mechanisms related to its evolution (e.g., Wilson and Hölldobler, 2005; Nowak 61	

et al., 2010; Nonacs, 2011; Rousset and Lion, 2011; Johnstone et al., 2012) to the factors 62	

behind the diversification of eusocial groups (e.g., Farrell et al., 2001; Moreau et al., 2006; 63	

Cardinal and Danforth, 2013) or the role of eusociality as a driver of diversification (Davis et 64	

al., 2009; Ware et al., 2010; Legendre and Condamine, 2018).  65	

 66	

Despite multiple studies and advances, sociality still puzzles evolutionary biologists in 67	

numerous ways, which might be partly addressed with the advent of sociogenomics 68	

(Robinson, 1999). The term sociogenomics illustrate how genomics has entered the field of 69	

social behaviour evolution through recent advances in molecular biology. Studies focusing on 70	

the molecular basis of sociality flourish and aim at providing insights into its evolution 71	

(Robinson et al., 2005; Sumner, 2006). Important advances have been already made, 72	

especially in Hymenoptera (e.g., Weinstock et al., 2006; Bonasio et al., 2010; Toth et al., 73	

2010), and these advances highlight the role of changes in gene family sizes (Woodard et al., 74	

2011; Simola et al., 2013) as well as the importance of changes in gene regulation (Kapheim 75	

et al., 2015). 76	

 77	

The evolution of eusociality in Isoptera (termites), which occurred convergently with and 78	

before eusociality in Hymenoptera (Moreau et al., 2006; Howard and Thorne, 2011; Legendre 79	

et al., 2015a), has started to be investigated as well with genomic tools (e.g., Terrapon et al., 80	

2014; Korb et al., 2015; Harrison et al., 2018). Diversifying the taxonomic groups studied in 81	

sociogenomics provides decisive information on the evolution of eusociality and on 82	

convergence evolution, one of the rare potentially predictable patterns in nature over 83	
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macroevolutionary time because it involves repeatability (Mahler et al., 2013). It opens 84	

avenues for our understanding of the evolution of eusociality, including in diploid organisms, 85	

and has already revealed different specific solutions between Hymenoptera and termites 86	

(Harrison et al., 2018). 87	

 88	

To fully grasp the evolution of sociality, studies must obviously not restrict to eusocial 89	

lineages. Multiple kinds of social system transitions have been recorded and they all bring 90	

complementary insights, necessary to get as comprehensive as possible a picture of the 91	

molecular basis of social behaviours (Rehan and Toth, 2015). In addition to taxonomic 92	

diversity, social group diversity must also be investigated. This necessity has been early 93	

recognized and partly explains why so many studies focused in Hymenoptera, a group 94	

wherein solitary, subsocial and eusocial lineages evolved multiple times (Wilson, 1971). It is 95	

pivotal to continue in this direction taking into account as much social diversity as possible. 96	

But, because of a lack of natural history studies, this social diversity is not so well-known in 97	

less charismatic organisms such as cockroaches. 98	

 99	

In this context, we provide here a taxonomic and phylogenetic perspective on sociality 100	

evolution in termites and the closely related cockroaches. We aim at emphasizing the role of 101	

natural history and systematics in the quest to decipher the molecular basis of social 102	

behaviours. We first restate a few theories about sociality evolution because theories provide 103	

the background for hypotheses, which in turn point to the taxa to sample preferentially to 104	

robustly test these hypotheses. Then, we recall that social behaviour diversity extends way 105	

beyond a few social categories. This very diversity represents what really occur in nature and 106	

it can only be recorded through detailed natural history observations. In the last section, we 107	

put our remarks in a phylogenetic context and suggest a few taxa to consider in the future, 108	

which can be seen, hopefully, as so many guidelines for sociogenomics projects. 109	

 110	

The theories behind the evolution of sociality and their links with what we observe in 111	

nature 112	

Several theories have been postulated to explain the origin of sociality, and more specifically 113	

the origin of eusociality in Hymenoptera, from the inclusive-fitness to group-selection 114	

hypotheses (e.g., Hamilton, 1964; Trivers, 1971; Lin and Michener, 1972; Axelrod and 115	

Hamilton, 1981; Slobodchikoff, 1984; Myles, 1988; Wilson and Sober, 1989; Griffin and 116	

West, 2002; Okasha, 2003, 2006; Korb and Heinze, 2004; Lehmann and Keller, 2006; Garcia 117	
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and De Monte, 2013). In termites, diploid organisms for which the inclusive fitness 118	

hypothesis is not as convincing as for haplo-diploid Hymenoptera, additional theories have 119	

been proposed (Bartz, 1979; Lacy, 1980; Nalepa, 1984, 1994; Myles and Nutting, 1988; 120	

Roisin, 1994, 1999; Thorne and Traniello, 2003; Korb, 2009; Korb et al., 2012; Bourguignon 121	

et al., 2016). While most theories underline properties that all social organisms share (e.g., the 122	

need for communication among individuals), others stress their own lineage-specific 123	

peculiarities (e.g., wood-dependence in the symbiont transfer hypothesis or genomic events in 124	

the chromosome-linkage hypothesis for termites; Thorne, 1997). 125	

 126	

These theories determine the hypotheses to test – and the species to use to conduct these tests, 127	

when looking for molecular signatures of sociality evolution. Genomic insights linked to 128	

properties shared between multiple hypotheses have been first targeted because they most 129	

likely have a general explanatory power. Accordingly, Harrison et al. (2018) focused on 130	

chemical communication and gene regulation along the evolution of castes, two features of 131	

eusocial evolution but neither theory- nor termites-specific. To fully grasp how sociality has 132	

evolved, these general insights must be complemented with knowledge that is more specific. 133	

To gain this knowledge, however, and assess the relative importance of various hypotheses, 134	

we first need to clearly define these hypotheses and specifically target species in consequence. 135	

 136	

For some termite-specific hypotheses on the evolution of sociality, taxa can be quite 137	

straightforwardly identified. For instance, several theories (reviewed in Thorne, 1997) have 138	

pointed out that the evolution of eusociality in termites would be linked to the need for 139	

transmitting intestinal symbionts in relation to wood consumption, which would be better 140	

ensured with long brood care. Nevertheless, a short brood care might evolve in subsocial 141	

wood-eating species (Pellens et al., 2007a), suggesting that how life traits associated to wood 142	

consumption actually constrains social evolution remains to be better assessed. Still, wood-143	

eating and wood-living species would be logical first picks. In another example, Roisin 144	

(1994) suggested a theory underlining the role of intragroup conflicts, so that species with 145	

different levels of aggressive behaviour could be targeted. But some theories might be more 146	

complicated to test because of a lack of species compatible with them. Thus, a hypothesis 147	

postulated that winged-wingless diphenism evolved before eusociality in termites 148	

(Bourguignon et al., 2016) but no such taxon exist in termites and cockroaches. One can still 149	

envision that species with a (sexual) dimorphism in winged length could bring important 150	
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insights in line with this theory. But, as stimulating as this theory is, there is no getting away 151	

from the facts, and these facts rely on what is observed in nature. 152	

 153	

Beyond social (and other) categories  154	

There is no doubt that the evolution of eusociality in termites occurred through the subsocial 155	

route (Kennedy, 1966; Nalepa, 1994; Roisin, 1994; Pellens et al., 2007a) as opposed to the 156	

semisocial route (Thorne, 1997), though both routes can be reconciled in a general 157	

evolutionary perspective (Grandcolas, 1997a). The terms subsocial and semisocial refer to 158	

social categories, wherein brood care is carried out by the parents or a group of adults, 159	

respectively. These categories were delimited to clarify the situation among the wealth of 160	

social behaviours observed in nature. Several authors have contributed to this categorization 161	

process (e.g., Wheeler, 1923; Batra, 1966) and, today, the categories as defined by Michener 162	

(1969) and popularized by Wilson (1971) are widely used, even though new propositions 163	

have been formulated (e.g., Korb and Heinze, 2008). 164	

 165	

Although necessary to ease communication, social categories as proposed by the authors 166	

suffer from two major limitations. First, these categories are either too broad or too 167	

constraining to accurately reflect the behavioural interactions observed in nature (Shellman-168	

Reeve, 1997; Wcislo, 1997a,b; Lacey and Sherman, 2005; Doody et al., 2013; Legendre et al., 169	

2014, 2015b). This drawback of the categorization process has also been underlined in other 170	

typologies (e.g., Bosch and De la Riva, 2004; Robillard et al., 2006; Grandcolas et al., 2011; 171	

Goutte et al., 2016, 2018). Second, social classification has been delimited following a “top-172	

down development” (Costa and Fitzgerald, 1996), wherein the supposedly most complex 173	

category is defined first (i.e. eusociality with ‘cooperative brood care’, ‘reproductive castes’ 174	

and ‘overlap between generations’). Other categories are subsequently defined after 175	

successive removal of distinctive features (e.g. semisociality with ‘cooperative brood care’ 176	

and ‘reproductive castes’ but no ‘overlap between generations’). Beyond the conceptual issue 177	

it triggers – because categories should not be defined on the absence of a quality (Mahner and 178	

Bunge, 1997) – it also inherently imply an unnecessary gradistic view of social evolution, 179	

narrowing our understanding (Gadagkar, 1994; Kukuk, 1994; Crespi and Yanega, 1995; 180	

Sherman et al., 1995).  181	

 182	

In the study of sociality evolution in termites, the categorization process and its drawbacks 183	

apply in diverse ways. To understand the first step of this evolution, cockroach relatives, be 184	
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they subsocial, gregarious or solitary, must be studied. However, these terms are too 185	

restrictive to accurately reflect the rich behavioural interactions and the variety in group 186	

composition observed in cockroach species (e.g., van Baaren et al., 2002, 2003; Legendre et 187	

al., 2008a, 2014). In the same line of reasoning, two different worker castes have been early 188	

distinguished in termites (i.e. pseudergates and ‘true’ workers – Noirot and Pasteels, 1987) 189	

and inconclusive or contradicting hypotheses have been formulated to suggest which caste 190	

evolved first (pseudergates: Noirot, 1985; Inward et al., 2007; vs ‘true’ workers: Watson and 191	

Sewell, 1985; Thompson et al., 2000, 2004 but see Grandcolas and D’Haese, 2002, 2004; 192	

Legendre et al., 2013; vs inconclusive: Legendre et al., 2008b). These two castes, however, 193	

are inadequate to describe the different phenotypes observed in nature, as some phenotypes do 194	

not fit with either definition (Bourguignon et al., 2009, 2012; Legendre et al., 2013). Finally, 195	

feeding habits have been investigated and categorized in termites. This has consequences on 196	

sociality evolution because of, for instance, the role of wood-eating in the symbiont transfer 197	

hypothesis (Lin and Michener, 1972; Nalepa, 1984, 1994). Thus, Mastotermitidae, the first 198	

diverging lineage within termites (Inward et al., 2007a; Legendre et al., 2008b, 2015a), has 199	

been grouped with other lower termites (group I dead wood and grass-feeders of Donovan et 200	

al., 2001). Yet, Mastotermes darwiniensis Froggatt, 1897 is not strictly speaking a wood-201	

eating species such as dampwood or drywood termites as it may also feed on litter (Donovan 202	

et al., 2001). In other words, different regime diets and gut anatomy may hide behind this 203	

‘group I’ category, preventing fine-scale analyses of the role of feeding habits in sociality 204	

evolution in termites. 205	

 206	

Taxonomy and natural history data: so many unanswered questions and gaps to fill 207	

The limitations of broad categories, and the connected progresses it hampered, have been 208	

progressively revealed through the observation of large sample of organisms. Indeed, with 209	

observations encompassing a larger taxonomic coverage comes a higher chance to identify 210	

organisms that fall out of the previously defined categories, thus betraying classification 211	

defects. But, unfortunately, these observations, sometimes called ‘natural history’ 212	

observations, remain scarce and our ignorance in the ecology or behaviour of numerous taxa 213	

is colossal (Greene, 2005). This unfortunate situation must be advertised to be comprehended 214	

and resolved (e.g., Greene, 2005; Page, 2005; Tewksbury et al., 2014; Able, 2016; King and 215	

Achiam, 2017), which would speed up progresses in all biological disciplines, including 216	

sociogenomics, as they all somehow rely on natural history and taxonomy (May, 1990; 217	

Grandcolas, 2017; Troudet et al., 2017). 218	
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 219	

This situation is even more worrying that we face a massive biodiversity loss affecting all 220	

organisms (Dirzo and Raven, 2003; Ceballos et al., 2015), some of them going extinct before 221	

any formal description. The species-rich and understudied Insecta class is most likely the 222	

most impacted but even for birds, arguably the best-known taxonomic class (Troudet et al., 223	

2017), natural history data are missing for the majority of species (Xiao et al., 2017). The 224	

situation is undoubtedly worse for less emblematic organisms, such as cockroaches and 225	

termites whose majority of species are still unknown (Grandcolas, 1994a,b; Legendre and 226	

Grandcolas, in press). Yet, natural history observations provide both the facts upon which 227	

building hypotheses and the taxa upon which testing these hypotheses.  228	

 229	

A few population or habitat studies on cockroaches have been conducted in the field (e.g., 230	

Shelford, 1906; Roth and Willis, 1960; Gautier, 1974; Nalepa, 1984; Schal et al., 1984; 231	

Grandcolas, 1991, 1992, 1993a, 1994a, 1995a, 1997b,c, 1998; Park et al., 2002; Pellens and 232	

Grandcolas, 2003; Pellens et al., 2007b). These studies have brought important insights on our 233	

understanding of cockroach evolution, and more specifically social evolution. For instance, 234	

different subsocial lineages have been identified (Fig. 1), such as the Thoracini and 235	

Notolamprini tribes (Shelford, 1906), the genus Cryptocercus Scudder, 1862 (Cleveland, 236	

1934; Nalepa, 1984; Park et al., 2002) or the species Parasphaeria boleiriana Grandcolas and 237	

Pellens, 2002 (Pellens et al., 2002), lineages wherein at least one parent offers protection or 238	

food to its newborns. Other lineages have been first suspected from natural history collection 239	

such as in the genus Perisphaerus Serville, 1831, where young nymphs would obtain 240	

nourishment from their mother (Roth, 1981). In addition, numerous Blaberidae species have 241	

been observed in a close relationship between females and their newly hatched offspring 242	

(Roth, 1981; Grandcolas, 1993a; Pellens and Grandcolas, 2003; Perry and Nalepa, 2003). 243	

Hence, subsocial behaviour is not rare in cockroaches and all the aforementioned lineages 244	

might contain important species to target to better understand the molecular basis of eusocial 245	

evolution in termites through the subsocial route. Comparative analyses of genomic data of 246	

these different lineages would allow disentangling the genetic basis of various features related 247	

to subsociality in itself or largely shared among cockroaches (e.g. physical protection) from 248	

those putatively more specifically involved in the first steps of eusocial evolution in termites 249	

(e.g. nourishment).  250	

 251	
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Other studies have provided information on cockroach diets, and notably on wood-feeding. 252	

Apart from the genera Parasphaeria Brunner von Wattenwyl, 1865 and Cryptocercus 253	

Scudder, 1862 already mentioned (Grandcolas, 1995b), the genus Lauraesilpha Grandcolas, 254	

1997 has been shown to be closely associated to wood, as well as its sister genus Tryonicus 255	

Shaw, 1925 – although to a lesser extent (Grandcolas, 1997b). Interestingly, ciliates have 256	

been found in the digestive tracts of all specimens of Lauraesilpha spp. studied, which are 257	

solitary (Grandcolas et al., 2008). In Blaberidae, Panesthiinae cockroaches include numerous 258	

species living in and feeding on wood in Australasia (Roth, 1977), and the Perisphaerinae 259	

genera Compsagis Chopard, 1952 and Cyrtotria Stål, 1871 (Grandcolas, 1997d) comprise 260	

species living in wood. In addition, in Ectobiidae, the Nyctiborinae species Paramuzoa alsopi 261	

Grandcolas, 1993 feeds on wood (Grandcolas, 1993b). These studies show a combination of 262	

social behaviour, wood and symbiont associations. This suggest that wood-eating/wood-living 263	

is not necessarily associated to a subsocial behaviour (and vice versa) and that is has evolved 264	

convergently in cockroaches (at least in three families). 265	

 266	

Phylogenetic perspective in cockroaches and termites 267	

These examples illustrate the need for natural history data and taxonomic works because they 268	

enable us to generate hypotheses and refine them (Greene, 2005; Willson and Armesto, 2006; 269	

Agrawal, 2017). To be optimally tested, these hypotheses must be then integrated in a clear 270	

phylogenetic context (Rehan and Toth, 2015). Phylogenetic trees allow taking into account 271	

the phylogenetic history of the species compared, their phylogenetic relatedness and 272	

distinguishing plesiomorphic, apomorphic and convergent conditions. They also bring the 273	

framework to compute statistically robust results (Felsenstein, 1985) and provide natural 274	

replicates (i.e. convergences), which is the only way to reach generalization about biological 275	

processes. 276	

 277	

We provide here this phylogenetic context from the latest study with the largest taxonomic 278	

sampling in Dictyoptera (Fig. 2; Legendre et al., 2015a). We underline the different lineages 279	

discussed in this paper with regard to subsociality and wood-eating. This phylogenetic context 280	

allows identifying the species most closely related to termites and the number of convergent 281	

origins of subsociality and wood-eating. It must be recalled, however, that i) numerous taxa 282	

have not been included in this phylogenetic study, ii) numerous described species are devoid 283	

of any natural history data and iii) most species have not been described yet. 284	

 285	
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Because of both its phylogenetic position (Inward et al., 2007b; Legendre et al., 2015a) and 286	

its life history traits (Nalepa, 1984, 1988), the genus Cryptocercus Scudder, 1862 is a priority 287	

target. But other subsocial and wood-eating species must be studied to disentangle attributes 288	

shared among these species from those specific to Cryptocercus. The aforementioned 289	

taxonomic groups, viz. Notolamprini, Thoracini, Perisphaerus (subsocial), Panesthiinae, 290	

Lauraesilpha Grandcolas, 1997, Cyrtotria Stål, 1871, Paramuzoa Roth, 1973, Compsagis 291	

Chopard, 1952 (wood-eating) and Parasphaeria Brunner von Wattenwyl, 1865 (wood-eating 292	

and subsocial), would undoubtedly bring important insights in the molecular basis of sociality 293	

evolution when investigated in a sociogenomics context. 294	

 295	

In addition to the lineages previously discussed, the Lamproblattinae subfamily deserves to be 296	

mentioned due to its alleged phylogenetic position as sister-group to (Cryptocercus + 297	

termites) (Legendre et al., 2015a). This phylogenetic position is controversial (Djernaes et al., 298	

2012, 2015) and not strongly supported (Legendre et al., 2015a), even if McKittrick (1964) 299	

early suggested a close affinity between Cryptocercus Scudder, 1862 and Lamproblatta 300	

Hebard, 1919 from morphological observations, a view supported more recently after the 301	

description of the genus Eurycanthablatta Fritzsche and Zompro, 2008 (Fritzsche et al., 302	

2008). 303	

 304	

Unfortunately, natural history data on the three Lamproblattinae genera (i.e. Lamproblatta 305	

Hebard, 1919, Eurycanthablatta Fritzsche and Zompro, 2008 and Lamproglandifera Roth, 306	

2003) are scarce (Gautier and Deleporte, 1986; Grandcolas, 1994a; Grandcolas and Pellens, 307	

2012). Lamproblatta Hebard, 1919 is a genus composed of eight solitary species that refuge 308	

in dead trunks or litter accumulations and forage in ground litter, whereas individuals of 309	

Eurycanthablatta pugionata Fritzsche and Zompro, 2008 seem to live in the ground 310	

(Fritzsche et al., 2008). We are unaware of behaviours or dietary regimes that would call for 311	

investigating this subfamily in priority to better understand the molecular basis of eusocial 312	

evolution in termites, but its alleged phylogenetic position shows it should not be neglected 313	

either. 314	

 315	

Finally, lineages poorly known or rarely sampled should be specifically targeted in future 316	

works. One of them, the superfamily Corydioidea is often undersampled in phylogenetic 317	

analyses and its constituting species are very little known. Individuals of Ergaula capensis 318	

(Saussure, 1893), for instance, live in treeholes but their social interactions are not known 319	
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(Grandcolas, 1997c); are they gregarious like Gyna spp. that are found in similar habitats? It 320	

is impossible to say for now and it is yet one of the better-known Corydiidae. The superfamily 321	

comprises ca. 250 extant species (Beccaloni and Eggleton, 2013) with a worldwide 322	

distribution, which is not insignificant in cockroach history. Such gaps are troublesome and 323	

should be filled to get a comprehensive picture of cockroach evolution, which thus requires 324	

natural history and taxonomic studies (Greene, 2005). 325	

 326	

327	
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 708	
FIGURE LEGENDS 709	

 710	

 711	
Fig. 1. Eight cockroach genera relevant for the investigation of the molecular basis of 712	

sociality in cockroaches and termites. A. Lauraesilpha mearetoi Grandcolas, 1997 excavated 713	

from its log in New Caledonia, B. Female of Thanatophyllum akinetum Grandcolas, 1991, 714	

solitary species, with its newborns, C. Notolampra punctata (Saussure, 1873) foraging on 715	

leaves at night in Mitaraka (French Guiana), D. Cryptocercus punctulatus Scudder, 1862 716	

excavated from its log in Virginia (USA), E. Perisphaerus sp. observed on a trunk at night in 717	

Indonesia, F. Parasphaeria boleiriana Grandcolas and Pellens, 2002 excavated in Brazil, G. 718	

Gregarious nymphs of Lanxoblatta emarginata (Burmeister, 1838) found under bark, H. 719	

Xylophagous Paramuzoa sp. observed in Brazil (credits: A,F-H. Grandcolas P.; B-C. 720	

Hugel S.; D-E. Legendre F.) 721	

 722	

 723	

 724	

 725	
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 726	
Fig. 2. Phylogenetic tree derived from the study in Legendre et al. (2015a) with subsocial and 727	

wood-eating lineages cited in the text highlighted. Obviously, only lineages sampled in this 728	

phylogeny are highlighted, meaning that other lineages have evolved wood-eating or 729	

subsociality. Stripes for the Panesthiinae indicates that some lineages are not sufficiently 730	

studied to ascertain they are subsocial (credits: F. Legendre). 731	
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