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Abstract

Litomosoides sigmodontis is a cause of filarial infection in rodents. Once infective larvae overcome the skin barrier, they enter
the lymphatic system and then settle in the pleural cavity, causing soft tissue infection. The outcome of infection depends
on the parasite’s modulatory ability and also on the immune response of the infected host, which is influenced by its
genetic background. The goal of this study was to determine whether host factors such as the chemokine axis CXCL12/
CXCR4, which notably participates in the control of immune surveillance, can influence the outcome of the infection. We
therefore set up comparative analyses of subcutaneous infection by L. sigmodontis in two inbred mouse strains with
different outcomes: one susceptible strain (BALB/c) and one resistant strain (C57BL/6). We showed that rapid parasite
clearance was associated with a L. sigmodontis-specific CXCL12-dependent cell response in C57BL/6 mice. CXCL12 was
produced mainly by pleural mesothelial cells during infection. Conversely, the delayed parasite clearance in BALB/c mice
was neither associated with an increase in CXCL12 levels nor with cell influx into the pleural cavity. Remarkably, interfering
with the CXCL12/CXCR4 axis in both strains of mice delayed filarial development, as evidenced by the postponement of the
fourth molting process. Furthermore, the in vitro growth of stage 4 filariae was favored by the addition of low amounts of
CXCL12. The CXCL12/CXCR4 axis thus appears to have a dual effect on the L. sigmodontis life cycle: by acting as a host-cell
restriction factor for infection, and as a growth factor for worms.
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Introduction

Filarioids are parasitic Nematodes transmitted by blood-feeding

arthropods that deliver infective larvae (L3) into the skin of

vertebrate hosts [1]. Some nematode species can host Wolbachia

bacterial endosymbionts [2,3]. A common feature of many filarial

species is their ability to colonize lymphatic vessels: either they

become resident and mature into adults (lymphatic filarioids e.g.

Brugia spp. and Wuchereria), or they use them to reach their

privileged niche (such as coelomic cavities) where they complete

their development [4]. Although the clinical manifestations can be

severe, most of the individuals infected with lymphatic filariasis or

onchocerciasis have asymptomatic infections, associated with

immune regulatory responses that allow long-term survival of

the worms [5–9] .

Litomosoides sigmodontis is a well-established murine model of

filarial infections that mirrors, amongst other things, protective

immune mechanisms [6]. Differences in parasite development

patterns in resistant (i.e. C57BL/6) and susceptible mice (i.e.

BALB/c) is likely to be inherited dominantly by one gene or

closely linked genes as suggested by Choi et al, 2003 [10]. These

differences begin early and become progressively more apparent

[11]. From day 4 post-inoculation of larvae, surviving L3 begin to

appear in the pleural cavity of infected mice. Larvae fully complete

their development in BALB/c mice, from infective L3 larvae into

L4 larvae, and then into mature, sexually reproducing adult filarial

worms. Reduction of filarial load occurs in the pleural cavity, and

is much earlier in C57BL/6 mice than in BALB/c mice. Infection

is almost resolved in C57BL/6 mice by the time patency starts in

BALB/c mice [9]. Another feature of filarial infection in C57BL/6

mice is the higher infiltration of cells in the pleural cavity around

the time of the last molt [12]. Cell recruitment is likely to be due to

inflammatory stimuli and secretion of chemoattractants such as

chemokines.

Chemokines are small proteins that regulate the trafficking of

immune cells through interactions with a subset of 7-transmem-

brane G-protein-coupled receptors [13]. Among them, the

CXCL12/SDF-1 chemokine and its receptor CXCR4 are critical

players [14–16]. CXCL12 is a very potent chemoattractant of

neutrophils, monocytes, T-lymphocytes and eosinophils [17–21],
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and mobilization of leukocytes from the bone marrow is largely

influenced by interference in the engagement of CXCL12 with

CXCR4 [22,23].

Beyond its role in leukocyte homeostasis, CXCL12 is a

pleiotropic chemokine that participates in the regulation of tissue

homeostasis (e.g. cell survival/proliferation), the importance of

which is revealed by its essential role in mouse embryonic

development [24–27]. CXCL12 is produced in various tissues,

which include the bone marrow, the skin and cardiac tissues and

the endothelium, peritoneal and pleural mesothelium [28–30].

The CXCL12/CXCR4 axis is known to be involved in viral

infections, autoimmunity, inflammation, immunodeficiency disor-

ders and cancer. An up-regulation of CXCR4 and CXCL12 was

reported in inflammatory diseases, such as rheumatoid arthritis,

multiple sclerosis, nephritis and asthma [31–33]. Recent studies

suggest that disruption of the CXCL12/CXCR4 axis with

pharmacological compounds might prove to be an effective

treatment strategy for such diseases [32,34].

In this study, we hypothesized that the CXCL12/CXCR4 axis

might be involved in the control of filarial infection. We aimed to

define its role using the L. sigmodontis infection model of BALB/c

and C57BL/6 mice, blocking either CXCL12 with the chelator

chalcone C04, or the CXCR4 receptor with the antagonist

bicyclam AMD3100.

Results

Murine strains differ by their pleural environments and
filarial outcomes

Larvae were injected subcutaneously in mice and recovered in

the pleural cavity 10 days (around molt 3), 30 days (around molt

4), and 60 days (onset of blood microfilariae) post inoculation (p.i.).

A later time point (80 days p.i.) was analyzed in BALB/c mice due

to the slower clearance of worms in this strain. As described

previously [12], the number of recovered worms in BALB/c mice

did not vary over the first two months of infection, dropping only

between days 60 to 80 (Figure 1A). In contrast, the number of

recovered worms in C57BL/6 mice decreased more rapidly and is

over before 60 days p.i. (Figure 1A), showing the characteristic

faster destruction of worms in this strain of mice.

The total number of cells recovered in the pleural cavity before

infection was minimal and identical for each strain (Figure 1B).

This number of cells did not vary greatly between 0 h (naive) and

10 days p.i. within strains, or between strains (Figure 1B). As

expected [12], cells were recruited in large numbers 30 days p.i. in

the pleural space, in both strains of mice, though there was a

significant strain effect (Figure 1B). Indeed, at that time point,

recruitment was higher in C57BL/6 than in BALB/c mice

(Figure 1B, 29.3614 vs 15.766.46106 cells/mouse). At 30 days

post-inoculation, the number of pleural exudate cells correlates

negatively with the number of filariae recovered in the pleural

cavity (Figure 1D, r = 20.576, p,0.01). The total number of cells

recovered from the pleural cavity at 60 days p.i. decreased in both

strains of mice (Figure 1B).

In a previous study, we characterized the infiltrated cells at 10

and 30 days p.i. and found that the kinetics of T and B cell

recruitment are different between the two strains: slow then fast in

C57BL/6 mice vs fast then slow in BALB/c mice [12]. However,

at 30 days p.i., no difference in the proportion of each cell type was

observed between the two strains of mice [12]. The higher peak of

cell influx in the pleural cavity of C57BL/6 mice was associated

with a higher secretion of inflammatory chemokines CCL2, CCL3

and CCL11 (Figure S1 and [12]) in the pleural fluid.

The chemokine CXCL12 attracts a large number of immune

cells and has been shown to be involved in the recruitment of

leukocytes in lung and peritoneal inflammation [35]. CXCL12 is

highly increased in the pleural fluid of C57BL/6 mice 30 days p.i.,

while the level remains unchanged in BALB/c mice, even at day

80 p.i. when the filarial load has fallen (Figure 1C). At 30 days

post-inoculation, the level of CXCL12 in the pleural cavity

correlates with the number of pleural exudate cells (Figure 1E,

r = 0.674, p,0.01).

Disruption of the CXCL12/CXCR4 pathway favors worm
survival in C57BL/6 mice

We thus investigated whether the secretion of CXCL12 in the

pleural cavity of C57BL/6 mice might have a hand in the fate of L.

sigmodontis infection by assessing the consequences of a blockade of

the CXCL12/CXCR4 axis in both BALB/c and C57BL/6 mice.

This was done using inhibitors that interact either with the

chemokine (i.e. chalcone C04 [36]) or the receptor (i.e. AMD3100).

We found that intraperitoneal treatments with either chalcone

C04 (at 10 and 20 days p.i., with a2.5 mg/mouse dose) or

AMD3100 (at 10 and 20 days p.i., with a 100 mg/mouse dose)

both significantly increased worm load in C57BL/6 mice. Upon

chalcone C04 administration, the worm load in C57BL/6 mice

reached the one observed in BALB/c mice (Figure 2A). The

AMD3100 treatment appeared to be less potent than the chalcone

C04 one. However, this is likely the consequence of the different

half-lives of the products and their bioavailability, together with

intrinsic differences in their mechanisms of interference on filarial

load. Neither of the treatments modified the filarial load in BALB/

c mice. These results support the hypothesis that CXCL12 has a

role in the resistant phenotype of the C57BL/6 mice.

The treatments with chalcone C04 and AMD3100 reduced the

total number of pleural exudate cell (PleCs) collected in the pleural

lavage fluid of the C57BL/6 mice (Figure 2B). However, PleC

composition was not modified by the treatments (Figure 2C,

Figure S2).

Pleural mesothelial cells are CXCL12 providers in C57BL/6
mice

While CXCL12 levels are highly increased in the pleural fluid of

C57BL/6 mice 30 days p.i (Figure 1C), neither the release of

CXCL12 by infiltrated pleural cells (Figure 3A, Figure S3) nor

blood levels (Figure 3B) can explain such concentrations. It is

known that one main source of CXCL12 are mesothelial cells

[28]. Normal mesothelial cells are present as a single layer applied

to a thin band of fibrous tissue and are characterized by

cytokeratin 7 expression (Figure 3C). Although expression of

CXCL12 was observed in visceral pleural mesothelium from both

naive BALB/c and C57BL/6 mice (Table 1), it ranged from

undetectable to low levels whatever the mice strain (Figure 3D left

and middle). Infection outcome 30 days p.i. did not modify

CXCL12 expression in BALB/c mice (Table 1), whereas C57BL/

6 mice displayed more CXCL12 in their mesothelium (Table 1,

Figure 3D right). In addition, slight hyperplasia of visceral pleural

mesothelium and nuclear pleomorphism were observed in infected

C57BL/6 mice (Figure 3D right). Once cultured, the pleural

mesothelial cells from infected-C57BL/6 mice released more

CXCL12 than the cells from infected BALB/c mice, whether they

were re-stimulated by L. sigmodontis crude extract or not (Figure 3E).

In addition, we checked that cultured mesothelial cells express

CXCR4 in both BALB/c and C57BL/6 mice (Figure 3F).

CXCL12/CXCR4 in Filarial Infection
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C04 and AMD3100 treatments prevent CXCL12 but not
IL-5 pleural production

Treatment of infected C57BL/6 mice with either C04 or

AMD3100 had an impact on the intracellular levels of CXCL12 in

the pulmonary mesothelium, which shrunk to those observed in

naı̈ve mice (Table 1). Accordingly, CXCL12 levels in the pleural

wash of infected C57BL/6 mice was also reduced by the two

treatments (Figure 4A). Because IL-5 has previously been shown to

be involved in the resolution of L. sigmodontis infection [37–39], the

presence of this cytokine was analyzed in the pleural wash.

Although IL-5 levels were significantly higher in C57BL/6 mice

than in BALB/c mice, the two treatments did not modify the

secretion of this cytokine (Figure 4B).

Disruption of CXCL12/CXCR4 axis delays worm
development in both strains of mice

L. sigmodontis larval stage 4 is expected to molt into the adult

stage around day 28 post inoculation in BALB/c mice; however, it

is also known that the timing of this molt is dependent on the

genetic background of the host [40]. Indeed, 17% of worms from

C57BL/6 mice were not yet adults 30 days p.i. whereas almost all

worms recovered from BALB/c mice were adults (98%) ([12] and

Figure 5A). The developmental stage is determined based on the

morphology of the buccal capsule, which appears as two thin lines

in stage 4, and consists of 3 identifiable segments in adults. At molt

4, larvae exhibit buccal capsules of both types (Figure 5B).

Surprisingly, in both strains of mice treated either by the chalcone

C04 or by AMD3100, the percentage of larval stage 4 and fourth

molting filariae increased 30 days p.i. (Figure 5A), from 17% to

35% and 30% in worms recovered from C57BL/6 mice and from

2% to 17% and 12% in worms recovered from BALB/c mice,

respectively treated with chalcone C04 or AMD3100. This

suggests that CXCL12 can be sensed by filariae as a cue for

development.

In order to understand the links between growth delay and the

treatment, a multiple factorial analysis was performed. The first

dimension constitutes an axis of resistance (29.92% of total

variance), from the susceptible BALB/c mice on the left with high

filariae counts (nF), to resistant C57BL/6 mice on the right

characterized by high levels of CXCL12 and IL-5 (Figure S4). To

discriminate the effect of the disruption of the CXCL12/CXCR4

axis (treatment), it was thus necessary to study axes 2 (20.25% of

total variance) and 3 (19.88% of total variance). CXCL12 levels

and the proportion of L4–M4 at 30 days p.i. are inversely

Figure 1. Filarial survival, pleural cell recruitment and CXCL12 levels during the course of the infection. A. Worms were collected
during the infection time course from 10 days p.i. to 60 daysp.i in C57BL/6 mice and 80 days p.i. in BALB/c mice and were counted (nF). B. Pleural
exudate cells (PleCs) were isolated at necropsy by flushing the pleural cavity and counted. C. The level of CXCL12 was measured during the course of
infection in pleural washes of C57BL/6 and BALB/c mice by ELISA (eBiosciences). Open squares represent BALB/c mice, black squares C57BL/6 mice.
Results are expressed as mean 6 SEM of 3 independent experiments pooled together, each carried out with 6 mice per group. The differences
between strains and the modifications during time course of the infection were analyzed by a two-way analysis of variance. For each analysis (nF,
PleCs, CXCL12), strain and time effects were significant. Comparison between strains for each time point was further assessed by Bonferroni’s multiple
comparison test. The character ‘‘*’’ represents significant differences between the C57BL/6 mice and the BALB/c mice (**p,0.005, ***p,0.001). D.
Correlation between the filarial load and number of the pleural exudate cells was assessed by Spearman’s test (r = 20.576, p,0.01). E. Correlation
between the number of pleural exudate cells and the pleural CXCL12 concentration was assessed by Spearman test (r = 0.674, p,0.01). Graphs show
the linear regression between the factors.
doi:10.1371/journal.pone.0034971.g001

CXCL12/CXCR4 in Filarial Infection
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correlated and captured by the third axis. To a less significant

degree, IL-5 is also inversely correlated to the proportion of L4–

M4. Altogether, these results suggest a role of CXCL12, and to a

lesser extent of IL-5, in the development of filariae.

Low concentrations of CXCL12, but not high ones,
improve in vitro worm growth

L4-stage larvae (of length 3.8 mm60.07) were cultured for five

days either with CXCL12 (1 or 10 nM), AMD3100 (25 mg/ml),

Chalcone C04 (1 or 10 mM) or IL-5 (5 ng/ml). The medium used

for culturing the worms was tested by ELISA for the presence of

CXCL12 and was shown to be negative. The length of untreated

worms had increased by 1.2 mm at the end of the culture

(Figure 6). Low concentrations of CXCL12 significantly improved

the growth, increasing it to 2.12 mm, whereas high concentrations

did not, underlining a different effect of CXCL12 on filarial

growth according to its concentration (Figure 6). Chalcone C04,

AMD3100 and recombinant IL-5 had no impact on worm growth

(Figure 6). All filariae from these experiments presented rapid and

regular movements, and were thus neither dead nor moribund.

Discussion

This study highlights a key role of CXCL12 in the control of

filarial infection. Indeed, CXCL12 proved to be a host cell factor

which is critical for a fast clearance of the parasite in C57BL/6

mice (Figure S5A). In addition, a dual role for the CXCL12/

CXCR4 axis is suggested, as it modulates the growth of the

parasite in a mouse strain-independent manner, and thus is more

likely to have a direct effect on the parasite (Figure S5B).

Several studies have shown that the CXCL12/CXCR4 axis is

involved in the progression of diseases and infections. In murine

models of asthma, disruption of this axis has been shown to

decrease lung damage and airway reactivity, as illustrated by

reduction of airway resistance, decreased microvessel density and

general alteration in the development of airway inflammation

[36,41,42]. In murine models of malaria, the supplementation of

lethal infection models with CXCL12 induces a clear reduction in

Figure 2. Reversal of resistance upon CXCL12/CXCR4 axis
disruption. A. Filarial load 30 days post-inoculation in BALB/c mice (Bc,
light gray) compared to C57BL/6 mice (B6, dark grey) after the
disruption of the CXCL12/CXCR4 axis. Mice were treated with 100 mg
AMD3100 (AMD) or 2.5 mg chalcone C04 (C04) at 10 and 20 days post-
inoculation as described in Material and Methods. Results are expressed
as a barplot of 3 pooled independent experiments each carried out with
6 mice per group. The differences between strains and those between
treatments were analyzed by a two-way analysis of variance. Strain and
time effects were significant. Further comparisons were assessed by
Bonferroni’s multiple comparison test. The character ‘‘*’’ represents
significant differences between treatments within one strain of mice
(*p,0.05, **p,0.005, ***p,0.001); ‘‘#’’ shows significant differences
between strains for one given treatment (##p,0.005, ###p,0.001).
B. Pleural exudates cell (PleC) count. PleCs were counted at necropsy 30

days post-inoculation in BALB/c mice (Bc, light grey) and in C57BL/6
mice (B6, dark grey) after the disruption of the CXCL12/CXCR4 axis by
AMD3100 (AMD) or chalcone C04 (C04). Results are expressed as a
barplot of 3 pooled independent experiments, each carried with 6 mice
per group. The differences between strains and those between
treatments were analyzed by a two-way analysis of variance. Strain
and time effects were significant. Further comparisons were assessed by
Bonferroni’s multiple comparison test. The character ‘‘*’’ represents
significant differences between treatments within one strain of mice
(**p,0.005); ‘‘#’’ shows significant differences between strains for one
given treatment (##p,0.005). C. Pleural exudates cell composition.
PleCs were characterized by FACS analysis. Cells were labelled with
various antibodies and then analysed by flow cytometry (FACSCanto
BD, FACS DIVA version 6.0) as described in Material and Methods and
Figure S2. B cells are defined as cells expressing CD19, T cells as
expressing CD3, macrophages as expressing F4/80, eosinophils as
expressing Siglec F and neutrophils as expressing Ly6G. Although L.
sigmodontis infection does not mobilize neutrophils in the pleural cavity
at 30 days p.i., these granulocytes were analyzed to determine if
treatments can induce their recruitment. Due to their very low numbers
in all groups, neutrophils were not represented on the graph. Results
are expressed as the mean of 6 observations for each cell type and
represented as a stacked barplot. A multiple analysis of variance
(MANOVA) was used to determine if the proportion of each pleural
exudate cell type is modified between murine strains or by the
treatments: the proportion of the different PleC types was not modified
by the treatments, neither in Bc nor in B6 mice.
doi:10.1371/journal.pone.0034971.g002

CXCL12/CXCR4 in Filarial Infection
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Figure 3. CXCL12 is produced by the mesothelium of C57BL/6 mice. A. Pleural exudate cells (PleCs) were harvested 30 days post-filarial
inoculation (p.i.), by PBS washing. The cells were stimulated for 72 hours with crude extract of adult (Ad) L. sigmodontis (10 mg/ml) or with 1 mg/ml of
the mitogen Concanavalin A (Con A). Levels of CXCL12 were detected by ELISA (eBiosciences) in the culture supernatant. Results are expressed as
mean 6 SEM, 6 mice per group. B. Differential levels of CXCL12 at 30 days p.i. in the sera of BALB/c mice (Bc) and C57BL/6 mice (B6) measured by
ELISA. Results are expressed as mean 6 SEM, 6 mice per group; unpaired t-test, non significant (NS). C. Chromogenic immunohistochemical staining
with cytokeratine 7 of paraffine-embedded visceral pleural mesothelium sections representative of naive or infected BALB/c and naive C57BL/6
tissues. Scale: bars = 20 mm. D. Chromogenic immunohistochemical staining of paraffine-embedded tissue section of C57BL/6 and BALB/c visceral
pleural mesothelium: figures are representative of established scores as described in Material and Methods and in Table 1. From left to right: negative
(neg.) CXCL12 staining, weak CXCL12 staining (int. for intermediate), high CXCL12 staining (high). Same results were observed with the two
antibodies tested (polyclonal antibody, 1:500, eBioscience; biotinylated clone K15C, 1:200). Scale: bars = 20, 10, 40 mm. E. Differential levels of CXCL12
in mesothelial cell supernatants was measured by ELISA. Mesothelial pleural cells were harvested by trypsine digestion from 12 BALB/c mice and 12
C57BL/6 mice 30 days post-filarial inoculation. Once at 70% of confluence, half of the cells were stimulated for 48 hours with crude extract of adult L.
sigmodontis (10 mg/ml, groups Bc Ad and B6 Ad). Unstimulated cells were also tested (Bc un and B6 un). Detail of culture conditions is provided in
Material and Methods. Results are presented after subtraction of the baseline production as a barplot showing medians and range. The differences
between strains were analysed by a Kruskall-Wallis test followed by a Dunn’s multiple comparison test. ‘‘*’’ represents significant differences between
the C57BL/6 mice and the BALB/c mice. F. Fluorescent immunological staining of CXCR4 on mesothelial cells culture. Scale: bars = 15 mm.
doi:10.1371/journal.pone.0034971.g003

CXCL12/CXCR4 in Filarial Infection
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parasitemia. Conversely, blocking CXCL12 action by administra-

tion of a CXCR4 receptor blocker causes an increase in circulating

parasites in the usually benign non-lethal P. chabaudi malaria in

C57BL/6 mice [43]. Similarly, in the L. sigmodontis model, blocking

the action of CXCL12 by either administrating the C04 chalcone

or a CXCR4 antagonist induces an increase in the filarial load in

resistant CXCL12-responsive C57BL/6 mice (Figure 2A, Figure

S5A). Thus, modification of the CXCL12/CXCR4 axis grants

control over the pathology’s development in these infection

models. The importance of CXCL12/CXCR4 axis in filarial

pathology is further supported by the fact that chronically infected

(lymphatic filariasis) but nevertheless asymptomatic individuals

have a lower expression of CXCR4 on T cells as compared to both

uninfected and resistant individuals [44].

The L. sigmodontis filarial infection is a Th2-based helminthiasis

[6] and the CXCL12/CXCR4 axis has been reported to have a

role in numerous Th2-based inflammatory diseases [32,42]. In

particular, disruption of the axis causes a decrease in cell

recruitment, as seen in asthma [41,42] or antigen-elicited

schistosomal granuloma formation (AESGF) [45]. Similarly, a

reduction of pleural cell recruitment was demonstrated herein in L.

sigmodontis filarial infection in treated resistant mice (Figure 2B).

Eosinophils are key players of a protective response against the

infective and adult stages of L. sigmodontis [37–39]. However, the

eosinophil population was not preponderantly impacted by the

blockade of the CXCL12/CXCR4 axis (Figure 2C), unlike in

asthma and AESGF [36,42,45]. Nevertheless, as with AESGF

[45], no clear deficit in Th2 cytokines was observed in the pleural

compartment, as indicated by unmodified IL-5 levels (Figure 4).

This difference may be related to the type of diseases studied, since

asthma and AESGF are inflammatory responses mainly caused by

eosinophils [36,42]. Furthermore, the kinetics of cell recruitment

studied in these diseases are short, up to 24 hours post-challenge

[36,42]. Besides eosinophils, the various cell types recovered in the

pleural cavity after disruption of the CXCL12/CXCR4 axis were

all reduced in the same proportion (Figure 2C and Figure S2).

Several species of filarioids establish themselves in lymphatics or

in coelomic cavities, which are bordered by endothelial or

mesothelial cells. These cells share numerous properties like the

capacity to produce a broad spectrum of chemokines and

chemokine receptors under inflammatory conditions, such as

CXCL8, CCL3, CXL12 for the mesothelial cells [28,46], CXCL1,

CXCL10, CXCL14 for endothelial cells, and CCL2 or CCL5 for

both types [47,48]. Mesothelial cells are distributed in a monolayer

that lines the pleural cavity. It allows dilatation/contraction of the

lung during breathing, regulates pleural permeability and provides

protection against pathogens [46]. For example, secretion of

chemokines by mesothelial cells has been shown to promote

leukocyte influx from the vascular compartment to the pleural

cavity via transmesothelial migration after infections such as

tuberculosis or bacterial peritonitis [49,50]. L. sigmodontis migrates

from the skin through the lymphatic system to the pleural cavity

where it matures and induces inflammation. Inflammatory

response is selectively stimulated, in respect to the strain of mice.

Indeed, the faster clearance of filarial infection appears in C57BL/

6 mice, within which a strong increase of chemokine concentra-

tions, including CXCL12, is measured in the pleural cavity,

peaking at the time of the 4th molt, i.e. around one month post

infection. Inflammatory chemokines such as CCL11 have been

detected in pleural fluid [12] and can be produced by pleural

exudate cells (Figure S1), whereas CXCL12 is produced by

mesothelial cells when infected by L. sigmondontis (Figure 3). In

contrast, the clearance of L. sigmodontis is comparatively slow in

susceptible BALB/c mice, which display a moderate increase of

chemokines throughout the infection (Figure 1, Figure S1). One

could thus hypothesize that increasing pleural CXCL12 levels in

susceptible BALB/c might confer them increased resistance

against the filaria. However, this approach is technically

compromised by the short half-life of recombinant CXCL12.

We don’t know yet the underlying mechanisms explaining the lack

of CXCL12/CXCR4-mediated immune response in BALB/c

mice, but for example the absence of a functional copy of Cxcl11

in C57BL/6 mice, contrary to BALB/c mice could be an

explanation. Indeed, as this chemokine signals through CXCR7,

the second receptor of CXCL12 [51], this difference may affect

the state of activation of the CXCL12/CXCR4 axis. The

importance of the CXCL12/CXCR4 axis in the susceptibility/

resistance phenotype against filariasis is further supported by the

recent observation of a correlation between high CXCR4

expression in PleCs and a low filarial recovery rate in granzyme-

deficient C57BL/6 mice presenting different degrees of suscepti-

bility after infection by L. sigmodontis [52].

This work is the first to highlight that mesothelial cells can act as

an important source of chemokines during filarial infection, and

suggests that the clearance of filariae is dependent on the capacity

of these cells to respond to the filariae. Mesothelial cells can

Table 1. CXCL12 intensity score in mesothelial cells.

Number of sections of lobes

Mice Total Neg. (score 0) Int. (score 5) High (score 10) Mean score/lobe

naive BALB/c 10 5 5 0 3

naive C57BL/6 11 9 2 0 1

inf. BALB/c 17 10 7 0 2

inf. C57BL/6 15 0 7 8 8

inf. C57BL/6 C04 8 6 2 0 1

inf. C57BL/6 AMD 8 3 5 0 3

The visceral pleural mesothelium from infected (inf.) and naive C57BL/6 and BALB/c mice was stained for CXCL12 (polyclonal antibody, 1:500, eBioscience; and
biotinylated monoclonal 1:200, clone K15C). Four animals were studied for each condition (6 groups: naive BALB/c, naive C57BL/6, infected BALB/c, infected C57BL/6,
infected and C04 or AMD3100-treated BALB/c and C57BL/6). 8 to 17 whole sections of pulmonary lobes were analyzed by light microscopy and discriminated according
to the intensity of CXCL12 staining in 3 categories: no detectable staining (Neg.), intermediate (Int.) or high intensity (High). The level of CXCL12 was arbitrarily scored as
0 (no detectable staining), 5 (intermediate staining), and 10 (high staining). A mean score (weighted mean) per section of pulmonary lobe was calculated according to
the coefficient defined previously.
doi:10.1371/journal.pone.0034971.t001
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produce chemokines following activation of Toll-like receptors

(TLR) such as TLR2/1 and TLR2/6 [53,54]. The endobacteria

Wolbachia is able to signal through TLR2 and TLR6 [55] opening

the possibility that it contributes to the mesothelial responses.

Further work is needed to assess whether damaged filariae, and the

consequent exposure of Wolbachia, participates in the mechanism

that controls host-dependent chemokine production during the

course of the infection.

In addition to its role in filarial clearance, the CXCL12/

CXCR4 axis impacts the growth of the parasite independently of

the mouse strain, likely through a direct effect on the filariae

(Figure S5B). Filarioids can increase in size between molts [56].

However, the end of the molting process can be more or less

precocious depending on the host background. For example, L.

sigmodontis 4th molt happens faster in rodents in which filarial

infection is cleared slowly [40,57]. Conversely, in resistant

C57BL/6 mice, a molting delay has been reported in previous

studies [12] and in the current one (Figure 5A).

The use of the L. sigmodontis murine infection model suggests

that immune parameters can be environmental factors influencing

the development and the fitness of the parasite. IL-5 has been

shown to control the growth of L. sigmodontis only in presence of

eosinophils [58]. IL-4 and IL-5 are also important in the

regulation of worm fertility, because infected IL-4 KO and IL-5

KO mice produce more microfilariae, and for a longer period of

time [59]. In the current study, CXCL12 was shown to be able to

modify the growth in a non-linear dose-dependent manner within

a controlled in vitro environment (Figure 6). Indeed, as in vivo, a

high concentration of CXCL12 (i.e. in C57BL/6 mice) limited the

growth of the parasite, while a low concentration of CXCL12 (i.e.

in BALB/c mice) favored it. Furthermore, neither C04 chalcone

nor AMD3100 had a direct effect in vitro when incubated with

filariae in the absence of CXCL12. This suggests that filariae

possess a CXCR4-like receptor able to sense pleural CXCL12

(Figure S5B). At high concentrations of this chemokine the

consequences on filarial growth are negative, most probably as a

result of receptor desensitization. The waning of responses from

cell surface activated receptors during persistent stimulation with

agonists (e.g. desensitization) is a feature shared by many G protein

coupled receptors, including the chemokine receptor family. For

instance, impaired desensitization of CXCR4 leads to abnormally

enhanced responses to CXCL12 [60–62]. Thus, under our

hypothesis, preventing the signalling of CXCL12 on its receptor

by using AMD3100 or the chalcone C04 would also impair worm

development, whatever the mouse strain, as is indeed observed.

The presence of an ortholog/mimic of CXCR4 in the filarial

genome was assessed on Brugia malayi genome, as the genome of

Litomosoides sigmodontis is not yet available. However, genome-wide

BLAST searches conducted on the Nembase sequence databases

(www.nematodes.org/nembase4/) failed to yield a significant

match for human or murine CXCR4 sequences (data not shown).

Nevertheless, CXCR4 is the most conserved chemokine

receptor among vertebrates and is even known to be present

in ancestral fish families, such as the chondrostian and

elasmobranch taxa, which diverge early in vertebrate evolution

[63,64]. Invertebrates are generally considered to be free of G-

protein-coupled receptors (GPCRs) of the rhodopsin c family,

which includes chemokine receptors [65]. However, the urochor-

date sea squirt Ciona intestinalis, one of the closest invertebrate

relatives to vertebrates, has been reported to have GPCRs from

this family [66], thus stressing the possibility that invertebrates

might possess chemokine-like pathways. Furthermore, even if

orthologs/mimics of mammalian chemokine receptors have not

been identified in Nematodes yet, chemokine-like proteins and

receptors of Nematodes are known to be able to interfere with

mammalian chemokine pathways, raising the possibility that

filarioidea possess a CXCR4 mimic able to interact with

mammalian system.

In conclusion, this study demonstrated that the abrogation of the

CXCL12/CXCR4 axis in L. sigmodontis infection of fast-clearing

mice reverses the resistant phenotype, with lower pleural cell

recruitment and higher worm survival rate. Conversely, this

increased survival is compromised by an alteration of worm

development, independently of the host’s genetic background.

As the differences of susceptibility in the L. sigmodontis mouse

model can reflect the large panel of clinical manifestations [6–9], the

study of CXCL12-dependant mechanisms of filarial destruction in

resistant mice might yield interesting new therapeutic targets.

Figure 4. Pleural levels of CXCL12 and IL-5 after disruption of the CXCL12/CXCR4 axis. CXCL12 (A) and IL-5 (B) expression levels measured
by ELISA in pleural fluid of BALB/c mice and C57BL/6 mice 30 days post-inoculation and upon blockade either by chalcone (C04) or by AMD3100
(AMD) (days 10 and 20 p.i.). Results are presented after subtraction of the baseline production as mean 6 SEM of 3 pooled independent experiments
each carried out with 6 mice per group. The differences between strains and treatments were analysed by a two-way analysis of variance. Strain and
treatment effects were significant for the pleural CXCL12 levels, and only the strain effect was significant for the pleural IL-5 level. Further
comparisons were assessed by Bonferroni’s multiple comparison test. ‘‘*’’ represents significant differences between treatments within one strain of
mice (*p,0.05, **p,0.01); # shows significant differences between strains for one given treatment (###p,0.001).
doi:10.1371/journal.pone.0034971.g004
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Materials and Methods

Ethics Statement
All experimental procedures were carried out in strict accordance

with the 2003/65/CEE European directive for animal experimen-

tation. National license number 75–1415 approved animal

experiments. Protocols were approved by the ethical committee of

the ‘‘Museum National d’Histoire Naturelle’’ (MNHN) and by the

‘‘Direction départementale de la cohésion sociale et de la protection

des populations’’ (DDCSPP) (nu75-05-15).

Parasites, mice, infection, treatments
Litomosoides sigmodontis was maintained in our laboratory, and

infective third-stage larvae (L3) were recovered by dissection of the

mite vector Ornithonyssus bacoti as previously described [38,67].

Crude extract of L. sigmodontis worms were obtained by

homogenization and sonication of adults recovered from jirds

(sex ratio 1:1) as previously described [12]. After centrifugation,

the supernatant was collected and frozen at 280uC until further

use. Protein content was determined by the modified Bradford

method (BCATM Protein Assay kit, Pierce).

Six-week-old female C57BL/6 and BALB/c mice were

purchased from Harlan (France) and maintained in the MNHN

animal facilities. Forty infective L3 in 200 ml of RPMI 1640 were

inoculated subcutaneously into the left lumbar area of mice.

Kinetics of infection were followed over 80 days of infection. Mice

were sacrificed at 10, 30, 60, and 80 days post-inoculation (p.i.).

Groups of mice were twice treated intraperitoneally with 2.5 mg

of chalcone C04 dissolved in 1% Carboxy Methyl Cellulose

(Sigma) 10 and 20 days p.i. according to the protocol described by

Hachet-Haas et al. [36] or with 100 mg of AMD3100 in 0.9%

NaCl (Sigma) using the same schedule. Mice were sacrificed 30

days p.i.

At least six mice were used for each group, and each experiment

was repeated 3 times.

Filarial load, pleural leukocyte recovery, flow cytometry
The mice were anesthetized and sacrificed by final bleeding.

The pleural cavity was washed with 10 ml of cold phosphate

Figure 5. The CXCL12/CXCR4 axis affects filarial development.
A. Percentage of adults (dark grey) and non adults (light grey), i.e. stage
4 (L4) or molt 4 (M4), recovered 30 days post-inoculation after
treatment with chalcone (C04) or AMD3100 (AMD). Results are
presented in stacked column chart; binomial glm (see Materials and
method for details). B. Morphology of L. sigmodontis buccal capsule of
fourth stage (L4), during fourth molting (M4), and of adult (Ad) by light
microscopy. The fourth stage has a thin buccal capsule, composed of
two thin walls (dark arrow), the fourth molt simultaneously presents the
buccal capsule of the fourth stage (dark arrow) and the buccal capsule
characteristic of the adult stage with three large segments. Scale:
bars = 20 mm. C. Multiple factorial analysis (MFA) of the parameters
implicated in the study: pleural CXCL12, pleural IL-5, number of pleural
exudate cells (PleCs), number of filariae (nF), and the percentage of
stage 4 and molt 4 (L4–M4). For a non-biased representation of the data
observed either on mice or on filariae, PleCs, IL-5, and CXCL12 factors
were grouped together on one hand, and the number of filariae and
L4–M4 factors on the other hand. Controlled variables, such as strain or
treatment, were considered as illustrative.
doi:10.1371/journal.pone.0034971.g005

Figure 6. CXCL12 has direct effect on worm growth in vitro.
Length of filariae (mm) was measured before and after 5 days of in vitro
culture. Groups of filariae were constituted and treated with either
CXCL12 (1 nM, 10 nM), Chalcone C04 (C04, 1 mM, 10 mM), AMD3100
(AMD, 25, 50 mg/ml) or IL-5 (5 ng/ml). Treatments were added daily to
wells containing two filariae in 1 ml, as detailed in Materials and
Method. Length increase was expressed as median 6 interquartile
range of 30 filariae for control group (Ctrl, medium only), 20 for other
groups, and 10 for the IL-5 treated group. The differences between
treatments were analysed by a non parametric Kruskall-wallis test
followed by Dunn’s multiple comparison test, with control group as
reference. ‘‘*’’ marks significant differences between treated filariae and
the control group (*p,0.05).
doi:10.1371/journal.pone.0034971.g006
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buffered saline (PBS), as previously described [38,68]. The

infiltrating cells as well as the worms were collected from the

pleural wash for further analysis.

The following parasite features were analyzed by light

microscopy on materials fixed in toto with 4% formaldehyde in

cold PBS to avoid body shrinkage: i) L4/molt 4/adults; ii) gender.

Pleural exudates cells (PleCs) were centrifuged at 250 g for 8 min

at 4uC, resuspended in 1 ml RPMI supplemented with 10% foetal

calf serum (FCS) and counted in PBS20.04% trypan blue (Sigma-

Aldrich) by using a haematocyter. Proportions of the different

leukocyte populations were determined by flow cytometry.

The following rat anti-mouse antibodies were used for analysis

of cell composition in the pleural cavity: anti-CD19-APC (dilution

1:25, BD Pharmingen, clone 1D3) as a marker of B cells; anti-

CD5-PE (dilution 1:25, BD Pharmingen, clone 53-7.3), a marker

found on B1 cells and not on B2 cells; anti-CD3-PEcy5 (dilution

1:25, BD Pharmingen, clone 17A2) as a marker of T cells; anti-

F4/80-APC (dilution 1:50; eBioscience, clone BM8), a marker of

macrophages, SiglecF-PE (dilution 1:40, BD Bioscience, clone

E50-2440) as a marker of eosinophils, and Ly6G-PE-Cy7

(eBioscience, clone RB6-8C51:40) as a marker of neutrophils.

Controls were made with the appropriate isotype control.

Acquisition and analyses were performed as described in Figure

S1. Flow cytometry analysis was performed using a FACSCanto

flow cytometer running the FACS DIVA software (BD Bioscienc-

es).

PleCs culture and ELISA of culture supernatants, pleural
wash fluids, and sera

PleCs were cultured in duplicate in 96-well plates, with 2.56105

cells/well in RPMI 1640 medium supplemented with 10% FCS,

2 mM L-glutamine (Sigma Aldrich), 100 U of penicillin per ml,

and 100 mg of streptomycin per ml (Eurobio), and stimulated for

72 hours (h) with Ad filarial extract (10 mg/ml) or ConA (1 mg/ml)

at 37uC in 5% CO2-enriched atmosphere.

Pleural wash fluids (dilution 1:3), sera (dilution 1:5) or culture

cells supernatant (dilution 1:3) collected from individual mice were

assayed for cytokine content by enzyme-linked immunosorbent

assay (ELISA) in duplicate. These assays were performed

according to the manufacturer’s recommendations, using

CXCL12 ELISA kits (e-Bioscience or R&D) and IL-5 ELISA kit

(e-Bioscience). Results are expressed as picograms by milliliter.

Detection limits were 44 pg/ml for CXCL12 and 4 pg/ml for IL-

5.

Isolation, characterization of murine pleural mesothelial
cells, CXCL12 titration and CXCR4 immunostaining

Mesothelial cells were obtained by a 20 minute trypsin digestion

of visceral and parietal pleural mesothelium. Mice were injected

with 1.2 mL of trypsin-EDTA 0.25% in the pleural cavity at 37uC.

The external face of the pleural cavity was kept moist with PBS

and massaged periodically to improve cell detachment. The cavity

was then gently washed with 10 ml of RPMI supplemented with

10% of FCS to neutralize the trypsin.

The media containing the cells were centrifuged at 200 g for

5 minutes. The cells were washed three times in RPMI 1640

supplemented with 20% FCS, 2 mM L-glutamine, 100 U of

penicillin per ml, 100 g of streptomycin per ml, gentamicine

250 mg/ml, 20 mM HEPES and then cultured in T25 flasks for 6–

8 days at 37uC in a 5% CO2-enriched atmosphere until they were

subconfluent. Mesothelial cells were characterized according to

their shape and following cytokeratin 7 staining (1:50, clone AE1/

AE3, DAKO). Cells from 30 days p.i. infected-BALB/c and-

C57BL/6 mice were seeded at 1 million cells per mL in 24-well

plates and then stimulated or not with filarial extract (10 mg/ml).

Supernatants were recovered after 48 hours of culture for

CXCL12 titration by ELISA as described above.

After the first passage, mesothelial cells were grown on chamber

slides for 2 days (Lab-Teck, Polylabo, France). Cells were treated

with Brefeldin A (10 mg/ml) for the last 4 h of culture. Cells were

washed and fixed with 4% paraformaldehyde in PBS for 10 min at

4uC, permeabilized with PBS 0.2% BSA, 0.05% Saponine buffer

for 30 min at 4uC, incubated with the anti-CXCR4 polyclonal

antibody (Thermo Scientific, France) for 30 min at 4uC, and

finally incubated with secondary Ab goat anti-rabbit IgG-Alexa

Fluor 488 (Molecular Probes). After 3 washes in PBS, slides were

mounted with Fluoromount-G (Southern Biotechnology Associ-

ates). Images were taken using an inverted microscope Zeiss

Axiovert 200 M piloted by the Zeiss Axiovision 4.4 software,

acquired with a CCD camera Roper Scientific Coolsnap HQ, and

analysed using the AxioVision LE program.

Immunohistology of visceral pleural mesothelium
To expand the lungs of BALB/c and C57BL/6 mice and to

preserve the structure of the visceral pleural mesothelium, they

were injected through the trachea with 4% formaldehyde in cold

PBS. The organs were then fixed for 48 h by immersion in 4%

formaldehyde. Fixed samples were embedded in paraffin and 5-

mm-thick sections were prepared. The tissues were deparaffinized

with toluene and then hydrated using a series of decreasing

concentrations of ethanol. The visceral pleural mesothelium was

stained for cytokeratin 7, a marker of mesothelial cells (1:50, clone

AE1/AE3, DAKO) or CXCL12 (polyclonal antibody, 1:500,

eBioscience; and biotinylated monoclonal 1:200, clone K15C,

[69]). Binding of these antibodies was detected by HRP or HRP-

linked universal secondary antibody (DAKO) and AEC substrate

(DAKO). The sections were counterstained with a Mayer

Hematoxylin solution. Four animals were studied for each

condition and stained lung sections were examined by light

microscopy. The level of CXCL12 was arbitrary scored as 0 (no

detectable staining), 5 (intermediate staining), and 10 (high

staining). Representative images were chosen for each staining

intensity (negative, intermediate or high). The numerical scoring

was confirmed by a second independent examination, blinded to

the initial score.

In vitro culture of larvae
L4-stage larvae were recovered 15 days after L3 inoculation by

flushing the pleural cavity of jirds with cold PBS. The larvae were

then washed twice by a medium constituted of RPMI 1640, 25%

SVF, 2 mM L-glutamine (Sigma Aldrich), 100 U of penicillin per

ml, 100 mg of streptomycin per ml (Eurobio), HEPES 20 mM,

glucose 1.1%, vitamin C 75 mM, and BSA 3%.

L4 were seeded two per well in 24 well culture plates and the

medium was changed each day from day 0 to day 5. Filariae were

stimulated from day 1, with CXCL12 (1 or 10 nM), AMD3100

(25 mg/ml or 50 mg/ml), Chalcone C04 (1, 10 mM) or IL-5 (5 ng/

ml). The general appearance of cultured worms was observed each

day. Pictures were taken regularly for length measurement after

immobilization of the worms by 30 minutes at 4uC.

Statistics
The choice of statistical tests was based on sample size and on

Bartlett’s test when normal distributions of the errors were

expected. Data from separate experiments were pooled when

possible. Results were analyzed with two-way ANOVA in order to

determine the effects of 2 factors, i.e. the strain and the treatment.
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Bonferroni’s multiple comparisons post-test was used to compare

treated groups to untreated groups in each mouse strain, or to

compare the two strains similarly treated. For in vitro experiments,

non-parametric Kruskall-Wallis’s H-test was used. Pleural exu-

dates cell composition was analyzed by MANOVA. Binomial

generalized linear models (glm) were used to assess the effects of

treatment and strain on growth delay. Multiple factorial analysis

(MFA) was performed to represent the links between the variables

involved in this study. Representation and data analysis were

performed with R [70] or the GraphPad Prism 5 software.

Statistically significant values are indicated as follows: *: p,0.05;

**: p,0.01; and ***: p,0.001.

Accession Numbers
The GenBank accession numbers used to search for the

CXCR4 ortholog in Brugia malayi are HGNC:2561 for the human

CXCR4 gene and MGI:109563for the murine CXCR4 gene.

Supporting Information

Figure S1 Differential kinetics of pleural chemokine
levels between C57BL/6 and BALB/c mice. Differential

CCL2 (A) , CCL3 (B) and CCL11 (C) response between BALB/c

mice (Bc) and C57BL/6 mice (B6) in pleural fluid during the

course of infection. Pleural wash fluids (dilution 1:3) were assayed

for cytokine content by enzyme-linked immunosorbent assay

(ELISA) in duplicate. These assays were performed according to

the manufacturer’s recommendations, using CCL2, CCL3 and

CCL11 ELISA kits (Peprotech). Results are given in picograms per

milliliter. Results are expressed as mean 6 SEM of 3 pooled

independent experiments each carried out with 6 mice per group.

Two ways analysis of variance followed by Bonferroni multiple

comparison test. *: p,0.05, **: p,0.005, ***: p,0.001.

(TIF)

Figure S2 Cytometry analysis of pleural exudate cells.
A. Pleural exudate cells were characterized by FACS analysis.

Cells were labelled with various antibodies and then analysed by

flow cytometry (FACSCanto BD, FACS DIVA version 6.0). From

left to right : gating of macrophages and eosinophils is defined on a

F4/80/Siglec F plot: gate for macrophages is defined as high and

intermediate expression of F4/80 combined to low to intermediate

expression of Siglec F; gate for eosinophils is defined as high

expression of Siglec F; gating of neutrophils is defined on high

expression of Ly6G; gating of B and T cells is defined on a CD19/

CD5 expression plot; gate for B cells is in the left top corner; gate

for T cells is in the right bottom corner. B. Results presented are

the mean 6 SEM of 6 observations. MANOVA, significative

effect of strain (on total number of PleCs), no effect of treatment.

(TIF)

Figure S3 Differential production of chemokines by
PleCS between C57BL/6 and BALB/c mice. Differential

CCL2 (A) , CCL3 (B) and CCL11 (C) responses between BALB/c

mice (Bc) and C57BL/6 mice (B6) in PleC surpernatant. Pleural

exudate cells (PleCs) were harvested by PBS washing 30 days post-

filarial inoculation (F) or from naive mice (N). The cells were

stimulated for 72 hours by a crude extract of adult (Ad) L.

sigmodontis (10 mg/ml) or with 1 mg/ml of the mitogen Concanav-

alin A (C), or were left unstimulated (us). Levels of CCL2, CCL3,

CCL11 were detected by ELISA (Peprotech) in the culture

supernatant. Results are expressed as picograms by milliliter.

Results are expressed as mean 6 SEM of 3 pooled independent

experiments each carried out with 6 mice per group. Two-way

analysis of variance followed by Bonferroni multiple comparison

test. *p,0.05, **p,0.005, ***p,0.001.

(TIF)

Figure S4 Multiple factorial analysis of worm and
immune parameters: focus on the first dimension. A.

Individuals plot in factorial plane (1, 2) shows a marked separation

between the two strains. B. Correlation circle of the axis 1 and 2

presenting the patterns of responses in resistant versus susceptible

mice: low number of filariae (nF), high recruitment of pleural

exudates cells (PleCs), high CXCL12 and IL-5 concentration

(CXCL12.LP, IL5.LP), high number of stage 4 larvae and fourth

molting filariae (L4–M4).

(TIF)

Figure S5 Schematic overview of the regulation of
filarial survival and development by the CXCL12/
CXCR4 axis in the pleural cavity. A. The CXCL12/

CXCR4 axis controls filarial survival in C57BL/6 non permissive

mice. Survival of L. sigmodontis is represented in the pleural cavity

of C57BL/6 and BALB/C mice, before and after treatments

disrupting the CXCL12/CXCR4 axis. Without treatments

(control), C57BL/6 mice pleural mesothelial cells produce high

levels of CXCL12 that correlate with low levels of filariae and high

numbers of pleural exudate cells. On the contrary, BALB/c mice

pleural mesothelial cells produce low levels of CXCL12 that

correlate with high levels of filariae and low numbers of pleural

exudate cells. After CXCR4 blockade by AMD3100 treatment,

mesothelial cells from C57BL/6 mice produce low levels of

CXCL12; these mice also have a lower number of pleural exudate

cells equivalent to the one of BALB/c mice and an intermediate

number of filariae between C57BL/6 and BALB/c mice. After

AMD3100 treatment in BALB/c mice, levels of CXCL12,

numbers of pleural exudate cells and of filariae are in all points

similar to untreated BALB/c mice. After chalcone C04 treatment,

C57BL/6 mice have a low level of CXCL12, a high number of

filariae and a low number of pleural exudate cells, all equivalent to

BALB/c mice. After chalcone C04 treatment in BALB/c mice,

levels of CXCL12, numbers of pleural exudate cells and of filariae

are in all points similar to untreated BALB/c mice. B. L. sigmodontis

development is dependant of the CXCL12/CXCR4 axis in both

C557BL/6 and BALB/c mice. A hypothetical explanation of the

effect of CXCL12 on the filarial development is presented. The

mechanism relies on the existence of a L. sigmodontis CXCR4-like

receptor (fCXCR4-like) and the capacity of chemokine receptors

to be desensitized in presence of high levels of ligand. In C57BL/6

mice, the pleural cavity is rich in CXCL12. This high level could

cause desensitization of the fCXCR4-like receptor, thus retarding

the growth of the parasite. Inversely, BALB/c mice present a low

level of CXCL12 in the pleural cavity that activates fCXCR4-like

receptor thus favoring growth. After AMD3100 treatment,

C57BL/6 and BALB/c mice present low level of CXCL12 in

the pleural cavity. However, according to our in vitro data,

AMD3100 could block a homolog/mimicry of CXCR4, thus

retarding the growth. After chalcone C04 treatment, the CXCL12

level is also low in the pleural cavity of both C57BL/6 and BALB/

c mice, but the interaction of the chalcone with CXCL12 could

prevent CXCL12/fCXCR4-like interaction, thus retarding the

growth of L. sigmodontis.

(TIF)
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