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Abstract 

The proliferations of cyanobacteria are increasingly prevalent in many rivers and water 

bodies due especially to eutrophication. This work aims to study in female medaka fish the 

toxicity, the transfer and the depuration of the anatoxin-a, a neurotoxin produced by benthic 

cyanobacterial biofilms. This work will provide answers regarding acute toxicity induced by 

single gavage by anatoxin-a and to the risks of exposure by ingestion of contaminated fish flesh, 

considering that data on these aspects remain particularly limited. 

The oral LD50 and NOAEL of a single dose of (±)-anatoxin-a were determined at 11.50 and 

6.67 µg.g-1, respectively. Subsequently, the toxico-kinetics of the (±)-anatoxin-a was observed 

in the guts, the livers and the muscles of female medaka fish for 10 days. Anatoxin-a was 

quantified by high-resolution qTOF mass spectrometry coupled upstream to a UHPLC 

chromatographic chain. The toxin could not be detected in the liver after 12 h, and in the gut 

and muscle after 3 days. Overall, the medaka fish do not appear to accumulate (±)-anatoxin-a 

and to largely recover after 24 h following a single sub-acute oral liquid exposure at the 

NOAEL. 

 

Keywords: cyanobacteria; neurotoxin; fish; toxicology; gavage; toxico-kinetics. 
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Introduction 

The worldwide proliferation of cyanobacterial blooms constitutes a serious environmental 

and economic problem that menaces wildlife and human health. Moreover, many cyanobacteria 

can produce potent hepatotoxins such as microcystin, cylindrospermopsin and nodularin, and/or 

neurotoxins such as anatoxin-a, homo-anatoxin-a, anatoxin-a(s) and saxitoxin (Sivonen & 

Jones, 1999). Harmful cyanobacterial blooms in lakes have been described for decades; in 

rivers, however, first reports of animal deaths from toxic benthic cyanobacteria in many regions 

occurred only in the last 20 years (Wood et al., 2007). Since toxic benthic cyanobacteria in 

rivers have been documented in many countries and benthic taxa have been found to produce a 

large spectrum of those cyanotoxins, though most animal fatalities reported concerning benthic 

cyanobacteria were associated with the presence of anatoxin-a and/or homoanatoxin-a (for 

review Quiblier et al., 2013). 

Anatoxin-a and homoanatoxin-a are potent neurotoxins produced by some planktonic and 

benthic strains of the genera Phormidium (syn. Kamptonema), Anabaena, Oscillatoria, 

Aphanizomenon, Cylindrospermum (Bouma-Gerson et al., 2018). Indeed, numerous fatal 

intoxications of animals, by anatoxin-a and homoanatoxin-a, have been reported all over the 

world (Gugger et al., 2005; Puschner et al., 2010; Wood et al., 2007). These alkaloids bind 

tightly to the nicotinic acetylcholine receptor, in the sub-nanomolar range, and thus provoke 

the death of animals almost immediately after ingestion (Wonnacott and Gallagher, 2006). 

Anatoxin-a, as a competitive agonist of acetylcholine, can bind its specific membrane receptors 

(mAChR), leading to a blockage of the neuromuscular signal transmission, causing muscle cell 

overstimulation (Carmichael, 1994; Aráoz et al. 2010). Acute effects in vertebrates include a 

rapid loss of coordination, a decreased of locomotor activity, a paralysis of the peripheral 

skeletal and respiratory muscles, causing symptoms such as loss of coordination, twitching, 

irregular breathing, tremors, altered gait and convulsions before death by acute asphyxia 

induced by respiratory arrest (Dittmann and Wiegand, 2006).  

 

It is maybe because anatoxin-a is very unstable and labile in the water (Stevens and Krieger, 

1991) and because no chronic effects have been described in mammals so far (Fawell et al., 

1999), that this toxin has been considered of less environmental concern comparing to other 

cyanotoxins. Despite the acute neurotoxic effects of anatoxin-a, the consequence of the 

proliferation of anatoxins-a producing cyanobacterial biofilms on ecosystem health and aquatic 

organisms remains largely unknown. Despite, toxic benthic cyanobacterial mats have been 

associated with decreased macro-invertebrate diversity (Aboal et al., 2002), few studies have 

investigated the genuine toxicological effects of these compounds on aquatic organisms 

(Carneiro et al., 2015; Osswald et al., 2007b; Anderson et al., 2018). In some experiments 

performed on fishes, such as carps and goldfish, behavioural defects such as rapid opercular 

movement, abnormal swimming (Osswald et al., 2007a) and muscle rigidity (Carmichael et al., 

1975) were observed. Oberemm et al. (1999) described also the alterations in heart rates in 

zebrafish embryos after exposure to anatoxin-a. Thus a scarcity of information regarding its 

capability of aquatic species to bio-concentrate and bioaccumulation anatoxin-a when 

administered by natural oral pathways, and its subsequent potential toxicological impacts on 

organisms still exist. In a previous study, Osswald and co-workers (2007b) found that anatoxin-
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a may be bioaccumulated by carps in significant levels (0.768 g.g-1 of carp weight). Whether 

this may have an impact on aquatic food webs is not yet known. 

 

In this study, we wanted to study the toxico-kinetics of the anatoxin-a and its consecutive 

possibility of accumulation of in fish tissues. We use medaka model fish to be able to 

administrate, under controlled conditions by a single gavage, a predetermined dose of anatoxin-

a in order to determine the dose-response toxicity parameters. In parallel, we follow the 

assimilation/depuration processes of fish gavaged with a no observable adverse effect level 

(NOAEL) dose during the 10 following days. As there is still a lack of reference and 

standardized protocol for anatoxins-a extraction from biological matrices, such as fish tissues, 

and for quantification analysis, we have also tested three different extraction procedures 

inspired by previously published works (Triantis et al., 2016) and describe a high accuracy 

detection method developed on UHPLC coupled HR-qTOF mass spectrometer using TASQ 

software. This present work provides significant outcomes for the investigation of fish 

contamination by anatoxin-a and the subsequent consequences on risk evaluation through 

human consumption. 

 

Material and methods 

Chemicals 

In solution certified (+)-Anatoxin-a and dry (±)-Anatoxin-a were purchased from CRM-

NRC (Canada) and Abcam (UK), respectively. The purity and the concentration of the daily 

reconstituted (±)-Anatoxin-a in ultra-pure water were initially checked by LC–MS/MS as 

described in the following protocol. UHPLC-MS grade methanol and acetonitrile were 

purchased from Bio TechnoFix (France). Proteomics grade formic acid was purchased from 

Sigma-Aldrich (Germany). 

 

Cyanobacteria cultures and Anatoxin-a extraction procedure test 

Three monoclonal non-axenic cultures of Phomidium (syn. Kamptonema) sp. (PMC 

1001.17, 1007.17 and 1008.17) maintained at 25 °C in 15 mL vessels with Z8 media in the 

PMC (Paris Museum Collection) of living cyanobacteria. A larger volume of all strains was 

simultaneously cultivated during one month in triplicates in 250 mL Erlenmeyer vessels at 25 

°C using a Z8 medium with a 16 h:8 h light/dark cycle (60 µmol.m−2.s−1). Cyanobacterial cells 

were centrifuged (at 4,000 g for 10 min), then freeze-dried and stored at −80 °C before anatoxin-

a extraction. The lyophilized cells were weighted, sonicated 2 min in a constant ratio of 100 µL 

of solvent for 1 mg of dried biomass, centrifuged at 4 °C (12,000 g; 10 min), then the 

supernatant was collected and directly analysed by mass spectrometry. We have presently tested 

in triplicates the extraction efficiency of three different solvent mixtures already propositioned 

for anatoxin-a extraction (Bogialli et al., 2006; Rellan et al., 2007; Triantis et al., 2016; Haddad 

et al., 2019), comprising: a pure water solution acidified with 0.1% formic acid (“Water” 

extraction), a 25% acetonitrile solution acidified with 0.1% formic acid (“Acetonitrile” 

extraction), and a 75% methanol solution acidified with 0.1% formic acid (“Methanol” 

extraction). The efficiency of the extraction procedure was significantly determined according 

to Dunn’s post-hoc test performed after Krustal-Wallis non-parametric tests process on R 

software. 
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Fish experimentation 

Experiments on medaka fish were conducted according to European community good 

practices, validated by the ethical “comité Cuvier” (Author. APAFiS#19417-

2019022711043436 v4) and under the supervision of accredited personnel (B.M.). Adult female 

medaka fishes (Oryzias latipes) of the inbred cab strain, above 6-month old and 1 ± 0.1 g of 

wet weight were used in all experiments. They were raised in 20 L glass aquaria filled with a 

continuously aerated mixture of tap water and reverse osmosis filtered water (1/3–2/3, 

respectively), which was changed once a week. Fish were maintained at 25 ± 1 °C, with a 12 

h:12 h light:dark standard cycle. 

Fish were individually anaesthetized in 0.1% tricaine methanesulfonate (MS-222; Sigma, 

St. Louis, MO), and then, briefly, 2 L of a (±)-anatoxin-a mixture containing from 0.2 to 20 

g of (±)-anatoxin-a (n=3-6, the number being adapted in order to confirm the observed adverse 

effects) in water saturated with phenol red dyes was administered by gavage performed with a 

smooth plastic needle. Control fishes were gavaged with 2 L of water saturated with phenol 

red dyes. For all individual, the efficiency of the gavage uptakes was carefully checked 

according to the total lack of phenol red release from the mouth or the gill opercula of the fish, 

otherwise, the individual was immediately sacrificed. The fish was then instantaneously placed 

in fresh water tanks and individually observed during 30 min to detect any behavioural sign of 

anatoxin-a neurotoxicity, that comprises: paralysis, decrease of breathing activity through 

opercular movements, locomotors activity or buoyancy default. Indeed, when gavaged with 

none toxic dose or control mixture, fish promptly recovers from anaesthesia within a minute 

and rapidly normal swimming activity (in less than 3-5 minutes). But, alternatively, the 

toxicological effects of toxic doses of (±)-anatoxin-a induce immediate neuro-muscular 

pathology and provoke a full breathing stop. After 30 min of observation, the individual was 

declared as “dead” as no recover was observed and the experiment was then concluded, then 

all fishes were anaesthetized in 0.1% tricaine methanesulfonate (MS-222) and euthanized. The 

medium lethal dose (LD50) and the no observable adverse effect limit (NOAEL) were calculated 

from toxicological results by logistic regression after log transformation of the concentration 

values using R software. 

For toxico-kinetics investigations, adult female medaka fish were similarly gavaged 

individually by a single NOAEL dose, then placed in fresh water and collected after 1 h, 3 h, 6 

h, 12 h, 24 h, 3 d, 6 d or 10 d of maintaining under classical conditions (n=5 individuals for 

each interval). Accordingly, all fishes were anaesthetized in 0.1% tricaine methanesulfonate, 

sacrificed, dissected, and the whole gut, the liver and the muscles were sampled and flash-frozen 

in liquid nitrogen, and kept frozen at -80°C prior to analysis. 

 

Anatoxin-a and metabolite extraction from fish tissues 

The fish tissues were weighted then sonicated 2 min in a constant ratio of 10 µL of 75% 

methanol solution acidified with 0.1% formic acid (this extraction procedure showing the best 

efficiency) for 1 mg of wet biomass for guts and livers, and lyophilised biomass for muscles, 

ground into a fine powder on Tissue-lyser (with 5 mm steel beads, Qiagen), centrifuged at 4 °C 

(12,000 g; 10 min); then the supernatant was collected and directly analysed by mass 

spectrometry. The efficiency of the extraction was estimated according to the recovery rate 
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determined in triplicates by injecting a known amount of (±)-anatoxin-a to negative samples 

before extraction (method A) or just before the mass spectrometry analysis (method B). 

 

Anatoxin-a detection and quantification 

Ultra high-performance liquid chromatography (UHPLC) was performed on 2 μL of each of 

the metabolite extracts using a Polar Advances II 2.5 pore C18 column (Thermo) at a 300 

μL.min-1 flow rate with a linear gradient of acetonitrile in 0.1% formic acid (5 to 90% in 21 

min). The metabolite contents were analyzed in triplicate for each strain using an electrospray 

ionization hybrid quadrupole time-of-flight (ESI-QqTOF) high-resolution mass spectrometer 

(Maxis II ETD, Bruker) at 2 Hz speed on simple MS mode and subsequently on broad-band 

Collision Ion Dissociation (bbCID) MS/MS mode on the 50–1500 m/z range. Calibrants, 

composed by serial dilutions of (+)-anatoxin-a, and negative control (phenylalanine) were 

analysed similarly. The raw data were automatically processed with the TASQ 1.4 software for 

internal recalibration (< 0.5 ppm for each sample, as an internal calibrant of Na formate was 

injected at the beginning of each analysis) for global screening and quantification, and 

molecular featuring, respectively. Then, the automatic screening and quantification of anatoxin-

a were performed with threshold parameters set to the recommended default value for the Maxis 

II mass spectrometer ( RT < 0.4 s,  m/z < 3 ppm, mSigma < 50 and S/N < 5). Quantification 

was performed according to the integration of the area under the peaks and calibration curve 

was performed with certified standards. 

 

Analysis of liver metabolomes 

Metabolites composition of the fish livers were analysed by injection of 2 L of the 75% 

methanol extracts on an UHPLC (ELUTE, Bruker) coupled with a high-resolution mass 

spectrometer (ESI-Qq-TOF Compact, Bruker) at 2 Hz speed on simple MS mode and 

subsequently on broad-band Collision Ion Dissociation (bbCID) or autoMS/MS mode on the 

50–1500 m/z range. The analyte annotations were performed according to precise mass and 

isotopic and fragmentation MS/MS patterns, as previously described (Kim Tiam et al., 2019). 

The feature peak list was generated from recalibrated MS spectra (< 0.5 ppm for each sample, 

as an internal calibrant of Na formate was injected at the beginning of each analysis) within a 

1-15 min window of the LC gradient, with a filtering of 5,000 count of minimal intensity, a 

minimal occurrence in at least 50% of all samples, and combining all charge states and related 

isotopic forms using MetaboScape 4.0 software (Bruker). The intensity data table of the 591 

extracted analytes was further treated using MetaboAnalyst 4 tool (Chong et al., 2019) for 

Pareto’s normalization, ANOVA, PCA and PLS-DA, and data representation by heatmap with 

hierarchical clustering, loading plots and box plots. 

Unsupervised PCA models were first used to evaluate the divide between experimental 

groups, while supervised PLS-DA models allowed us to increase the separation between sample 

classes and to extract information on discriminating metabolites. The PLS-DA allowed the 

determination of discriminating metabolites using the analytes score values of the variable 

importance on projection (VIP) indicating the respective contribution of a variable to the 

discrimination between all of the experimental classes of samples. The higher score being in 

agreement with a strongest discriminatory ability and thus constitutes a criterion for the 

selection of the analytes as discriminative components. The PLS models were tested for over 
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fitting with methods of permutation tests. The descriptive, predictive and consistency 

performance of the models was determined by R2, Q2 values and permutation test results (n = 

100), respectively. 

 

Results 

Anatoxin-a extraction and analysis 

Anatoxin-a specific mass spectrometry detection and quantification were automatically 

determined with high accuracy using TASQ (Bruker, Germany) from raw data generated by 

LC-MS/MS system according to the observation of analytes signal exhibiting targeted precise 

molecular mass, retention time, isotopic pattern and fragmentation ions (Fig. 1A-B). This 

approach allows to discriminate both (+)-anatoxin-a and (-)-anatoxin-a isomers according to 

their respective retention times (Fig. 1C), as well as phenylalanine (Fig. 1D) used as a negative 

control, that does not exhibit any signal interaction with the anatoxin-a quantification. Standard 

solutions containing a certified quantity of (+)-anatoxin-a was diluted in ultra-pure water in the 

range of 5 g.mL-1 - 2 ng.mL-1 and used for calibration with good linearity of the calibration 

curve exhibiting a correlation coefficient with R2 = 0.99326 (Fig. 1E). Quantification of the 

(+)-anatoxin-a was performed according to the area-under-the-curve signal that was 

automatically integrated and processed by the software that provides calculation details 

comprising all diagnostic elements in the report table generate for each analysis (Fig 1F). 

Anatoxin-a extraction efficiency was assayed in triplicates with 3 different Phormidium 

(syn. Kamptonema) strains using rather an acetonitrile, methanol or water solvent solutions. In 

our hands, the 75% methanol acidified with 0.1% formic acid present significantly higher 

efficiency for anatoxin-a extraction (Table 1) and was further performed for the fish tissue 

extraction. The detection and quantitation limits (LOD and LOQ) and recovery rate were 

determined for the instrument measurement and the global quantification method by triplicate 

injections of the different fish tissues spiked with of determined doses of (+)-anatoxin-a. This 

(+)anatoxin-a that were administrated either before the extraction (method A) or just before the 

sample analysis by mass spectrometry (method B) (table 2). The LOD and LOQ of the technics 

were estimated to be in the same range as those previously described (Triantis et al., 2016). 

These investigations also show that anatoxin-a extraction and detection recovery rate vary from 

25 to 78% and from 51 to 126%, respectively, according to the tissue analysis with the guts and 

the muscles presenting the best and the worth recovery scores, respectively. 

 

Anatoxin-a toxicology 

Fish were exposed to anatoxin-a though the oral pathway (rather than by balneation of 

injection) in order to be representative to natural exposure route through the toxinogeneous 

biofilm consumption (being the main natural contamination source), and, overall, to be able to 

precisely control the administered doses, as precisely required for the reproducible 

determination of toxicological and assimilation/depuration parameters. All individuals, 

including negative controls, gavaged with (±)-anatoxin-a doses up to 6.67 g.g-1 survive 

without presenting any apparent symptoms of toxicosis and were able to recover from the 

tricaine sedation within less than 3 minutes when placed in fresh water. On the contrary, all 

individual gavaved with 20 g.g-1 (±)-anatoxin-a rapidly present (in the first 5 minutes) obvious 

signs of neurotoxic effects, comprising a complete stop or a rapid diminution of opercular 
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movement, abnormal swimming with hemi- or complete paresis of the fins, accompanied with 

a global musculature rigidity. After 10 min, only one individual even presents a few sporadic 

breathing activities, that completely stop after 15 min, when all other organisms already present 

complete paresis and ventilation cease. After 30 min, these individuals, presenting no sign of 

recovery, were considered as dying, if not dead, and euthanized, then were considered for 

further toxicological dose calculation. When LD100 and the NOAEL were observed at 20 g.g-

1 and 6.67 g.g-1 (±)-anatoxin-a, respectively, the LD 50 was calculated as 11.5 g.g-1 of (±)-

anatoxin-a (Fig. 2A; table 3). 

 

Anatoxin-a toxico-kinetics 

Following gavage experiment of adult female medaka fish to NOAEL, we have quantified 

(±)-anatoxin-a in the guts, the livers and the muscles after 1 h, 3 h, 6 h, 12 h, 24 h, 3 d, 6 d and 

10 d, to monitor the dynamic of the anatoxin-a assimilation/depuration efficiency in these 

various compartments (Fig. 1B-D). The highest (±)-anatoxin-a amount was observed just 1h 

after the exposure, representing up to 15,789 g.g-1 in some individual livers, representing more 

than 100 times more anatoxin-a than in the livers of other organisms similarly gavaged, 

illustrating the relative individual variability of the anatoxin-a uptake and 

assimilation/elimination during our experimentation. Although fish tissues present a global 

individual variability, the larger amount of anatoxin-a was observed in livers, the guts, and in a 

lesser amount in the muscles after 1h, then the tissues present a rapid decrease of anatoxin-a 

contents. Almost no more anatoxin-a was detectable after 24 h in all tissues. The depuration 

rate was calculated for the 12 first hours of depuration as being of 57, 100 and 90%, in guts, 

livers and muscles, respectively, leading to rapid elimination of the anatoxin-a that does no 

seems to bio-accumulate in any of the investigated fish tissues. 

 

Anatoxin-a effects on the liver metabolome 

To investigate the molecular effects induced by (±)-anatoxin-a NOAEL exposure, the liver 

metabolite composition was compared between ungavaged fish (control) and fish collected 1 h, 

3 h, 6 h, 12 h or 24 h after gavage. The same livers extracts than those extracted with 75% 

methanol and analysed for anatoxin-a quantification were investigated by LC-MS/MS for 

untargeted metabolomics. The spectral data of a total of 591 different analytes were then 

extracted by the optimized pipeline, and their respective quantification (determined from the 

area-under-the-peak signal) compared between the different time-course groups using 

multivariate statistical methods, including unsupervised principal component analysis (PCA) 

and supervised partial least-squares discriminate analysis (PLS-DA), together with univariate 

groups variance analyses (ANOVA). These analyses allow to to discriminate among the 

experimental groups according to the time-course of anatoxin-a exposure and elimination. 

Although the analysed fish livers present a global metabolome variability (Fig. 3A), the (±)-

anatoxin-a gavage seems to rapidly modify the specific amount of various metabolites which 

progressively retrieved their initial state, as observed on components 1-3 projection of the PCA 

(Fig. 3B). The 29 analytes that present significant variation between the different groups 

according to ANOVA (P < 0.05) indicate a clear difference between the groups, as observed on 

heatmap with hierarchical clustering (Fig. 3D), with a rapid increase or decrease of the 

metabolite quantity that diminishes after few hours and almost recovers control levels after 24h 
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post-gavage (Fig. 3E). The supervised multivariate analysis (PLS-DA) model shows consistent 

R2 cumulative, Q2 cumulative and permutation scores (Fig. 3F). The most discriminating m/z 

features in the PLS-DA model (Figure 3C) were selected based on their respective VIP score, 

which resulted in 25 compounds with VIP value higher than 2 (Table 4), on component 1 and/or 

2 (both contributing to the experimental group discrimination). The molecular formulas of each 

VIP were proposed based on accurate mass measurement, true isotopic pattern, and their 

putative identification was attempted with Metfrag and GNPS according to additional 

respective MS/MS fragmentation patterns. Interestingly, the tricaine (MW 165.0794 Da) 

belong to this VIP list and presents, as one could expect, a clear increase between the Control 

and 1 h post-gavage fish livers (in relation with pre-gavage anaesthesia procedure by balneation 

in 0.1% tricaine), then a complete disappearance between 1 and 3 h.  

The list of other putatively annotated compounds comprises then various phospholipids 

(n=9) belonging to the glycerol-phosphocholine group, all presenting comparable variation 

patterns among the experimental groups, with an initial drop of these metabolite quantities 

between the control and the 1-h group, then a progressive re-increase until an almost complete 

recovery of the initial metabolite amount within less than 24 h. Those metabolites are directly 

related to lipid metabolism process and their successive decrease and increase within the liver 

may denote important lipid consumption by the organism and progressive recovery of the liver 

to an unstressed condition. On the contrary, the sole VIPs which relative quantities present an 

initial increase were an undetermined analyte (MW 1064.600 Da) and the adenosine, both 

retrieving their initial levels within less than 24 h. Such adenosine transient increase may 

indicate stress-inducing ATP/ADP/cAMP metabolic conversion and/or intensification of 

hepatic blood circulation, as it also presents a direct effect on vasodilation of liver arteria 

(Robson & Schuppan 2010). Although our experimental design does allow to discriminate the 

specific effects of the anatoxin-a from those of the tricaine anaesthesia alone, it overall shows 

that the organisms present a complete recovery 24 h after being gavaged with anatoxin-a single 

NOAEL dose. 

 

Discussion 

In the present study, the neurotoxicological response of medaka fish subjected to anatoxin-

a appears comparable to that found in carp (Osswald et al., 2007a) and zebrafish (Carneiro et 

al., 2015) supporting the evidence for the existence of a similar mechanism of action. Whereas 

no apparent precursor effect appears when fish are gavaged with sub-acute doses of anatoxin-

a, the symptoms observed in the fish exposed to a higher dose denote an all-or-nothing effect, 

comprising rapid and intense neurotoxic signs, that are compatible with the mechanism of toxic 

action of anatoxin-a in the nervous system that has been described so far for other vertebrates 

(Fawell et al., 1999). These symptoms comprise different manifestations of muscular paralysis 

that are likely due to the primary, and nearly irreversible, binding of the anatoxin-a, being an 

acetylcholine agonist, to the acetylcholine receptors of the cholinergic synapses of the 

neuromuscular junctions, leading to a continuous muscular contraction. Previous works 

indicate that below a certain level the effects appear to be transient, the animals being able to 

make a complete and rapid recovery, although the data available in the literature remains limited 

(Dittman and Wiegand 2006). 
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Our dose-response toxicological analysis indicates that (+)-anatoxin-a exhibits toxicological 

reference dose of 5.75 and 3.33 g.g-1 of medaka bodyweight for LD50 and NOAEL 

(corresponding to 11.5 and 6.67 g (±)-anatoxin-a.g-1 – table 3), respectively. Indeed, as the 

unnatural (-)-anatoxin-a isomer was shown to insignificantly contribute to the global toxicity 

to the 1/1 racemic mixture of (±)-anatoxin-a used in this study (MacPhail et al., 2007). These 

results are in remarkable agreement with precedent data obtained on other organisms. Indeed, 

previous investigations of anatoxin-a toxicity determined on mice that, when administered by 

single-dose gavage, (+)-anatoxin-a exhibits a LD50 and a NOAEL of above 5 and 3 g.g-1 of 

body weight, respectively (Fawell et al., 1999). In addition, Stevens and co-workers (1991) 

have initially shown that (+)-anatoxin-a presents LD50 value of 16.2 and 6.7 g.g-1 of body 

weight, for pure (+)-anatoxin-a and complex extract containing anatoxin-a dispensed by single 

gavage to mice. Taken together, those results suggest that medaka fish and mouse present very 

similar toxicological dose-response to (+)-anatoxin-a. However, as the sex and the development 

stage of the organisms can influence the sensitivity to toxicant, one should also consider that 

the dose-responses observed in the present work on adult female medaka may be slightly 

different for male or juvenile fishes. 

In the present work, we have also investigated at the metabolome scale the molecular 

variations induced by the anatoxin-a exposure on the fish liver. Indeed, although anatoxin-a is 

known to primarily induce neuromuscular effects, it might also have collateral consequences 

for the exposed organism that could imply remarkable response of the liver, as this tissue 

constitutes the main organ for both energetic metabolism and detoxification processes (Qiao et 

al., 2016). For this reasons, many (eco)toxicological investigations have focussed on the 

molecular response to various toxicants, presenting different mode-of-action, on the specific 

liver response. Therefore, the acute effect of a NOAEL dose of anantoxin-a seems to mostly 

induce a transient decrease of the liver lipid contents. It might denote an increase the lipid 

consumption related to energetic needs of the organism under this toxicological stress. Such 

metabolic effects seem to be rapidly compensated, as the liver lipid contents are progressively 

retrieving their initial levels. This suggests that those organisms are capable of a substantial 

recovery from this toxicological stress within less than 24h. 

 

In our experiments, the promptitude of the neuromuscular effects of anatoxin-a when 

administered by gavage are in agreement with previous investigation performed on mice 

(Fawell et al., 1999), suggesting that anatoxin-a might be rapidly assimilated by the organisms 

by crossing the intestine barrier and being widespread to the whole musculature within less than 

2 minutes. When anatoxin-a producing cyanobacterial biofilm are accidentally ingested by 

dogs, the animals present the first appearance of neurotoxic symptoms within less than 5 

minutes (Wood et al., 2007), testifying for very rapid assimilation of a toxinogenous dose of 

anatoxin-a released from the cyanobacterial biomass within the stomach. To date, the genuine 

mechanism of the anatoxin-a transfer through the intestinal epithelia remains undetermined. 

However, the promptitude of the observed effects suggests that this small molecule (MW = 165 

Da) may remain neutral in order to be able to sharply cross the intestinal barrier, potentially 

through passive paracellular diffusion (Dahlgren and Lennernäs 2019).  

Our toxico-kinetics investigation has shown that no detectable amount of anatoxin-a was 

Jo
ur

na
l P

re
-p

ro
of



still observed in guts 12 h after the fish having been gavaged to a single NOAEL dose. Then, 

the medaka fish presents also a rapid elimination of the anatoxin-a that transiently have been 

addressed to the liver, and in a lesser extent to the muscle, indicating that it may not be 

accumulating anatoxin-a under those conditions. Interestingly, Osswald and co-workers (2011) 

have shown no significant bioaccumulation of anatoxin-a in the trout tissues when administered 

by balneation up to 5 mg.L-1 of anatoxin-a. Previously, Osswald et al. (2008) have also similarly 

shown no bioaccumulation of anatoxin-a by the Mediterranean mussel M. galloprovincialis, 

that has been otherwise shown to present high accumulation capability for various 

contaminants, such as microcystins (Vasconcelos 1995). Although they observed some 

anatoxin-a uptake from the surrounding water filtered by the animals (observed maximum 

accumulation efficiency = 11%), this seemed rapidly reduced rather by the depuration process 

of phase II detoxification enzymes or by passive elimination processes. These data show that, 

as anatoxin-a is capable to rapidly penetrate the whole organism’s body, and induces obvious 

and acute neurotoxicological effects within a minute, it may also be rapidly eliminated by 

classical excretion or depuration mechanisms.  

 

Conclusion 

In our gavage experiment of medaka fish to a single NOAEL dose of anatoxin-a, the toxin 

appears to have been rapidly eliminated and the molecular effects were no more perceptible 

within the fish liver metabolome after 24 h.  

These observations suggest that when the dose remains below the acute toxicological limit 

producing neurotoxicosis that can lethal consequences, the organism can make a completely 

and rapidly recovery, that seems not to induce obvious effects even if the exposure is repeated 

several times (Fawell et al. 1999). However, one could still suspect that chronic anatoxin-a 

exposure may induce more insidious long-term pathologies on the central nervous system 

(Lombardo and Maskos 2015). But this hypothesis remains to be explored. 

Moreover, the accurate investigations of the fish flesh contamination by anatoxin-a under 

highest toxinogenous cyanobacterial proliferations, especially when, in nature, certain fish are 

potentially actively feeding on those biofilms (Ledreux et al., 2014), remain to be performed to 

provide convincing data supporting the evaluation of the associated risks. 
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Figure 1. 

 

 
Figure 1. Anatoxin-a detection and quantification on HR qTOF mass spectrometer coupled to an UHPLC. 

The screening of (+)-anatoxin-a was performed according to the specific detection of analytes presenting 

accurate mass of the parent ion (M+H+= 166.1232 ± 0.001 Da), accurate retention time (1.55 ± 0.2 min, 

accurate isotopic pattern (mSigma < 50) and co-detection of characteristic fragment ions (149.096 ± 0.001 

and 131.086 ± 0.001 Da) (A-B). The similar analyses of the (±)-anatoxin-a can discriminate the (-) and the 

(+)-anatoxin-a that exhibits distinct retention times (1.1 and 1.6 min, respectively) (C). No signal was 

detected with phenylalanine (D). Calibration curve performed with 12 serial dilutions of a certified standard 

of (+)-anatoxin-a (NRC, Canada) presenting applicable correlation factor (E). Example of a screening 

diagnostic table provided by TASQ® software for (+)-anatoxin-a quantification summarizing all qualitative 

and quantitative parameters for each sample (F). 
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Figure 2. 

Figure 2. Anatoxin-a toxicity and toxico-kinetics on adult female medaka fish when administrated by single-

dose gavage. Estimation of the LD50 of (±)-anatoxin-a by linear regression after log transformation (g of 

(±)-anatoxin-a.g-1 of fish mass) (A). Toxico-kinetics of (±)-anatoxin-a administrated in a single NOAEL dose 

(6.67 g.g-1 fish weight) in the gut (B), the liver (C) and the muscle (D) after 1 h, 3 h, 6 h, 12 h, 24 h, 3 d, 6 

d or 10 d of depuration (n-5). On the 30 investigated individuals, only 6 of them does not present detectable 

amount of anatoxin-a, overall testifying for the global efficiency of the gavage experiments.  
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Figure 3. 

 
Figure 3. Metabolomics investigation of the liver metabolite variations after the administrated of a single 

NOAEL dose of (±)-anatoxin-a (6.67 g.g-1 fish weight) by gavage of adult female medaka fish in the liver 

after 1 h, 3 h, 6 h, 12 h and 24 h. Individual score plots generated from a principal component analysis 

performed with the intensity count of 591 variables according to components 1-2 (A) and 1-3 (B). Heatmap 

representation with hierarchical classification (Ward clustering according to Euclidian distances) performed 

from relative intensities of the 29 significantly dysregulated analytes (P <0.05 ANOVA) (D) and 6 examples 

of representative box-plots (E). Individual score plot generated from PLS-DA analysis performed with 591 

extracted variables according to components 1-2 (C), and quality descriptors of the statistical significance 

and predictive ability of the discriminant model according to corresponding permutation and cross-validation 

tests (F), respectively. 
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Tables 

 

Phormidium strain 
Extraction solvant 

Acetone Water Methanol 

PMC 1001.17 6436  139 a 5864  85 b 6689  158 a 

PMC 1007.17 2949  148 b 1467  88 c 3655  147 a 

PMC 1008.17 1773  95 1420  103 1913  192 

 

Table 1. The efficiency of different protocols for anatoxin-a extraction from different cyanobacterial strains. 
a-b-c: indicate group results in a decreasing order of Dunn’s post-hoc test performed after Krustal-Wallis non-

parametric tests. 

 

 

Organ 

Recovery rate Limit of detection 

(LOD) 

Limit of quantification 

(LOQ) 

Method A Method B g.L-1 g.g-1 g.L-1 g.g-1 

Guta 78  13% 126  22% 0.412 20.6 1.25 62.5 

Livera 65  7% 86  15% 0.506 2.53 1.25 62.5 

Muscleb 25  4% 51  3% 0.546 14.52 1.25 285 

 

Table 2. The recovery rate, the limit of detection (LOD), and the limit of quantification (LOQ) of the two 

tested extraction procedure (A and B, corresponding to pre-extraction or pre-analysis doping, respectively) 

measured on gut, liver and muscle of the medaka fish. a: determined on fresh weight; b: determined on the dry 

weight. 

 

Model 

organism 

Toxicological 

parameter 

Toxicological 

values (g.g-1) 

Formulation of the 

toxicant 
Reference 

Medaka fish LD50 by gavage 11.5 ()-anatoxin-a This study 

Medaka fish LD50 by gavage 5.75* (+)-anatoxin-a This study 

Medaka fish LD100 by gavage 20 ()-anatoxin-a This study 

Medaka fish LD100 by gavage 10* (+)-anatoxin-a This study 

Medaka fish NOAEL by gavage 6.67 ()-anatoxin-a This study 

Medaka fish NOAEL by gavage 3.33* (+)-anatoxin-a This study 

Zebrafish LD100 by i.p. 0.8 ()-anatoxin-a Carneiro et al., 2015 

Mouse LD50 by i.v. 0.1 (+)-anatoxin-a Fawell et al., 1999 

Mouse LD50 by gavage 1-10 (+)-anatoxin-a Fawell et al., 1999 

Mouse NOAEL by gavage 3 (+)-anatoxin-a Fawell et al., 1999 

Mouse LD50 by gavage 6.7 A. flos aquae NRC 44-1 Stevens et al., 1991 

Mouse LD50 by gavage 16.2 (+)-anatoxin-a Stevens et al., 1991 

* determined according to the theoretical 1/1 ()-racemic ratio, experimentally confirmed by LC-MS, 

considering as negligible the toxicity of (-)-anatoxin-a comparing to the 150-times higher toxicity of (+)-

anatoxin-a (Osswald et al., 2007). 

 

Table 3. Summary of lethal concentration estimators determined for anatoxin-a by different administration 

pathways on different vertebrate models. 
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MW(Da) RT (min) m/z Annotation Formula (neutral) VIP Com. 1 VIP Com. 2 
Pattern 

(C-1-3-6-12-24h) 

541.3166 11.8 542.3224 1-icosapentaenoyl-sn-glycero-3-phosphocholine C28H48NO7P 8.40 6.37 \---/ 

569.3474 12.8 570.3537 lysophosphatidylcholine  22:5 C30H52NO7P 7.14 5.92 \---/ 

525.2854 12.2 526.2908 lysophosphatidylethanolamine 22:6 C27H44NO7P 6.62 7.32 \---/ 

499.2704 12.7 500.3048 tauroursodeoxycholic acid C26H45NO6S 4.52 3.88 \\--- 

519.3319 12.6 520.3384 1-linoleoyl-sn-glycero-3-phosphocholine C26H50NO7P 4.12 3.39 \---- 

1248.619 5.5 625.3167 - C30H88N24O29 3.20 2.32 \---- 

1134.671 12.4 1135.6760 - C58H90N10O13 3.18 3.06 \---- 

1248.117 5.5 625.0657 - C70H137N17O2 2.85 2.03 \\-// 

1082.640 11.8 1083.6469 - C58H90N4O15 2.80 2.03 \---/ 

267.0969 1.6 268.1040 adenosine C10H13N5O4 2.74 1.89 //-\\ 

131.0939 1.6 132.1010 leucine C6H13NO2 2.66 1.92 \---- 

612.1471 1.6 307.0808 - C24H37O12PS2 2.59 1.72 \---/ 

307.0837 1.3 308.0908 glutathione C10H17N3O6S 2.51 2.13 \--// 

467.3016 12.0 468.3088 1-myristoyl-sn-glycero-3-phosphocholine C22H46NO7P 2.46 3.88 \--/- 

639.4269 4.6 320.7208 - C31H57N7O7 2.45 1.61 \---- 

523.2561 9.3 524.2634 - C23H42NO10P 2.44 1.55 \---- 

204.0911 3.5 205.0984 tryptophan C11H12N2O2 2.41 1.68 \---- 

165.0794 6.4 166.0868 tricaine C9H11NO2 2.40 3.56 /\--- 

547.3283 13.6 548.3355 - C26H37N13O 2.16 1.45 \---- 

1064.600 6.1 533.3073 - C30H84N18O23 1.99 2.15 //-\\ 

543.3335 12.7 544.3400 1-arachidonoyl-sn-glycero-3-phosphocholine C28H50NO7P 1.91 2.66 \-/-- 

1050.577 12.2 1051.5843 - C56H82N4O15 1.88 2.00 \---- 

515.3015 11.3 516.3085 lysophosphatidylcholine 18:4 C26H46NO7P 1.87 3.46 \---/ 

521.3476 13.6 522.3531 1-elaidoyl-sn-glycero-3-phosphocholine C26H52NO7P 1.80 7.50 \\-// 

517.3184 11.9 518.3246 1-alpha-linolenoyl-sn-glycero-3-phosphocholine C26H48NO7P 1.58 2.18 \-/-- 

Table 4. List of the 25 VIP analytes that present score > 2 on either component 1 or component 2 of the PLS-DA analysis performed with all treatment groups, and 

their putative annotation according to their respective high-resolution mass, isotopic and MS/MS fragmentation patterns, searched against ChEBI, PubChem, HMDB 

and GNPS databases. “\”, “/” and “-“ indicate when the metabolites globally decrease, increase or maintain their relative quantities between the time series, respectively. 
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