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Abstract

It is increasingly recognized that incorporating life history trade-offs into evolutionary demog-
raphy models requires trade-offs to be decomposed into fixed (a.k.a genetic) and individual (a.k.a
dynamic) components. This is fundamental in order to understand how trade-offs are related to
fixed and dynamic components of individual heterogeneities and generate variance in individual tra-
jectories. Therefore, embedding such trade-offs into population projection matrices usually requires
three categories: a life-history determining trait (e.g., age or stage), a fixed trait incorporating the
genetic trade-off, and a dynamic trait modeling the individual component. This has proved a complex
exercise until the recent advent of Multitrait Population Projection Matrices (MPPMs)1. Recent de-
velopments of Trait-Level Analysis (TLA)2 tools for MPPMs now allow us to study the demographic
and evolutionary consequences of each component of a life history trade-off. Here, we illustrate this
by constructing and analyzing an evolutionary demography model that implements both dynamic
and fixed components of the costs of reproduction, the trade-off between current/early reproduction
and future/later fitness. In particular, we explain and describe the use of the TLA to measure the
effects of this trade-off on individual fitness. Here, we focus on the variance of lifetime reproductive
success between models implementing the individual costs and asymptotically-equivalent matrices
from which they are absent. This allows us to show that dynamic costs decrease that variance and
more so for slow organisms. Therefore, accounting for this component of the costs, instead of clas-
sically focusing solely on fixed costs of reproduction, is paramount in order to correctly assess the
relative importance of the "neutral" and "adaptive" components of individual heterogeneity.

Keywords: Trait level analysis; Life history theory; Life-history trade-offs; Multitrait population pro-
jection matrices; Evolutionary demography; Individual heterogeneity; Hyperstate matrix models.

Highlights:

• A novel typology of life history trade-offs is proposed

• Multitrait matrices allow to incorporate fixed and dynamic components of trade-offs

• Effects of trade-offs on population dynamics are analyzed via Trait Level Analysis

• Individual costs of reproduction decrease variance in Lifetime Reproductive Success

• Individual costs of reproduction reduce relative importance of “neutral” individual heterogeneity

1MPPM: Multitrait (i.e., multi-category) Population Projection Matrix
2TLA: Trait Level Analysis, a toolbox for MPPMs developed by Coste et al. (2017)
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1 Introduction
Trade-offs are at the core of life history theory. They occur "when an increase in fitness due to a change
in one trait is opposed by a decrease in fitness due to a concomitant change in the second trait" (Roff and
Fairbairn, 2007, p.433). These Life History Trade-Offs (LHTOs)1s – without which nature would be filled
with "Darwinian demons" (Law, 1979) – are deemed ubiquitous. They are studied by the various fields
of evolutionary biology that make up life history theory and in particular three of them. In quantitative
genetics, they are a major component of the G matrix (Lande, 1982). Physiologists focus on the mecha-
nistic constraints, mainly homeostatic, yielding trade-offs (for instance because of a Y-shaped allocation
of finite resources; Orton, 1929; Lack, 1954; Cody, 1966). Behavioral ecologists study environmentally-
mediated trade-offs (e.g., Jessup and Bohannan, 2008). Paradoxically however, LHTOs have rarely been
implemented into Evolutionary Demography models. This can be due to technical difficulties in doing
so, or because population and individual mechanisms are studied by different families of models while
trade-offs act at both these levels (see appendix A).

However, this shortcoming is most likely caused by demographers’ early realization that the classical
classification of LHTOs into physiological, behavioral and genetic trade-offs (see appendix B) lacks clar-
ification pertaining to conceptual differences, overlaps or equivalences between these three families (as
discussed in Stearns, 1992; Roff, 1993).

To be implementable into evolutionary demography models, trade-offs require a novel typology that
provides a proper demographic decomposition instead of a mechanistic classification. We argue that this
can be achieved by projecting, onto the field of Population Projection Matrices (PPMs), the decomposi-
tion of individual heterogeneity into fixed and dynamic components devised by Tuljapurkar, Steiner and
Orzack (Tuljapurkar et al., 2009; Steiner et al., 2010; Tuljapurkar and Steiner, 2010); itself leading to the
decomposition of demographic traits (a.k.a. categories) into static and dynamic classes (Vindenes and
Langangen, 2015). Instead of merely classifying trade-offs according to the assumed locations of their
constraint mechanisms, this novel typology of trade-offs decomposes LHTOs into two components with
respect to the means by which they affect phenotypic variance.

The first component is the fixed-at-birth component (a.k.a genetic, fixed or static). It can be heritable
because some of the phenotypic variance stems from genetic variance, because of shared parent-offspring
environments or because of epigenetics. In this paper, for simplification, we focus on fixed components
of LHTOs, which are genetically fixed. However the concepts and the model can be extended to incor-
porate other forms of fixed-trait heritability. When applied to trade-offs, such a genetic component of a
LHTO (or simply genetic LHTO) generates a gradient of coexisting strategies in the population: some
"lineages" having a constantly better trait A and a worse trait B than others. The second component is
the individual component (a.k.a. dynamic). Individual LHTOs encompass the "mechanistic", internal or
external, individual constraints that organisms have to deal with at every timestep of their lives (when,
for instance, allocating a limited amount of energy between two traits within a particular environment).
Individual LHTOs yield different possible realizations of each of the aforementioned strategies, via their
interaction with individual stochasticity. In other words, individuals of the same, genetically-determined
life-history strategy may experience different life-history trajectories due to "luck" (Caswell, 2009; Tul-
japurkar et al., 2009; Snyder and Ellner, 2018). Therefore, using the current nomenclature (see Steiner
and Tuljapurkar, 2012; Cam et al., 2016; Hamel et al., 2018), we can write that the fixed component
of trade-offs generates "adaptive" heterogeneity and the individual component controls "neutral" het-
erogeneity. The decomposition of a trade-off into fixed and individual components is additive and can
therefore be implemented into PPMs. We argue that such an implementation would benefit life history
theory and evolutionary demography. It would, for instance, enable measuring the evolutionary impor-
tance of the individual component of LHTOs, which is usually considered to have no evolutionary effects,
as their demographic consequences "average out" in large populations (Snyder and Ellner, 2018).

Here, we implement both genetic and individual components of the Costs of Reproduction (CoR)2, the
"most prominent of all trade-offs" according to Stearns (1989) as it directly relates the two highest-level
components of fitness. CoR is the trade-off between current/early reproduction and future/later fitness
(i.e., future/later survival and reproduction). The genetic component of such a trade-off consists of the
intraspecific gradient in strategies along the slow–fast continuum. Slower lineages promote higher survival
(and therefore longevity) at the cost of fertility compared to faster lineages. The individual component
of the CoR reduces the vital rates of individuals as they exert reproductive efforts. However, since re-

1LHTO: Life History Trade-off
2CoR: Costs of Reproduction
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productive and survival events are subject to individual stochasticity (i.e., to chance), the realization
of this trade-off over the several timesteps of an individual life trajectory follows itself a stochastic pro-
cess. Indeed, two individuals sharing the same (genetic/fixed) strategy may end up with very different
trajectories as individual stochasticity in reproductive realizations generate deviations from the central
strategy evolved by the lineage.

In order to incorporate both genetic and individual components of the CoR into a PPM, we build a
three-trait MPPM. Indeed incorporating trade-offs requires at least three traits: the "usual" life-history
determining trait (e.g. age, size, or stage), a fixed trait embedding the genetic trade-off, and a dy-
namic trait incorporating the individual component. The construction of such MPPMs has recently been
streamlined (Roth and Caswell, 2016; Coste et al., 2017). Moreover, a new analytical tool, the Trait
Level Analysis (TLA, see Coste et al., 2017)) now allows us to analyze the demographic and evolutionary
importance of each trait in an MPPM (Coste et al., 2017). Applied to a model implementing trade-offs,
the TLA makes it possible to measure the evolutionary consequences of the fixed and the individual
components of a LHTO. Here, to investigate the CoR, we use a very common life-history determining
trait in the literature of demographic models: age. Incorporating the individual component of the costs
requires a trait that accounts for the accumulated reproductive efforts of individuals; we use parity which
tracks the number of offspring ever born. In order to implement the fixed component of the costs, we
introduce a trait strategy that positions a lineage along the intraspecific slow–fast continuum (the par-
ent’s strategy being possibly inherited by its daughter). We therefore construct an (age-parity-strategy)
MPPM projecting over time a population encountering both fixed and individual CoR. This three-trait
MPPM is then analyzed via the TLA in order to disentangle the evolutionary and demographic effects of
each component. The MPPM is considered in a general form, however the tools presented can readily be
applied for a model built from empirical data (see appendix C). For illustrative and practical purposes
we reduce the number of degrees of freedom to the fewest possible, but such a model can also be built
with numerous fixed and individual components.

This model is obviously too simple to be a proper population genetics model, as this would also require
the incorporation of new alleles generated via molecular mutations and of diploidy (i.e., be a two-sex
model). Both limitations are common in extensions of projection models towards population genetics
(see, e.g., de Vries and Caswell, 2019). Moreover, this model cannot be considered a quantitative genet-
ics one, as this would require the ability to incorporate a continuous trait space. However, turning the
MPPM into an integral population model (Rees et al., 2014), would allow the model to be extended from
discrete to continuous trait values. It is however not the aim of this article to develop a (population or
quantitative) genetics model, but to show how the addition of carefully chosen traits onto a demographic
model can yield, via the TLA, invaluable information about the evolutionary importance of the studied
trade-offs.

To perform such an analysis, we focus on a key fitness measure: lifetime reproductive success LRS,
considered as a random variable. It measures the number of offspring produced by an individual in the
population during its lifetime. The expectation of LRS is the much used net reproductive rate R0; the
variance of LRS is denoted σ2

LRS . Whereas the growth rate λ is often used as a genotype or popu-
lation measure of fitness (either as λ1, the dominant eigenvalue, for deterministic models or as λs, the
stochastic growth rate, for models incorporating environmental or demographic variance), LRS is an
individual measure. Many authors consider it a less relevant fitness measure than λ at the population
level because it does not account for life pacing and reproductive rhythm (Nur, 1984; Murray, 1992;
Giske et al., 1993). Indeed, LRS loses track of chronological time – a major shortcoming for models
with overlapping generations. However, it has the advantage of being an individual measure, readily
aggregated at the population level. This is not the case for λ, despite efforts to conceive an "individual
growth rate" however still difficult to fathom (McGraw and Caswell, 1997). Initial results stemming from
the application of TLA to CoR are already known (see for instance the reducing effects of individual CoR
on selection gradients in Coste et al., 2017), but most still remain to be investigated. Here, we focus
on the effects of the individual component of costs on σ2

LRS by comparing models implementing this
trade-off and asymptotically-equivalent matrices from which it is absent (via an operation called folding ;
see Coste et al., 2017). We analyze how these effects depend on the position of species/lineages on the
slow–fast continuum generated by genetic CoR. In particular, we will show that individual CoR decrease
the variance in reproductive success and do so more strongly in slow organisms than fast ones. We will
also show that neglecting individual costs and focusing solely on fixed costs, which is a common practice
in evolutionary demography, can yield to overestimating the "neutral" component of fixed heterogeneity
at the expense of the "adaptive" one.
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2 Materials and Methods

2.1 Theoretical MPPM for both components of CoR
In order to disentangle the effects of individual and fixed components of costs, the vital rates (i.e., fertility
and survival rates) are decomposed into two independent components. First, the strategy is modeled by
the zero-parity vital rates (the vital rates of individuals which have yet to reproduce). A slower strat-
egy will have lower zero-parity fertility but higher zero-parity survival rates than a faster one, but both
lineages may have the same fitness (the same growth rate). At the population level, this spectrum of
strategies constitutes the fixed component of CoR. Second, these zero-parity vital rates are then linearly
reduced with increased parity, possibly down to zero. This parity effect models the individual components
of CoR, since the changes in parity value is a stochastic process that depends on reproductive history
and demographic stochasticity.

Thus, the vital rates vra,p,st (vr being either a survival or fertility rate) of an individual of age a, parity
p and strategy st are provided by the following formula:

vra,p,st =

(
1− p

β − α+ 1

)
︸ ︷︷ ︸

parity effect → individual component of costs

× vra,0,st︸ ︷︷ ︸
zero-parity vital rates → genetic component of costs

, (1)

where α and β are the ages at first and last reproduction and, for parsimony, zero-parity vital rates are
independent of age a and therefore only dependent on strategy st. As an individual of a fast strategy
(with large zero-parity-fertility rates) is expected to encounter high reproductive success early in adult
life, it will have, on average, lower fertility rates late in life than an individual of a slower strategy that
will have had fewer offspring at that point. However, it is possible in this model to consider an individual
of a fast strategy but limited reproductive success – because of (bad) luck – that will have higher fertility
rates late in life than a very (and unexpectedly) successful slow individual. Since the model incorporates
several strategies, we have to define a generation transmission parameter. For the purpose of illustration,
we therefore incorporate parameter µ that represents the probability for an offspring to be of a different
strategy than its parent. When only two strategies are considered, we have 0 ≤ µ ≤ 0.5 and this gener-
ates a scenario where differing for its parent’s strategy can only mean switching from one to the other (a
quite unrealistic scenario from a population genetics standpoint). In that case, if µ = 0.5, strategies are
randomly distributed at birth (i.e., the strategy is not heritable).

We denote L this generic formal (age-parity-strategy) MPPM. In Expression (2), we illustrate a par-
ticular L for an organism with maximum age ω = 3 years, age at first reproduction α = 2 years and age
at last reproduction β = 3 years, with a slow lineage (left half of the matrix, in blue; colours are added
for clarity in the online version) with zero-parity vital rates S and f and a fast lineage (right half of the
matrix, in red) with zero-parity vital rates s and F (with s < S and F > f). Parity can be 0 or 1; there
are actually two possible fertility events in every life trajectory but, here, individuals of parity 2 have an
abundance of zero, as they have reached maximum lifespan, and are therefore not accounted for. Having
parity of 1 divides individual fertility by a factor of 2 compared to having a parity of 0.

In an MPPM, the state of an individual depends on its "position" according to several trait/category
axes. This state of an individual, or individual state, corresponds to the i-state of Metz and Diekmann
(1986) and, from now on, we shall refer to it, simply, as state. These states form a space, the space of
states or state space (which is a product space). The order in which traits are nested in the space of states
is crucial to its construction and analysis; its knowledge is required in order to generate the trait structure
(as per Coste et al., 2017). Here, the space of states is three-dimensional and trait age is nested into trait
parity, and both into trait strategy. Formally, it means that the ith element of abundance vector n, which
matrix L projects over time, represents the abundances of individuals of age a, parity p, and strategy st,
for which (a+ω×p+ω×par×st) = i, with par the number of parity classes (which can be calculated as
par = min(β − α+ 2, ω − α+ 1)). Each (a, p, st) combination corresponds to one and only one position
1 ≤ i ≤ (ω × par × 2) in n, and each of these 1 ≤ i ≤ (ω × par × 2) indices corresponds to one and only
one (a, p, st) triplet. Here, this means that the state corresponding to trait triplet (a, p, st) will occupy
position a+ 3× p+ 6× st in the space of individual states (we equate st = 0 with the slow strategy and
st = 1 with the fast one). For instance, this means that individuals of age 2, parity 0 and fast strategy
will occupy position 8 in n. Abundance vector n is of length ω× par× 2, i.e., here, 3× 2× 2 = 12 and L
of size 12 × 12. Vital rates for parities of 1 are represented in lighter shades than the zero-parity rates,
such that L can be written as:
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L =



. (1− µ)F (1− µ)F . . (1− µ)
F

2
. µf µf . . µ

f

2
s . . . . . . . . . . .
. s(1− F ) . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. sF . . . . . . . . . .

. µF µF . . µ
F

2
. (1− µ)f (1− µ)f . . (1− µ)

f

2
. . . . . . S . . . . .
. . . . . . . S(1− f) . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . Sf . . . .



. (2)

2.2 Folding the (age-parity-strategy) MPPM
The TLA of an MPPM aims at understanding the demographic and evolutionary importance of traits
for the dynamics of a population (Coste et al., 2017). It is the trait counterpart of the classical sensi-
tivity/elasticity analysis to matrix entries (Goodman, 1971; Caswell, 1978; de Kroon et al., 1986). In
order to measure the sensitivity of fitness values (or any other asymptotic measure) to traits, the TLA
asks how these values are affected by the folding of the matrix over one or several of its categories (a.k.a.
traits). Folding, as detailed by Coste et al. (2017), consists in merging states (i.e., combinations of traits
or matrix entries) sharing the same values for the traits to be folded upon, in a manner that preserves
the asymptotic flows of individuals between those states. Simply put, Ergodic-Flow-Preserving-merging
of matrix entries consists in summing the outgoing transitions and averaging the incoming ones weighted
by asymptotic abundances. This approach has been theorized by Enright et al. (1995), Hooley (2000)
and Salguero-Gómez and Plotkin (2010). Folding, at the core of the TLA, extends the operation of
EFP-merging from states to traits.

In the case of MPPM L incorporating the traits parity and strategy, successive foldings over these traits
provide information on the respective consequences of the individual and genetic components of CoR.
We hereafter denote Lfold

age,parity, L
fold
age,strategy, and Lfold

age the matrix L respectively folded over strategy,
over parity, and over both. Matrix Lfold

age is also called the Reference Leslie Matrix, and its comparison
with L provides information regarding the evolutionary importance of both – individual and genetic –
components of the CoR.

As an illustration of the folding mechanism, from the formal 3-year model described above (in Expres-
sion (2), with α = 2, β = 3 and 2 strategies), we draw a specific model L1 with two iso-fitness genotypes
of asymptotic growth rate λ ≈ R0 ≈ 1 (we denote λ here the dominant eigenvalue of the deterministic
matrix). In this case, vital rates are F = 0.95 and s = 0.7541 for the fast strategy, and f = 0.7013 and
S = 0.9 for the slow strategy. Reproduction is considered as a random process constituted of Bernoulli
independent trials (one offspring maximum, per timestep). The transmission parameter is µ = 0.25. We
get (all transition probabilities between individual states are rounded off to the nearest ten thousandth):

L1 =



. 0.7125 0.7125 . . 0.3563 . 0.1753 0.1753 . . 0.0877
0.7541 . . . . . . . . . . .
. 0.0377 . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. 0.7164 . . . . . . . . . .
. 0.2375 0.2375 . . 0.1188 . 0.5260 0.5260 . . 0.2630
. . . . . . 0.9 . . . . .
. . . . . . . 0.2688 . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . 0.6312 . . . .



. (3)

Its normalized right eigenvector w(L1) = [19.87 15.00 0.57 0 0 10.75 19.87 17.87 4.78 0 0 11.29]T% (where each
entry is rounded off to the nearest hundredth) can be written in 3-dimensional form as:
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19.87% 17.87% 4.78%

0.00% 0.00% 11.29%

19.87% 15.00% 0.57%

0.00% 0.00% 10.75%

age

parity

strat
egy

From the latter, we can construct the weight matrices Wght and, from the characteristics of the
traits to be folded upon (the "trait structure"), one can generate the Block-Folding permutation matrices
PBF which, together, generate the folding matrices as per Eq.(4) from Coste et al. (2017). This yields
L1fold

age,strategy (i.e., L1 folded over trait parity): a population model where both fixed and individual
components of the costs were initially accounted for, but where individual costs are no longer implemented:

L1fold
age,strategy =


. 0.7125 0.3741 . 0.1753 0.1138

0.7541 . . . . .
. 0.7541 . . . .
. 0.2375 0.1247 . 0.5260 0.3415
. . . 0.9 . .
. . . . 0.9 .

 . (4)

Calculation-wise, in the particular case of this illustration, the fertility rate for 3-year-old, slow individ-
uals in L1fold

age,strategy, 0.3741, can be easily obtained by averaging the corresponding fertility rates in L1
(0.7125 for the individuals of parity 0 and 0.3563 for the individuals of parity 1) with weights corresponding
to the relative abundances of these two states: ( 0.57%

0.57%+10.75%
for the individuals of parity 0 and 10.75%

0.57%+10.75%

for the individuals of parity 1).

Matrix L1fold
age is the Reference Leslie Matrix obtained by folding L1 over the parity and strategy traits

(a PPM where CoR are accounted for but not implemented):

L1fold
age =

 . 0.8147 0.4733
0.8271 . .
. 0.8335 .

 . (5)

Vital rates are an input of the initial matrix L1 embedding CoR (as for classical matrix models).
However, they are an output of the folded models For these folded models, the induced vital rates can be
gathered directly, or computed, from the entries of the matrices. In our illustration, vital rates for the
Reference Leslie Matrix L1fold

age are readily readable, in Eq. (5), on the first line (fertility rates) and the
subdiagonal (survival rates). Each of the two block-matrices (one for each strategy) of Lfold

age,strategy can
also be treated as such (Eq. 4). With regards to Lfold

age,parity, calculations are similar: fertilities are to
be found on the first line and the other entries sum up column-wise to the survival rates; note, however,
that the interpretation of Lfold

age,parity (and for that matter of any multitrait model folded over one of its
dynamic trait) is to be treated with care (see Supplementary Material S.1).

By construction, λ is preserved by folding, but what about R0? In the general case, this is not true (see
Supplementary Material S.2). In the particular case of MPPMs with trait age, however, R0 is preserved
by folding (proof in Supplementary Material S.3; note that, as PPMs project populations over time, it is
always possible to incorporate age as a trait). Therefore, as for λ, the effects of LHTOs on R0 will be
measured by their consequences on the higher moments of LRS and chiefly its variance σ2

LRS .

2.3 Variance in Reproductive Success for MPPMs
For MPPMs with both dynamic and fixed traits, the calculation of σ2

LRS requires the use of a tool for
which the fertility processes are not formalized as vectors of moments per input state i, but as a matrix
containing the different moments of fertility for an individual surviving from state i to state j. A Markov
chain with rewards (MCwR) is such a tool, where the "reward" matrix can implement the various mo-
ments of F , the fertility stochastic process, as a function of both ends of an i → j transition. We will
thus use MCwRs to compute variance σ2

LRS for the(age-parity-strategy) MPPM L.

To describe the MCwR mathematical framework, introduced by Howard (1960) and Hatori (1966), we
will use the approach of Caswell (2011), who was the first to have applied this tool to demography. The
MCwR framework requires two instruments. First, T̃ which is T of size q × q (where q is the number of
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states), the usual survival transition matrix, upon which absorbing state death is explicitly added in the
q+ 1th position of the matrix: T̃ = [ T 0

m 1 ] (m is the vector of mortality rates i.e., m = 1′ − 1′T, where 1

denotes the q-dimensional vector of ones). Matrix T̃ is a stochastic matrix (columns sum to 1) that fully
describes the Markov chain of all possible survival trajectories that any individual in the population can
follow before being absorbed by death. Second, the family of "reward matrices" Rwk, where Rwk

ij is
the kth moment of the random variable of the reward (i.e., here, the birth of 1 offspring) for an individ-
ual transitioning from state j to state i. Whenever no trade-off involving fertility is involved, matrices
Rwk have rank 1, with all lines equal to the fertility rate vector. In L however, current reproductive
success does not only depend on the state i = (a, p, st) of the individual, but also on the state j it is
transitioning toward. In detail, if j = (a+ 1, p+ 1, st), then reproduction is being successful as parity is
increased by one unit, and thus its expectation is Rw1

j,i = 1. If j = (a+ 1, p, st), the individual survives
but does not reproduce at that timestep, then Rw1

j,i = 0. Finally, if j = death, the individual dies at
the end of the period. Then, because fertility and survival processes are independent of their respective
realizations (they are not independent per se, as their probability rates depend on their states, which are
equal), Rw1

death,i = fi. This completes the construction of the "reward matrix" Rw1. It is therefore a
zero matrix with the exception of its sub-diagonal, made of 0s, its lower sub-diagonal, made of 1s, and
its bottom row corresponding to fertility rates. Because the reproductive rewards are the outcome of
Bernoulli independent trials (either 0 or 1 offspring) in our particular illustration, reward matrices for
any moment, Rwk, are equal to the reward matrix of means Rw1.

Let ρk be the vector of the kth moment of LRS, indexed on individuals "starting" states. These are
calculated as the convergence of backwards accumulation of "remaining" rewards following individuals
from death (where no remaining reward remains) to birth (or age a = 1). From Caswell et al. (2011), we
draw the following convergence equations, for the first two moments:

ρ1 = lim
t→∞

ρ1(t) with ρ1(t+ 1) = (T̃ ◦Rw1)′1 + T̃ρ1(t), (6)

ρ2 = lim
t→∞

ρ2(t), with ρ2(t+ 1) = (T̃ ◦Rw2)′1 + 2(T̃ ◦Rw1)′ρ1(t) + T̃ρ2(t), (7)

and with initial conditions ρ1(0) = ρ2(0) = 0 (◦ is the Hadamard or elementwise product).

Let us now reduce all LRS moments ρk to states of age a = 1 (and thus p = 0), i.e., to the offspring
states. Then ρ1 and ρ2 are of size the number of classes of trait strategy. Then the vectors of expectancy
and of variance of LRS for each offspring class are:

eLRS = ρ1, (8)

σ2
LRS = ρ2 − ρ1 ◦ ρ1. (9)

3 Results: Effects of individual costs on σ2
LRS

We aim at measuring some of the effects of the CoR on σ2
LRS , the variance in lifetime reproductive

success. Specifically, we focus on comparing the variance of LRS between models implementing the
individual costs and asymptotically-equivalent matrices from which they are absent (i.e., folded over
parity). To be able to provide such results, we have constructed MPPMs that incorporate the individual
and/or the genetic component(s) of CoR via the traits parity and strategy. In the following sections, we
first investigate the overall effect of individual costs on σ2

LRS . Second, we compare the strength of this
effect along the gradient of genetic costs to determine whether the position of a lineage on the slow–fast
continuum has an effect on the strength of individual costs on individual fitness. Finally, we investigate
the consequences of these results for the relative importance of "adaptive" and "neutral" components of
individual heterogeneity.

3.1 Individual costs reduce the variance in lifetime reproductive success
In Supplementary Material section S.4, we formally demonstrate (Eq. 18) that individual CoR reduce
σ2
LRS . Indeed we show that for L an age-parity MPPM embedding individual costs and Lfold

age (denoted
L∗ in this section and the next, with a ∗ as for the rest of the parameters related to the folded model)
its folded daughter from which individual CoR are absent, we have

σ2
LRS (L) ≤ σ2

LRS (L∗) . (10)
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This result is achieved by focusing on the parity distributions, at demographic stable-state, of the suc-
cessive age-classes in both models. In other words, the individual costs buffer individual stochasticity.

Here we illustrate this by analyzing an (age-parity-strategy) MPPM incorporating individual costs for
multiple strategies that do not interact (i.e., µ = 0; the different strategies can be seen as corresponding
to different populations). We therefore performed our investigation on multiple (age-parity) MPPMs,
each corresponding to a specific strategy and each incorporating individual CoR. To better understand
the effects of the individual costs on σ2

LRS we plot, in Figure 1, the difference in variance for a constructed
(age-parity) matrix L with the individual costs and its folded Reference Leslie Matrix (L∗ = Lfold

age ) with-
out the costs, for a range of zero-parity fertility and survival rates. More precisely, Figure 1a depicts
the difference in variance σ2

LRS (L∗) − σ2
LRS (L) and Figure 1b the difference in coefficient of variation,√

σ2
LRS

R0
(L∗)−

√
σ2
LRS

R0
(L). For reference, we also plot σ2

LRS (L∗) in Fig. 1c and the iso-fitness curves for
both λ and R0 in Fig. 1d.

(a) (b)

(c) (d)

Figure 1: Effects of costs of reproduction on variance in lifetime reproductive success. For (age-parity)
multitrait matrices implementing the individual costs (differing only in their zero-parity vital rates)
and their related folded Reference Leslie Matrices from which they are absent, we plot the difference
in variance (Fig.1a) and coefficient of variation (Fig.1b) of lifetime reproductive success between the
two models. Fig.1c shows the variance in lifetime reproductive success for the Reference Leslie Matrix.
Fig.1d shows the value of fitness measures R0 and λ for each combination of zero-parity vital rates. The
population has maximum age ω = 5 and age-at-maturity α = 1. As per the generic model in this article,
the individual costs is modeled by relatively decreasing each vital rate by 1/(1 + ω − α) per parity.

The first observation, is that individual CoR indeed reduce variance (Fig.1a) and coefficient of variation
(Fig.1b) of LRS. The second observation is that the effects of CoR on σ2

LRS (fig.1a) follow the general
shape of σ2

LRS itself (fig.1c).

The shape of σ2
LRS as a function of zero-parity rates f and s reveals that it results from the combined

effects of three parameters. First, the variance in fertility rates at each age, V ar(F∗a) = f∗a (1−f∗a ), which
is the "engine" of the variance in LRS and confers to the latter the x(1−x) shape of the former along the
zero-parity fertility rate axis. The importance of V ar(F∗a) for late ages however requires survival and
thus the increase in σ2

LRS as survival increases. At the same time, as age increases, we have, on average,
a decrease in f∗a because of the costs. Therefore even very high zero-parity fertility rates (conferring no
variance in Fa at early ages) will generate variance at late ages. Hence, the asymmetrical x(1− x) shape
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at high survival rates, across fertility rates. Finally, survival does not only act as a promoter of variance
in fertility, but as a stochastic process itself – of variance si(1 − si) – which explains the decrease in
variance as survival reaches its maximum levels. These last two effects, explain the general location, in
this model, of the maximum σ2

LRS (reached by organisms with zero-parity (survival, fertility) coordinates
of (s = 0.94, f = 0.64)).

This general shape, namely the x(1− x) pattern on zero-parity fertility axis and general increase with
survival, is preserved when switching from σ2

LRS (L∗) (Fig.1c) to σ2
LRS (L∗) − σ2

LRS (L) (Fig.1a). This
is because this difference is a linear function of variance itself, as shown in Eq.(17) (Supplementary Ma-
terial S.4). However this equation shows the difference in variance to also linearly depend on survival
and fertility. This explains why the difference in variance between models with and without the costs
(Fig.1a) increases with survival, even at high survival rates, and is flat at very low survival rates. These
patterns are preserved when correcting for R0, i.e., for high fertility and survival rates, as can be observed
from the differential in the coefficient of variation (Fig.1b). Logically both the exponential increase with
survival and the asymmetrical effect for high fertility disappear.

These observations demonstrate that, even though very short-lived or semelparous organisms (i.e., with
s ≈ 0) exhibit variance in reproductive success (Fig. 1c), the individual CoR do not affect them (Fig.
1a and 1b) and that the effects of the costs will increase with iteroparity/longevity. Let us now investi-
gate further the various effects of individual CoR on iso-fitness organisms across the slow–fast continuum.

3.2 Effects of individual CoR for iso-fitness organisms across the slow–fast
continuum

From an evolutionary life history perspective, comparing the life histories of organisms with very different
fitness makes little sense. Therefore, from the statistics plotted in Figure 1 for all possible zero-parity
vital rates, we extract the combinations that are iso-fitness. More precisely, in Figure 2, we represent,
for each possible zero-parity fertility rate, the corresponding zero-parity survival rate for a fitness of
λ ≈ R0 ≈ 1 (red curve, right y-axis). For each such pair of coordinates, we extract the variances in LRS
for the models with and without the costs (grey curves, left y-axis), and their difference (green curve, left
y-axis).

This establishes, for the particular case of organisms that are iso-fitness, the general conclusions drawn
above (here all organisms have stationary growth rate, and therefore R0 is worth unity): the variance
in reproductive success stems from both variance in fertility and survival and is therefore maximal for
intermediary values of f and s. However survival is also required to promote late fertility, and this pushes
smax higher and therefore fmax lower than the point of equal coordinates (f = 0.54, s = 0.54). As ex-
pected, because of the individual CoR, this is less true for L, for which smax is lower and therefore fmax
higher, than for L∗. To the contrary, the differential in variances between the two models (green curve) is
maximal for the maximum possible survival rate s = 1 and its related zero-parity fertility-rate f ≈ 0.22.
In other words, this result shows that, whilst the effect of individual stochasticity is not a monotonous
function of the pace of organisms as measured by their position on the slow–fast continuum (Stearns,
1983; Gaillard et al., 1989), the effects of individual CoR on such individual stochasticity increase with
pace and are maximum for slow organisms.

3.3 Combining effects of genetic and individual costs on σ2
LRS

In Supplementary Material S.5, we demonstrate that individual costs and fixed heterogeneity (caused,
e.g., by genetic costs) act independently and additively on σ2

LRS . In particular, the fixed heterogeneity
component of the variance in lifetime reproductive success is unaffected by individual costs. In other
words, this formally demonstrates the intuitive perception that individual costs act solely on the dynamic
heterogeneity component of individual fitness variance. We also show there, that the individual costs
increase the relative importance of the fixed (aka "adaptive") heterogeneity component of σ2

LRS as it
remains constant whilst the dynamic (aka "neutral") component of heterogeneity is reduced.

We illustrate this by providing σ2
LRS and its decomposition for a numerical application of L (Expression

2). We call L2, the MPPM for which age at first reproduction is α = 1, maximum age ω = 15, the zero-
parity vital rates for the fast genotype F = 0.35 and s = 0.6 and for the slow genotype f = 0.3 and
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Figure 2: Effects of costs of reproduction on variance in lifetime reproductive success for stationary
populations. For all combinations of zero-parity vital rates yielding an asymptotic growth rate 1 − ε ≤
λ ≤ 1 + ε (with ε = 0.01), we plot, as a function of zero-parity fertility rates, the related zero-parity
survival rate, the variance of reproductive output for the model implementing individual costs and that
of its reference Leslie model with no trade-off implemented as well as their difference. The population has
maximum age ω = 5 and age-at-maturity α = 1. Cost of reproduction is modeled by relatively decreasing
each vital rate by 1/(1 + ω − α) per parity.

S = 0.8. The decomposition of variance σ2
LRS for L2 and L2fold

parity, its folded version over parity from
which individual costs are absent, yields:

σ2
LRS(L2fold

parity) = 1.2402 = 1.2040︸ ︷︷ ︸
σ2dyn

LRS (L2fold
parity)

+ 0.0362︸ ︷︷ ︸
σ2fix

LRS(L2fold
parity)

σ2
LRS(L2) = 1.0802 = 1.0439︸ ︷︷ ︸

σ2dyn

LRS (L2)

+ 0.0362︸ ︷︷ ︸
σ2fix

LRS(L2)

We observe that, as expected, the fixed component of the variance decomposition i.e., the "adaptive"
heterogeneity component, is small compared to the dynamic, i.e., "neutral", component. Here σ2dyn

LRS
represents 96.6% of σ2

LRS). As theoretically calculated also, the fixed component of the variance decom-
position is preserved by folding over parity, i.e., when considering individual costs or not. Finally, and
most importantly, we observe that the implementation of individual CoR increases the relative value of
the "adaptive" component by 14.8% (the ratio of 0.0362/(1.204 + 0.0362) to 0.0362/(1.0439 + 0.0362)).

Incorporating the individual components of the multiple LHTOs at play in an organism will increase
this value further. This allows us to contemplate the "adaptive" component of individual heterogeneity
as a stronger factor than sometimes anticipated (see Steiner and Tuljapurkar, 2012; Caswell, 2014; Cam
et al., 2016; Snyder and Ellner, 2018; Hamel et al., 2018).

4 Discussion
In this article, we provide the steps allowing an ecologist to implement the dynamic and fixed components
of a Life History Trade-Offs (LHTOs) into a MPPM, and to analyze their effects on the evolutionary
dynamics of a population. Specifically, we focus on the two components – individual and genetic – of the
Costs of Reproduction (CoR) and their effects on the variance in lifetime reproductive success, σ2

LRS .
The random variable LRS is a commonly used measure of individual fitness and its expectation is the
ubiquitous R0= E(LRS). The genetic/fixed component of CoR is caused by intra-population variance in
pleiotropic genes acting on survival and fertility. In other words, it generates a gradient of strategies along
the intra-population slow–fast continuum (Stearns, 1983; Gaillard et al., 1989). The individual/dynamic
component of CoR is related to the variance in individual trajectories caused by individual stochasticity.
Individuals of the same strategy may indeed exhibit different life trajectories. This is of course because of
the randomness in vital rates, but also because the latter are affected, with stochasticity, by the individual
costs, i.e., by the fact that past reproductive realizations negatively affect vital rates.
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This general decomposition of LHTOs into genetic/fixed and individual/dynamic components is im-
portant for evolutionary demography as it is additive and can therefore be integrated into Population
Projection Matrices (PPMs). Following this decomposition, we demonstrate how to generate a Multi-
trait Population Projection Matrix (MPPM; Coste et al., 2017) incorporating these two components for
the CoR. The genetic costs are embedded via a fixed trait that positions the lineage’s strategy, slow
or fast, along the slow–fast continuum. The individual costs are implemented via dynamic trait parity,
the number of offspring ever born, that tracks individual reproductive success. By reducing the mean
vital rates of individuals that have been successful so far in their life trajectory, individual costs control
dynamic heterogeneity. The (age-parity-strategy) MPPM L is then analyzed via a Trait Level Analysis
(TLA; Coste et al., 2017). It consists, in this case, in comparing the properties of the full model L with
asymptotically equivalent folded versions of L from which traits parity and/or strategy are absent, and
therefore where the related dynamic and/or fixed CoR are also concealed.

From this analysis, we formally demonstrate that individual CoR have a cushioning effect on the vari-
ance of reproductive success (Eq.10). We then investigate how the strategy of a lineage, its position on
the genetic CoR, influences this buffering effect. We show that the individual costs have a stronger impact
on the variance in reproductive success of long-lived organisms than on that of slow-lived organisms of
the same fitness. For very short-lived ones, thus almost semelparous, the individual costs have almost no
demographic buffering effect. Finally, as it reduces the variance in reproductive success, individual costs
have a buffering effect on individual heterogeneity. We show, in this respect, that individual CoR only
affect the dynamic component of σ2

LRS . Therefore, the dynamic component of the costs, which is often
discarded to the benefit of its genetic/fixed counterpart, especially in comparative studies, acts solely on
the "neutral" component of individual heterogeneity.

The key result in this paper, namely, the buffering effect of individual CoR on the dynamic component
of the variance in reproductive success, has far reaching consequences for evolutionary demography, and,
most importantly, for the measurement of the relative contributions of the fixed and dynamic component
of individual heterogeneity via Integral Projection Models or PPMs. It implies that, when ecologists
ignore the individual components of the multiple LHTOs at play in an organism, and only implements
the fixed or genetic components, they compute a correct measure for the fixed component of heterogene-
ity, but overestimate the dynamic component (potentially to a large degree, if the organism is subject
to many trade-offs). This forces evolutionary demographers to contemplate the "adaptive" (i.e., fixed)
component of individual heterogeneity as a stronger factor than sometimes anticipated (see Steiner and
Tuljapurkar, 2012; Caswell, 2014; Snyder and Ellner, 2018). Reintroducing Life History Trade-offs into
the models of evolutionary demography might thus show that "luck" is not the only driver of individual
heterogeneity and provide a potential way out to the debate in the evolutionary demography community
about the relative importance of "adaptive" and "neutral" (i.e., dynamic) heterogeneities. Indeed, our
theoretical model shows that it comes at no surprise that individual heterogeneity analyses accounting
for different strategies (fixed component of trade-offs), but not incorporating individual components of
trade-offs, yield a disproportionate importance for the "neutral" component of heterogeneity compared
to the expectations of empiricists (Steiner and Tuljapurkar, 2012; Cam et al., 2016; Hamel et al., 2018).

From a methodological point of view, this study also highlights the strong limitation of life-history
models which are only structured by age. It is often argued that these models are ideal to study pop-
ulations for which age is the main determinant of life history. However this paradigm, we have shown
here, has to be moved beyond. Firstly because trade-offs are a key component of life history and that, to
be implemented, a trade-off requires at least two traits. Secondly, because age is only the best predictor
of vital rates as it already encompasses some consequences of LHTOs. A model where vital rates do
not depend on age, can seem to be strongly age-driven when folded upon the CoR. Using only one trait
(partially incorporating, by linkage, the underlying trade-offs and thus seemingly a life history determi-
nant) will generally provide appropriate results with respect to population dynamics and demography.
It will however generate poor analyses from an evolutionary demography viewpoint. This can be readily
ascertained by any empiricist when comparing the variance in reproductive success inferred by the Leslie
Matrix generated from the Life History Table of her/his studied organism with actual statistics from the
field. This discrepancy is only one in many consequences of interpreting age(only)-structured models
without accounting for all the effects of the simplification.

It could therefore be argued that the addition of a 2nd trait in an age-structured model is as key to
understand the life history of an organism from an evolutionary perspective, than the addition of the
1st trait (e.g. age or stage) – compared to a non-overlapping generation model – is from a demographic
viewpoint. In general, this will prompt us to revisit general results stemming from one-trait analyses.
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For instance, Charlesworth (1980) demonstrated that the age-structure of population has little impact
on their population genetics. Would that result hold when a 2nd trait, implementing a constraint such
as the individual costs, is added to the age-structured model ?

Appendices

A Different models for the different components of trade-offs

The rarity of implementation of trade-offs into matrix projection models may be caused by the historical
use of different families of models for population and individual mechanisms. Indeed mechanistic con-
straints, working at the individual level, are classically modeled via Individual-Based Models (IBMs; also
called agent-based models) because they allow tracking each specific being during every step of its life
trajectory (see for instance an IBM investigating CoR in ungulates by Proaktor et al. (2008)). Thanks
to their level of details, such models can be considered as more precise and more flexible population
projectors than matrices (Van Imhoff and Post, 1998). However, contrary to PPMs that project the
population as a whole, they make it difficult to demonstrate the generalization of simulation results and
to qualitatively ponder the weights of the various parameters that influence fitness (Caswell and John,
1992). By contrast, as their elementary elements are the vital rates for a given genotype (Engen et al.,
2009; Csetenyi and Logofet, 1989; Williamson, 1959), PPMs are the ideal tool to implement fixed/genetic
trade-offs: sensitivity analysis, measuring the effects of vital rates on demographic fitness, is at the core
of evolutionary demography since Caswell (1978)’s matrix-based sensitivity formula.

Turning the argument around and considering that the state-specific vital rates observed for a pop-
ulation are the manifestations of an Evolutionary Stable Strategy (ESS; Parker and Maynard Smith,
1990), some authors use PPMs to infer the fixed trade-offs between various fitness components. This
approach applies sensitivity analysis to ESS positions and was initiated by a series of articles about op-
timal life histories (Schaffer, 1974; Law, 1979; Caswell, 1982). It considers that the asymptotic growth
rate (dominant eigenvalue λ1 simplified as) λ – taken as fitness – is (locally) optimal, thus implying that
vital rates changes are constrained by their sensitivity values. For example, a positive change in fertility
at age α, f(α), would infer a negative change in survival at age β, s(β), such that the ratio of changes
(i.e., the magnitude of the trade-off) equals the ratio of sensitivities : ∂λ

∂f(α)/ ∂λ
∂s(β)

; (see Caswell, 1982; Van
Tienderen, 1995, for detailed analysis). This evolutionary demography approach, known as optimality
theory, is very similar to the quantitative genetics method as demonstrated by Charlesworth (1990):
if a population is at ESS then Lande (1982)’s equation becomes 0 = G∇y, and therefore the genetic
constraints between vital rates (in G) stem directly from the selection gradient ∇y corresponding to the
vector of sensitivities of the asymptotic growth rate. However powerful optimality theory has proven
to be in developing life history theory, such models infer but actually do not incorporate the fixed and
genetic component of trade-offs.

B Classical classification of LHTOs

The classical classification of trade-offs (see Stearns, 1992; Roff, 1993) is field-based. In that typology,
they are segregated into "non-evolutionary" and "evolutionary" trade-offs. "Non-evolutionary" LHTOs
are themselves split between "internal" or "physiological" trade-offs (when the trade-off stems from a
constraint internal to the organism, for instance generated by Y-shaped allocation mechanism because
of finite resources) and "external" or "ecological" LHTOs (when the constraint is caused by the environ-
ment). "Evolutionary" or "genetic" trade-offs correspond to a constraint located at the genotypic level
(using Stearns (1989)’s genotypic/intermediate/phenotypic classical representation of LHTOs).

This classification is however not absolutely segregating, and not additive. It is indeed easy to find
examples of "physiological" trade-offs that are also "genetic". Actually most of the early evolutionary
demography studies of "physiological" trade-offs in the 70s (e.g. Schaffer, 1974) are really about "genetic"
LHTOs as they do not study the "physiological"/individual aspects of the constraint, but how genes acting
on the allocation of resources towards various fitness functions will evolve under various circumstances.
Indeed, in these articles, two individuals with the same genotype, or clones, are deemed to exhibit the
same life trajectories. The trade-off are called "physiological" there, because that is where the constraint
is supposedly located, but "genetic" and "ecological" trade-offs (e.g., an antagonistic pleiotropy in genes
generating a trade-off between functions without any physiological inter-mediation, potentially with a
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behavioral mediation) would yield the same results. The "location" of the constraint, as explained in the
Introduction, is much less important for theoretical analyses of trade-offs than the origin of the variance
in the traits involved in the trade-offs. Under the arising new additive and segregating typology (see
second paragraph of the Introduction), therefore, such trade-offs would be classified as genetic.

C Implementation of LHTOs into MPPMs with empirical data

The decomposition of LHTOs into genetic and individual components hints at empirical determina-
tions of their parameters as can be inferred from their relationship with the decomposition of individual
heterogeneity into, respectively, fixed and dynamic components. The methods developed to weight each
component of heterogeneity from empirical data (see review in Hamel et al., 2018) can indeed be extended
to evaluate the strength of each component of LHTOs at play. The implementation can be sequenced as
follows:

• The first step consists in splitting the population into subgroups with (significantly) different strate-
gies (i.e. positions on the genetic component of LHTO). For instance, for the quality/quantity
trade-off, this process would yield subgroups with consistently more numerous and more fragile
offspring than others. Embedding such a genetic component is done the same way as implementing
different fixed heterogeneities. In order to be able to analyze the population over long periods of
time (> generation time) or asymptotically, knowledge of heredity of fixed traits is required (Plard
et al., 2018). However if only individual trajectories are of interest, then heredity may be dispensed
(Jenouvrier et al., 2017). The decomposition into such fixed -heterogeneity subgroups is classically
done by mixture models (Hamel et al., 2018)

• The second step consists, for each of the strategies (i.e., fixed -heterogeneity groups) identified in
the first step, to measure the modalities and the strength of the individual component of the trade-
off. For instance, for the quantity/quality trade-off, this would consist, for each "lineage" on the
intraspecific quantity-quality spectrum, in gathering statistics on the effects of the number of early-
life offspring and their survival onto later-life quantity and quality of juveniles. This analysis of
dynamic heterogeneity can be extracted from joint models (Hamel et al., 2018). An interesting
illustration, in the literature, of analysis of the individual component of a LHTO was performed
by Miller et al. (2012) who quantify the effects of flowering or producing a fruit in year t− τ onto
growth, survival and dormancy in year t of orchid Orchis purpurea via generalized linear mixed
effects models.

When the traits under consideration are continuous, ecologists will resort to multitrait Integral Pro-
jection Models, themselves yielding MPPMs, as described by Ellner and Rees (2006) and Vindenes and
Langangen (2015).
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Supplementary Materials

S.1 Note on matrix Lfold
age,parity: vital rates, R0 and interpretation

Matrix Lfold
age,parity is matrix L, the age-parity-strategy MPPM, folded over strategy. In Lfold

age,parity, fixed
heterogeneity is not implemented as a trait any more, but since it was implemented in the full-traited
matrix L from which it is derived, it has effects on Lfold

age,parity, making its interpretation both challenging
and interesting.

Discrepancies in calculation of R0

In L, because of the implementation of individual costs via trait parity, survival transitions output states
depend on fertility. Simply put, survival transitions from any state i = (a, p, st) to either j1 = (a+1, p, s)
or j2 = (a+1, p+1, s) are Lj1,i = si×(1−fi) and Lj2,i = si×fi, with a third, implicit, transition towards
death equal to M̃death,i = 1− si. These three transitions sum to 1. In the MCwR tool, the corresponding
fertility rewards expectations for these three transitions (in Rw1) are respectively 0, 1 and fi. Thus
the mean expected reward is 0 × (si(1 − fi)) + 1 × (sifi) + fi(1 − si) = fi and therefore both MCwR
and R approaches provide the same results for E(LRS). In Lfold

age , the Leslie reference matrix, survival
and fertility transitions are completely separated, with only one output per survival transition. Thus,
in this case also, both MCwR and R provide the same results. However for the intermediary matrix,
Lfold
age,parity, which is L folded on strategy, both measures differ. Indeed, through folding, the survival

transitions from state i = (a, p) towards either j1 = (a + 1, p) or j2 = (a + 1, p + 1) will, in general, not
be distributed according to the transition value between i and the (unique) offspring state 1 which we
interpret as fertility rate (L1,i↔(a,p) = fi). This is caused by the fixed heterogeneity modeled in L express-
ing itself through EFP-merged vital rates, now that strategy is not a trait any more (see Coste et al., 2017).

Let us illustrate this, seemingly paradoxical, situation with a simple example: imagine a population
structured by 2 age (and therefore 2 parity) and 2 heterogeneity classes (A and B) produced in equal
measures (µ = 0.5) at each fertility event. A individuals have all vital rates at 1 and B individuals
at 0.5. Then all A newborns (half the population of newborns), will produce 1 offspring and become
individuals of age 2 and parity 1. Half of B newborns will produce 1 offspring and half of B individuals
will survive. Those halves are independent, and thus a quarter of B individuals will survive and become
adults of parity 1, and another quarter will become adults of parity 0. Thus for the population folded
on strategy, i.e., where individuals are only characterized by age and parity, the newborn fertility rate is
0.5× 1 + 0.5× 0.5 = 0.75. Similarly the survival rate for newborns is 0.5× 1 + 0.5× 0.5 = 0.75. However,
for an average newborn in the population, the probability of transitioning towards a parity 1 adult is
0.5× 1 + 0.5× 0.25 = 0.625 and to a parity 0 adult is 0.5× 0 + 0.5× 0.25 = 0.125. As we can see here,
the sum of the survival transitions is (by construction) equal to the survival rate, but the distribution
towards higher parity 0.625

0.625+0.125 ≈ 0.83 is not equal to the fertility rate 0.85 as one does not make the
distinction between individuals A and B any more.

Interpretation of Lfold
age,parity

These considerations have important consequences with regards to the interpretation of Lfold
age,parity. It

basically comes down to deciding whether fertility rates are to be found on the first line of the matrix,
or in the distribution rates towards classes of higher parity. In the first case, E(LRS) should be calcu-
lated using R0= R1,1, where R is the next generation matrix; in the second case, via MCwR. Because,
as we just illustrated, the "inferred" fertility rates are, in general, different between fertility transition
and distribution of survival transition, these two methods provide different results for R0. Considering
that the folding operation does not alter the fact that Lfold

age,parity is an age-based MPPM with no fixed
heterogeneity implemented, and thus only 1 offspring class, it makes sense to resolve the dispute in favor
of considering the first line of the matrix as fertility rates for all states. Then, however, it implies that,
the second trait of the model is abusively called parity. The categories it generates still correspond to
states with decreasing vital rates as the category number increases (i.e., to individual CoR on survival
and fertility), but an increment in the category number does not imply 1 exact additional offspring. The
relationship is not linear any more, and the trait parity rather becomes a general "measure of overall
reproductive success" than parity exactly, though we will still use that name for the trait itself.

That the second trait of Lfold
age,parity cannot be interpreted as parity stricto sensu also has repercussions

in terms of measures for the variance of LRS. We just saw that MCwR cannot be used to measure
E(LRS), and, for the same reason, this framework cannot be used for precisely calculating σ2

LRS either.
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Moreover, even if parity does not account exactly for the reproductive success any more, there is still
interdependence between fertility rates and survival transitions, making the formulas stemming from R
equally unsatisfactory. We can therefore use both approaches, as proxies, keeping in mind that none can
provide an exact result, which reflects the fact that matrix Lfold

age,parity is not a constructed model, but the
product of folding from a model embedding an individual trade-off, implying a shift in the interpretation
of its dynamic trait.

S.2 General non-preservation of R0 by folding

Consider two categories/traits, t1 and t2, each having 2 classes, and where there is only 1 offspring state:

(1, 1). Let us further consider that the (t1-t2) MPPM for this population is: L3 =

[
0.6 0.6 0.6 0.6
0.5 0 0 0
0 0 0.5 0
0 0.5 0 0

]
. Then

we get λL3 = 1.0317 and – by letting F3 be the empty matrix but with the first line of L3, T3 the
complement of F in L3, N3 = (I − T3)−1 the fundamental matrix and R0 [L3] the first element of
R3 = F3.N3 – we get R0[L3] = 1.05. The eigen-analysis of L3 allows us to fold it over t1 , and we get

L3fold
t2 =

[
0.9368 0.6
0.1632 0

]
.

The computation of the eigenvalues of L3fold
t2 yields, as expected, λL3fold

t2
= 1.0317 = λL3. By construc-

tion, in this matrix also, offspring are only to be found on the first line. And therefore, we can proceed
as we just did for L3, to generate the net reproductive rate, and we get R0[L3fold

t2 ] = 1.035. This simple
model illustrates the general non-preservation of R0 by EFP folding.

S.3 R0 preserved by folding for age-structured populations
We demonstrate here that for MPPMs with age as a trait, R0 is preserved by folding (over any combi-
nation of traits other than age). This may seem self-evident, but it really is not (see Appendix S.2).

To prove the preservation of R0 by folding in the specific case where age is a trait and is not folded
upon, let us consider a model L, that is re-organized (if need be) so that age is the last trait in the
"trait structure" s (see Coste et al., 2017). Let us regroup all other traits as one unique trait t which
can take values from t = 1 to t = tmax, representing the tmax combinations of other (than age) traits.
Trait vector is thus t = {t, age} and trait structure s = (tmax, ω) (there are ω age classes). With no
loss of generality therefore, we shall study the effect,on R0, of folding L over t . The operation produces
Lfold
age = La only characterized by age: tLa = {age} and trait structure sLa = (ω). For simplicity, we shall

use a block-matrix approach for the demonstration. Matrix La is a Leslie matrix: La =

[ f1 f2 ... fω
s1 0 ... 0
... ... ... ...
0 0 sω−1 0

]
with well-know net reproductive rate, we denote R∗0 : R∗0 =

∑ω
i=1 fi(

∏i−1
j=1 sj).

Matrix L can be written a block-Leslie matrix :

L =


F1 F2 . . . Fω−1 Fω
S1 0 . . . 0 0
. . . . . . . . . . . . . . .
0 0 0 0 0
0 0 . . . Sω−1 0

 ,

where each submatrix is a square matrix of size tmax× tmax. Specifically, each is such that for a vector
ni of abundances of individuals of age i, Fi.ni is the vector of abundances of offspring produced by
these individuals at a given time step and Si.ni is the vector of abundances of their survived selves. By
construction L and La share the same growth rate λ. Their related right eigenvectors, both summing to 1,
w =

[
w1 w2 . . . wω

]
(this formula displays w as a vector of vectors) and w∗ =

[
w∗1 w∗2 . . . w∗ω

]
are such that 1′.wi = w∗i . We get (we allow ourselves to equate matrices of different sizes whenever they
have equal non-zero diagonal block-matrices on their Frobenius normal form):

R0 =
1′Rw1

w∗1
. (11)

Writing out R, we get :

R = F(I + T + T2 + · · ·+ Tω) =

ω∑
i=1

FiPi. (12)
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where Pi =
∏j=1
j=i−1 Si (order of multiplicands is important here) and P1 = I. Then from Eqs. (12) and

(11) we get :

R0 = 1′
ω∑
i=1

FiPi
w1

w∗1
=

ω∑
i=1

1′FiPi
w1

w∗1
. (13)

Considering the eigen-equation Lw = λw by blocks, we immediately get Siwi = λwi+1 and
∑ω
i=1 Fiwi =

λw1. The eigen-equation at the level of Lfold
age , Law

∗ = λw∗, implies that siw∗i = λw∗i+1. Thus Si
wi

w∗i
=

si
wi+1

w∗i+1

. Therefore, we infer

Pi.
w1

w∗1
= (

i−1∏
j=1

sj)
wi

w∗i
. (14)

By extension of EFP folding (see Coste et al., 2017) we know that the folding of matrices consist of the
asymptotic-abundance-weighted averaging of transitions. For fertility, the transitions are to be found in
the matrices Pi and the corresponding asymptotic abundances in the vectors wi, therefore:

fi = 1′Fi.
wi

w∗i
. (15)

Multiplying both sides of Eq. (14) by 1′Fi, and simplifying the result thanks to Eq. (15), we can
rewrite Eq. (13) in a way that provides the proof:

R0 =

ω∑
i=1

fi(

i−1∏
j=1

sj) = R∗0. (16)

S.4 Demonstration of σ2
LRS ( Lage,parity) < σ2

LRS
(
Lfold

age

)
Let us consider an (age-parity)-model L implementing individual costs. Without loss of generality, for sim-
plification, we shall consider that only fertility rates are affected by the costs. Let us also consider, Lfold

age ,
which is L folded on parity, that we denote here L∗. In order to demonstrate that σ2

LRS ( L) < σ2
LRS ( L∗),

we shall set our investigation at the sable-state. By the properties of TLA, at the stable state, L and
L∗ have the same growth rate and the associated right-eigen vector on age wa. Let us denote Pa and
P∗a the random variables giving the parity of a random individual in the a age-class, in the stable state
population, for respectively L and L∗. The parity r.v. at age (a+ 1) are worth Pa+1 = SaFa,p +Pa and
P∗a+1 = S∗aF∗a + P∗a.

We can get expectations for the r.v. of the multitrait model, according to parity. Ep(Pa) =
∑a
p=1

p.wa,p
wa

is p̄a the average parity at that age a. Ep(Fa,p) =
∑a
p=1

f(a,p)wa,p
wa

. Since f(a, p) = fa(1− p
ω ), and from the

TLA principles, we have Ep(Fa,p) = fa
wa

∑a
p=1(1− p

ω )wa,p = fa
wa

(∑a
p=1 wa,p −

1
ω

∑a
p=1 p

)
= fa(1− p̄a

ω ) =

E(F∗a) = f̄a = f∗a . From the summation of E(Pa+1) = E(Sa).E(Fa,p) + E(Pa) over a, we therefore
get ∀a Ep(Pa) = E(P∗a). This result is related to the preservation of R0 we demonstrate in section
S.3. To simplify further calculations, as we base our analysis at the timestep level, we shall now con-
sider only one process projecting an individual from age a to a+ 1, which combines fertility and survival:
Qa,p = SaFa,p. As a product of Bernoulli processes, Q is itself Bernoulli, of parameter qa,p = fasa(1− p

ω ).

Let us now turn ourselves to the variances of these r.v., since in a population structured by age
only, the vital rates are independent from parity, we have V arp(P∗a+1) = V arp(Q∗a) + V arp(P∗a) and
thus V arp(P∗a+1) − V arp(P∗a) = q∗a(1 − q∗a). We also have : V arp(Pa+1) = V arp(Qa) + V arp(Pa) +
2Covp(Qa,Pa). As Q is Bernoulli, we have V arp(Qa) =

∑a
p=1 12q(p).wa,p − (q∗a)2 = qa(1 − qa) =

V arp(Q∗a). And therefore, the difference in change in variances, by age, lies in the covariance Cov(Fa,Pa)
component:

(V arp(Pa+1)− V arp(Pa))−
(
V arp(P∗a+1)− V arp(P∗a)

)
= 2Covp(Qa,Pa)

We can explicit this component :

Cov(Qa,Pa) =

a∑
p=1

p.q(a, p)wa,p − p̄aq∗a
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where
a∑
p=1

pq(a, p)wa,p = q(a)

a∑
p=1

p(1− p

ω
)wa,p = q(a)

a∑
p=1

pwa,p −
1

ω
q(a)

a∑
p=1

p2wa,p

= q(a)p̄a −
1

ω
q(a)

a∑
p=1

p2wa,p = [ ¯q(a) + q(a)
pa
ω

].p̄a −
1

ω
q(a)

a∑
p=1

p2wa,p

and thus

Covp(Qa,Pa) =
qa
ω

(
p̄a

2 −
a∑
p=1

p2wa,p

)
=
qa
ω

(−V arp(Pa))

And therefore,

(V arp(Pa+1)− V arp(Pa)−
(
V arp(P∗a+1)− V arp(P∗a

)
= 2

fasa
ω

(−V arp(Pa)) (17)

And thus ∀a, V ar(Pa) < V ar(P∗a): in each age-class, the variance of parity is lower for the population
modeled by L than for the population modeled by L∗. At a given time, in age class a of each population,
some individuals will be removed, their lifetime trajectory stopped and therefore their parity at that time
will be the realization of their LRS. As survival is the same for both populations (and here independent
from parity), we get σ2

LRS =
∑ω
a=1 V ar(Pa).

∏a−1
i=1 s(i) and therefore we get

σ2
LRS (L)− σ2

LRS (L∗) =

ω∑
a=1

(V ar(Pa)− V ar(P∗a)).

a−1∏
i=1

s(i) ≤ 0 (18)

S.5 Effect of fixed heterogeneity on σ2
LRS

We analyze here the cross-effects of individual costs and fixed heterogeneity on the variance in reproductive
success of the overall population. We try and hint at the relative effects of heterogeneity and individual
stochasticity in the making of σ2

LRS .

Heterogeneity, costs and σ2
LRS

Imagine that the population modeled by L contains two genotypes. These two genotypes will therefore
also be found in L∗ which is an (age-heterogeneity) MPPM, corresponding to L folded over parity. By the
principles of the TLA w∗, the (age-heterogeneity) right eigenvector, associated to λ for L∗, corresponds to
w the (age-parity-heterogeneity) right eigenvector of L when summed on parity. Since offspring are all of
parity 0, this implies that the offspring abundances are the same for both models: w∗� = w�. Put simply,
this means that the effects of the individual costs and fixed heterogeneity are independent. This can be
further understood by considering the strategy component of σ2

LRS . From the equality between offspring
abundances and between R0(see section S.3) between the two models, we have σfix

LRO
2

(L) = σfix
LRO

2
(L∗),

and therefore,

σ2
LRS (L)− σ2

LRO (L∗) = σdyn
LRS

2
(L)− σdyn

LRS
2

(L∗)

= w�1 .(σ
2
LRS1

(L)− σ2
LRS1

(L∗)) + w�2 .(σ
2
LRS2

(L)− σ2
LRO2

(L∗))

is independent from heterogeneity.

Order of magnitude of heterogeneity component of σ2
LRS

If the difference in variance in LRS between the models with and without the costs only depends on the
stochastic difference – i.e., on the differences at the level of each genotype – the variance itself can be
strongly impacted by heterogeneity, and specifically by differences in R0. As can be shown, the effect of
heterogeneity on the variance of LRS is exactly proportional to both the square of the difference inR0 and
to the variance of the offspring distribution. These two components are not independent (high difference
in reproductive rates causes high difference in genotypic λ and therefore large discrepancy in offspring
abundances) but for small variations, the heterogeneity component of σ2

LRS is maximal, for two genotypes
cohabiting in the population, when w1 = w2 = 1

2 and the difference in R0 between the genotypes is
maximum. This implies that they are located – in the zero-parity vital rate map of Figure 1d – on a line
orthogonal to the iso-R0 curve. For the 5-year models figured in Fig. 1, moving away from a stationary
mean genotype located at (f, s) = (.60, 49) in a direction (roughly (1, 1)) orthogonal to the stationary
line, towards coordinates (f1, s1) = (.70, 59) on one side and (f2, s2) = (.50, 39) on the other side. For the
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mean genotype (i.e., for the Reference Leslie matrix of the model) R0 ≈ 1, λ ≈ 1, σ2
LRS (L) = .594 (for

the full model) σ2
LRS (L∗) = .6862 (for the model folded on parity). For the fitter genotype (numbered

1), R01 = 1.2947, λ = 1.1986 σ2
LRS (L1) = .7071 and σ2

LRO (L∗1) = .8461, whereas for the frailer
genotype (numbered 2), R02 = 0.7528, λ = 0.8310 σ2

LRO (L2) = .4776 and σ2
LRO (L∗2) = .5293 . For

this heterogeneous population, we can therefore compute the heterogeneity component of σ2
LRS :σfix

LRO
2

=
w1(1−w1)∗(R01−R02)2 = (0.5)2(1.2947−0.7528)2 = 0.0734. And the stochastic component component
for the model with the costs σdyn

LRS
2

= w1.σ
2
LRS (L1) +w2.σ

2
LRO (L2) = 0.5× 0.7071 + 0.5.4776 = 0.5923

and without the costs σ∗ sto
LRS

2
= w1.σ

2
LRS (L∗1) +w2.σ

2
LRO (L∗2) = 0.5×0.8461 + 0.5.5293 = 0.6877. We

can see here, that even though the costs raise the heterogeneity component of σ2
LRS in the population

from 0.0734
0.6862 = 0.107 to 0.0734

0.594 = 0.123 (as they keep the heterogeneity component unchanged), that
the demographic variance of a population is more driven by stochasticity than heterogeneity, even for
genotypes with differences in fitness.
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