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Abstract	

	

DNA	hemicatenanes	(HCs)	are	DNA	structures	in	which	one	strand	of	a	double	stranded	
helix	 passes	 through	 the	 two	 strands	 of	 another	 double	 stranded	 DNA.	 Frequently	
mentioned	as	DNA	replication,	recombination	and	repair	intermediates,	they	have	been	
proposed	to	participate	in	the	spatial	organization	of	chromosomes	and	in	the	regulation	
of	 gene	 expression.	To	 explore	potential	 roles	of	HCs	 in	 genome	metabolism,	proteins	
capable	of	binding	specifically	HCs	were	purified	by	fractionating	nuclear	extracts	from	
Hela	 cells.	 This	 approach	 identified	 three	 RNA-binding	 proteins:	 the	 Tudor-
Staphylococcal	 Nuclease	 Domain	 1	 (SND1)	 protein	 and	 two	 proteins	 from	 the	
Drosophila	behavior	human	splicing	 family,	 the	ParaSpeckle	Protein	Component	1	and	
the	 Splicing	 Factor	 Proline-	 and	 Glutamine-	 rich	 protein.	 Since	 these	 proteins	 were	
partially	pure	after	fractionation,	truncated	forms	of	these	proteins	were	expressed	in	E.	
coli	and	purified	to	near	homogeneity.	The	specificity	of	their	interaction	with	HCs	was	
re-examined	 in	 vitro.	 The	 two	 truncated	 purified	 SND1	 proteins	 exhibited	 a	 high	
specificity	for	HCs,	suggesting	a	role	of	SND1	protein	in	targeting	the	basic	transcription	
machinery	to	HC	structures.	

	

Key	 words:	 DNA	 hemicatenanes/protein	 nuclear	 extract/fractionation/binding	
specificity/Tudor-Staphylococcal	Nuclease	Domain	1	
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Introduction	

	

	 DNA	hemicatenane	(HC)	consists	of	a	junction	of	four	DNA	strands	in	which	one	
strand	of	one	double	helix	passes	 in	between	 the	 two	 strands	of	 another	double	helix	
(Fig	1A).	They	can	implicate	one	or	two	different	double	stranded	DNA	molecules	and,	in	
this	 later	 case,	 the	 two	DNA	 helices	may	 or	may	 not	 be	 homologous.	 DNA	HCs	might	
appear	at	several	times	during	the	cell	cycle.	For	instance,	the	convergent	migration	of	
two	Holliday	junctions	formed	during	DNA	recombination	may	lead	to	a	HC	depending	
on	the	relative	topology	of	the	two	junctions.	HC	may	be	created	during	the	initiation	[1]	
and	termination	[2]	phases	of	DNA	replication	or	when	replication	is	inhibited	[3].	Their	
presence	 close	 to	 a	 replication	 fork	 in	 progress	may	 help	 repair	 and	 restart	 a	 stalled	
DNA	 replication	 fork,	 due	 to	 the	 proximity	 of	 the	 newly	 synthesized	 daughter	 DNA	
molecules	[1].	Finally,	 the	ultra	 fine	bridges	that	can	be	observed	during	the	anaphase	
step	 of	 mitosis	 after	 a	 perturbed	 or	 incomplete	 DNA	 replication	 may	 consist	 of	 two	
homologous	chromosomes	topologically	linked	by	HCs	(for	recent	reviews	see	[4–6]).	

	 Faithful	and	accurate	processing	of	HCs	is	essential	for	genome	stability.	For	HCs	
resulting	 from	 the	 convergent	 migration	 of	 two	 Holliday	 junctions,	 the	 process	 of	
unlinking	the	two	DNA	molecules	of	the	HC	is	called	dissolution	(for	reviews	see	[7,8]).	
In	humans,	 the	dissolvasome	 complex	 (BTRR)	 is	 responsible	 for	 the	branch	migration	
and	 dissolution	 reactions.	 In	 this	 complex,	 the	 RecQ-like	 Bloom	 helicase	 (B	 in	 BTRR)	
uses	 its	 ATPase	 activity	 to	 migrate	 the	 Holliday	 junctions	 [9,10]	 and	 its	 oligomeric	
structure	may	be	responsible	for	the	convergent	migration	of	two	Holliday	junctions	[7].	
The	 Topoisomerase	 IIIα	 (T	 in	 BTRR),	 a	 type	 IA	 topoisomerase,	 through	 a	
transesterification	 and	 strand	 passage	 reaction,	 decatenates	 the	 HC.	 Its	 activity	 is	
stimulated	by	the	RecQ-mediated	instability,	RMI1	and	RMI2	(RR	in	BTRR),	factors	[11–
13].	 Devoid	 of	 catalytic	 activity,	 the	 RMI1	 might	 stabilize	 the	 open	 form	 of	 the	
Topoisomerase	IIIα	to	favor	strand	passage.	Finally,	one	family	of	ultra	fine	bridges	has	
been	shown	to	be	decorated	by	the	BTRR	complex	and	it	is	possible	that	the	decatenase	
activity	of	Topoisomerase	IIIα be	used	to	resolve	their	inter-strand	links	[14,15].		

	 In	vitro	experiments	have	shown	that	re-association	of	DNA	fragments	containing	
the	polyCA/polyTG	repeat	sequences	leads	to	the	formation	of	an	alternative	structure	
that	has	been	proposed	to	be	a	HC	[16].	The	High	Mobility	Group	Box	1	and	2	(HMGB1	
and	HMGB2)	proteins	stimulate	this	process	[17,18].	Following	this	observation,	 it	has	
been	 proposed	 that	 HCs	 may	 participate	 in	 the	 genome	 organization	 and	 in	 the	
regulation	 of	 its	 transcription	 [19].	 In	 this	model,	 genome	 is	 organized	 in	 large	 loops	
maintained	at	their	base	by	topological	knots,	such	as	HCs.	Unless	stabilized,	knots	can	
migrate	 and	 their	 location	 on	 the	 chromosome	 can	 change.	 Through	 the	 possibility	 of	
knots	migration	and	stabilization,	chromosomal	loops	may	expose	a	variety	of	different	
DNA	sequences,	making	thus	possible	the	expression	of	different	genes.	Inherent	to	this	
model	 is	 the	 reversible	 and	 transient	 stabilization	 of	 the	 knots,	 either	 by	 a	 specific	
sequence	or	by	some	HC-specific	proteins.		

	 Our	goal	in	this	work	was	to	explore	further	these	hypotheses	by	seeking	nuclear	
proteins	 capable	 of	 stabilizing	HC	 structures	 by	 specifically	 binding	 to	 them.	We	 took	
advantage	 of	 the	 existence	 of	 a	 procedure	 to	 build	 HCs	 from	 two	 distinct	 double	
stranded	DNA	mini-circles	(dsMCs)	[20]	 to	 fractionate	nuclear	extracts	 from	Hela	cells	
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over	several	chromatographic	media.	This	approach	made	possible	the	identification	of	
three	 RNA-binding	 proteins	 capable	 of	 binding	 specifically	 to	 HC:	 the	 Tudor-
Staphylococcal	 Nuclease	 Domain	 1	 (SND1)	 protein	 and	 two	 proteins	 from	 the	
Drosophila	behavior	human	splicing	(DBHS)	family,	the	ParaSpeckle	Protein	Component	
1	 (PSPC1)	 and	 the	 Splicing	 Factor	 Proline-	 and	 Glutamine-	 rich	 protein	 (SFPQ).	 Since	
these	proteins	were	partially	pure	after	 fractionation	of	 the	Hela	nuclear	extracts,	and	
because	of	 the	difficulty	 to	purify	 them	 in	a	 full	 length	 form,	 truncated	 forms	of	 these	
proteins	were	expressed	 in	E.	coli	 and	purified	 to	near	homogeneity.	 Specificity	of	 the	
interaction	between	the	purified	proteins	and	HCs	was	re-examined	in	a	gel	shift	assay.	
The	 results	 of	 our	 characterization	 suggest	 a	 possible	 role	 of	 SND1	 protein	 as	 a	
transcription	factor	targeting	the	basic	transcription	machinery	to	HC	structures.		

	

Results	and	discussion	

	

Our	search	for	HC-specific	binding	proteins	required	to	have	available	radiolabeled	DNA	
HCs.	 These	DNA	 structures	were	 built	 as	 described	 in	 [20].	 The	 starting	material	was	
two	distinct	radiolabeled	dsMCs,	one	of	215	base	pairs	(dsMC10)	and	one	of	235	base	
pairs	 (dsMC09),	produced	after	circularization	of	 32P-end	 labeled	 fragments	 (Fig	EV1).	
The	nicking	of	 the	dsMCs	at	specific	sites	provided	 linear	single	stranded	fragments	of	
215	 (L10ss)	 and	 235	 (L09ss)	 nucleotides,	 and	 circular	 single	 stranded	 DNAs	 of	 215	
(C10ss)	 and	235	 (C09ss)	 nucleotides.	 The	 circularization	 of	 the	 linear	 single	 stranded	
L09ss	 and	L10ss	 fragments	 under	 conditions	 that	 kept	 them	 in	 close	proximity	 led	 in	
part	 to	 single	 stranded	 catenanes.	 C09ss	 and	 C10ss	 were	 re-annealed	 on	 the	 single	
stranded	catenanes	with	 the	wheat	germ	topoisomerase	 I	 to	 finally	give	DNA	HCs	(Fig	
EV1).		

	

Fractionation	of	Hela	nuclei	protein	extracts	

To	isolate	proteins	that	bind	specifically	HCs,	we	first	prepared	a	protein	nuclear	extract	
from	 Hela	 nuclei	 cells	 at	 0.6	 M	 NaCl.	 At	 this	 salt	 concentration,	 the	 nuclei	 chromatin	
swells	 and	 the	 proteins	 that	 fall	 off	 the	 DNA	 can	 be	 recovered	 by	 a	 high-speed	
centrifugation.	We	next	fractionated	this	nuclear	protein	extract	 following	a	procedure	
(Fig	1B)	that	consisted	in	five	steps:	a	5	%	ammonium	sulfate	precipitation	followed	by	
four	 chromatographies:	 1)	 phosphocellulose	 chromatography,	 2)	 hydrophobic	
chromatography,	 cationic	 exchange	 chromatography	 and	 finally	 4)	 a	 size	 exclusion	
chromatography.	 Along	 the	 fractionation	 procedure,	 the	 fractions	 were	 selected	 for	
containing	HC-specific	binding	proteins	based	on	a	simple	and	robust	binding	assay	(Fig	
1C):	 for	 example	 proteins	 contained	 in	 the	 fraction	 A10	 of	 the	 size	 exclusion	
chromatography	did	bind	HC	(lanes	5-8	of	Fig	1C)	but	not	dsMC09	(lanes	1-4	of	Fig	1C).	
Furthermore,	 the	proteins	assembled	on	HC	efficiently	resisted	the	competition	with	λ	
DNA	 since	 excess	 of	 λ	 DNA	 did	 not	 completely	 abolish	 the	 protein-DNA	 interaction	
(lanes	 5-8	 of	 Fig	 1C).	 At	 the	 end	 of	 this	 5-step	 procedure	 the	 fractions	 were	 not	
homogeneous	(Fig	1D)	but	greatly	enriched	in	HC-specific	binding	proteins.		
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Identification	of	HC-specific	binding	proteins	by	mass	spectrometry	

To	identify	the	proteins	assembled	on	the	HC,	a	large	scale	(150	µL)	interaction	between	
HC	and	the	 fraction	A10	of	 the	size	exclusion	chromatography	was	performed,	species	
were	 resolved	 by	 electrophoresis	 on	 a	 polyacrylamide	 gel	 and	 the	 material	 that	
migrated	 slower	 than	 the	 naked	 HC	 was	 analyzed	 for	 its	 protein	 content	 by	 mass	
spectrometry	 (Table	 1).	 Note	 that	 (i)	 two	 concentrations	 of	 competitor	 λ	 DNA	 were	
tested:	12	or	23	ng	(left	panel	of	Fig	2A)	and	(ii)	the	material	above	the	naked	HC	and	
used	for	mass	spectrometry	analysis	was	divided	into	two	gel	pieces	(green	rectangles	
on	 right	 panel	 of	 Fig	 2A).	 Among	 the	 proteins	 identified	 specifically	 in	 the	 samples	
containing	HC	and	protein	fraction	with	a	good	score	(Mascot	score	>	25	and	number	of	
peptides	≥	2)	were	 the	ParaSpeckle	Protein	Component	1	 (PSPC1),	 the	Splicing	Factor	
Proline-	 and	 Glutamine-	 rich	 protein	 (SFPQ),	 the	 Tudor-Staphylococcal	 Nuclease-like	
protein	(SND1)	and	the	Annexin	A2	protein	score	(Table	1,	lanes	8	and	10	of	Fig	2A).	We	
analyzed	the	fraction	A11	of	the	size	exclusion	chromatography	in	the	same	manner	(Fig	
2B)	 and	 found	 with	 a	 good	 score	 the	 PSPC1	 and	 the	 Polypyrimidine	 Tract	 Binding	
Protein	(PTBP1)	proteins	specifically	in	the	sample	containing	HC	and	proteins	(Table	1,	
lane	6	of	Fig	2B).		

	 We	 focused	 our	 interest	 on	 three	 proteins,	 SND1,	 PSPC1	 and	 SFPQ	 for	 two	
reasons.	Firstly,	HCs	may	participate	in	the	regulation	of	the	genome	transcription	[19],	
and	secondly,	SND1,	PSPC1	and	SFPQ	are	key	players	of	the	RNA	metabolism,	including	
DNA	transcription.	We	checked	by	western	blot	for	their	presence	in	the	size	exclusion	
fractions	A10	and	A11	(Fig	2C).	Results	indicated	that	the	three	proteins	could	indeed	be	
detected	 into	 the	 protein	 fraction	 A10.	 Together	 with	 the	 PSPC1	 protein,	 PTPB1	
identified	in	the	11p-β	gel	piece	(Table	1,	Fig	2B)	could	also	convincingly	be	detected	in	
the	fraction	A11	(Fig	2C).	We	note	that	the	anti-PSPC1	antibody	highlighted	two	bands	
in	the	A10	and	A11	fractions,	the	band	of	≈	65	kDa	(indicated	by	an	arrow	on	lanes	2	and	
3	of	Fig	2C)	corresponding	to	the	full	length	protein	(predicted	MW	=	59	kDa).		

	

Characterization	of	the	PSPC1-HC	and	(PSPC1-SFPQ)-HC	nucleoprotein	complexes	
with	purified	proteins	

PSPC1	and	SFPQ	are	 two	members	of	 the	Drosophila	behavior	human	splicing	(DBHS)	
family	 that	 includes	 nuclear	 proteins	 implicated	 in	 various	 nuclear	 functions,	 such	 as	
RNA	 biogenesis	 and	 transport,	 paraspeckle	 formation	 or	DNA	 repair	 (for	 a	 review	 on	
DBHS	proteins,	see	[21]).	Devoid	of	catalytic	activities	but	capable	of	binding	a	variety	of	
proteins	and	nucleic	acids,	members	of	the	DBHS	family	have	been	proposed	to	serve	as	
a	 “multipurpose	 molecular	 scaffold”.	 DBHS	 proteins	 carry	 a	 highly	 conserved	 DBHS	
region	that	consists	of	two	tandem	RNA	recognition	motifs	(RRM1	and	RRM2	on	Fig	3A),	
a	 NonA/paraspeckle	 domain	 (NOPS	 on	 Fig	 3A)	 and	 a	 coiled-coil	 domain.	 These	 four	
domains	are	responsible	for	homo-	and/or	hetero-dimerization	of	the	proteins.	They	are	
flanked	 at	 their	 carboxy	 terminal	 side	 by	 an	 intrinsically	 disordered	 region,	 G-rich	 in	
case	of	SFPQ	protein	and	GP-rich	in	case	of	PSPC1	and	a	nuclear	localization	signal	(NLS	
on	Fig	3A).	The	 sequences	 that	 flank	 the	DBHS	core	at	 the	amino	 terminal	 side	of	 the	
core	are	also	of	low	complexity	and	unstructured.	The	additional	amino	terminal	domain	
of	PSPC1	is	AP-rich	whereas	that	of	SFPQ	is	longer,	carries	a	GPQ-rich	domain	and	a	DNA	
binding	region	(DBD	on	Fig	3A)	that	might	function	in	binding	to	gene	promoters	[22]	
and	to	DNA	damages	[23].		
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To	 characterize	 the	 PSPC1-HC	 and	 (PSCP1-SFPQ)-HC	 nucleoprotein	 complexes,	 we	
purified	 truncated	 forms	of	PSPC1	and	SPFQ	proteins	known	 to	 assemble	 into	dimers	
[24,25]:	 the	 truncated	 PSCP1	 homo-dimer	 was	 from	 amino	 acids	 53	 to	 320	 and	 the	
truncated	SFPQ	protein	 in	the	PSCP1-SFPQ	hetero-dimer	was	from	residue	276	to	535	
(indicated	as	double	arrows	underneath	each	schematic	representation	of	the	protein	on	
Fig	3A).	The	choice	to	purify	truncated	forms	of	the	proteins	stems	from	the	difficulty	to	
purify	 the	 full	 length	 proteins.	 Both	 forms	 of	 truncated	 dimers	 contained	 the	 two	
tandem	 RNA	 recognition	 motifs,	 the	 NonA/paraspeckle	 domain	 but	 had	 a	 truncated	
carboxy	 terminal	 coiled-coiled	 domain.	 The	 purified	 proteins	 were	 tested	 for	 their	
efficiency	 of	 binding	 to	 HC	 and	 to	 the	 circular	 single	 stranded	 DNA	 coming	 from	 the	
nicking	 of	 dsMC10	 mini-circle,	 C10ss	 (Fig	 EV1).	 High	 concentrations	 of	 PSPC1	 and	
PSCP1-SFPQ	(>	1	µM)	were	required	to	make	possible	the	binding	of	the	proteins	to	the	
HC	(Figs	3B	and	3D)	whereas	within	these	ranges	of	concentration,	binding	to	C10ss	was	
highly	efficient	(Figs	3C	and	3E).	For	 instance,	at	9	µM	PSPC1,	37%	+/-1.5%	of	 the	HC	
was	engaged	in	a	complex	with	PSPC1	(Lane	5	of	Fig	3B)	whereas	the	extent	of	assembly	
of	PSPC1	on	C10ss	reached	95%	+/-	1.5	%	(Lane	5	of	Fig	3C).	These	results	 indicated	
that	the	binding	of	the	truncated	forms	of	PSPC1	homo-dimer	and	PSCP1-SFPQ	hetero-
dimer	to	HC	was	not	highly	specific.	It	is	possible	that	the	full	length	forms	of	the	homo-	
and	hetero-dimers	and/or	 their	post-translational	modifications	mainly	 carried	by	 the	
intrinsically	 disordered	 amino-	 and	 carboxy-terminal	 extremities	 make	 them	 acquire	
specificity	 for	 HC	 structures.	 Alternatively,	 proteins	 present	 in	 the	 A10	 or	 A11	 gel	
filtration	 fractions	may	be	required	to	confer	HC	specificity	 to	PSPC1	homo-dimer	and	
PSCP1-SFPQ	hetero-dimer.		

	

Detection	of	the	SND1-HC	complex	on	a	sucrose	gradient	

SND1	 belongs	 to	 the	 group	 of	 proteins	 that	 was	 partially	 purified	 from	 the	 Hela	 cell	
nuclear	extracts	as	a	HC-specific	binding	protein	(Table	1).	To	confirm	this	 interaction	
that	was	detected	by	a	electrophoresis	on	a	polyacrylamide	under	native	conditions,	we	
investigated	whether	the	SND1-HC	complex	could	also	be	isolated	on	a	sucrose	gradient.	
A	 5	 to	 40%	 sucrose	 gradient	 of	 5	mL	was	 poured	 and	 the	mixture	 of	 the	 interaction	
between	radiolabeled	HC	and	the	fraction	A10	of	the	size	exclusion	chromatography	was	
loaded	on	the	gradient.	After	centrifugation,	fractions	of	200	µL	were	collected	from	the	
top	 to	 the	bottom	of	 the	gradient	and	analyzed	 for	 their	DNA	and	SND1	content.	DNA	
content	was	estimated	by	radioactivity	measurement	and	SND1	content	by	western	blot.	
Results	 indicate	 that	 SND1	 peaked	 at	 fraction	 8	 when	 the	 fraction	 A10	 of	 the	 size	
exclusion	 chromatography	was	 sedimented	 alone	 (white	bars	 on	 the	 graph	of	 Fig	2D)	
where	as	its	peak	was	shifted	to	fraction	5	when	the	fraction	A10	was	sedimented	with	
HC	(hatched	bars	on	the	graph	of	Fig	2D).	Analysis	of	the	radioactivity	in	fractions	5	to	
10	of	the	sucrose	gradient	indicated	that	sedimentation	profile	of	HC	was	also	modified	
by	the	proteins	in	the	fraction	A10	and	that	fraction	5	did	contain	radiolabeled	HC	(Fig	
2E).	 Altogether,	 the	 sucrose	 gradient	 sedimentation	 supported	 the	 formation	 of	 a	
complex	between	SND1	and	HC.		
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Characterization	of	the	SND1-HC	nucleoprotein	complex	with	purified	proteins	

SND1	has	multiple	protein-	and	nucleic	acid-	binding	partners	(for	reviews	see	[26–28]	
and	 is	 involved	 in	 many	 aspects	 of	 gene	 expression	 (e.g.	 transcription	 [29–35],	 RNA	
splicing	[36,37],	RNA	interference	[38,39],	microRNA	processing	and	decay	[40,41],	RNA	
protection	 in	 stress	 granules	 [42,43],	 protein	 modification	 and	 degradation	 [44,45].	
While	 fulfilling	 these	 functions,	 it	 may	 have	 either	 a	 scaffolding	 role	 or	 a	 catalytic	
(nuclease)	 activity.	 Its	 domain	 composition	 comprises	 at	 the	 amino	 terminus	 of	 the	
protein,	 four	 staphylococcal	 nuclease	 (SN)-like	domains	 assembled	 in	 tandem	 (SN1	 to	
SN4	 on	 Fig	 5A)	 and	 at	 the	 carboxy	 terminal	 end	 of	 the	 protein	 a	 fusion	 of	 a	 Tudor	
domain	with	a	partial	SN	domain	(SN5	on	Fig	4A).	

We	purified	two	versions	of	this	protein.	SND1-64,	 from	amino	acids	315	to	863,	 lacks	
the	first	two	SN	domains	and	the	20	last	amino	acids	and	SND1-110,	from	amino	acids	
33	to	888,	is	truncated	in	the	first	SN	domain	since	it	lacks	the	32	first	amino	acids	(Fig	
4A).	 We	 first	 characterized	 the	 interaction	 between	 SND1-64	 and	 two	 types	 of	 DNA	
constructs	 (Fig	4B):	 the	HC	and	 the	dsMCs	 that	were	used	 to	prepare	 the	HC,	dsMC09	
and	dsMC10.	Results	indicated	that	over	the	range	of	concentration	tested	(from	0	to	2.7	
µM)	SND1-64	did	interact	with	HC	(lanes	11	to	15	of	Fig	4B)	but	not	with	dsMC	(lanes	1	
to	 10	 of	 Fig	 4B).	 The	 same	 result	 was	 obtained	 with	 SDN1-110	 although	 a	 single	
concentration	of	protein	(70	nM)	was	tested	due	to	the	low	concentration	of	SDN1-110	
that	was	purified	(Fig	4C).	Quantification	of	the	gels	indicated	that	SND1-110	exhibited	a	
stronger	 affinity	 to	 HC	 than	 SND1-64	 (compare	 Figs	 4E	 and	 4G),	 possibly	 due	 to	 the	
presence	of	two	additional	SN	domains	at	the	amino	terminal	side	of	SND1-110.		

Single	 stranded	 DNA	might	 be	 exposed	 at	 the	 junction	 of	 the	 HC	 strands	 and	 be	 the	
substrate	recognized	by	SND1	proteins.	To	check	this	hypothesis,	we	first	characterized	
the	 interaction	 between	 HC	 and	E.	 coli	 SSB,	 the	 single	 stranded	 DNA	 binding	 protein	
from	E.	coli	(Fig	5).	Results	showed	that	E.	coli	SSB	interacted	with	the	HC	(Fig	5A)	but	
not	 with	 dsMC09	 (Fig	 5B),	 indicating	 that	 the	 HC	 molecule	 carried	 regions	 of	 single	
stranded	DNA.	As	it	was	possible	that	SDN1	only	recognized	the	single	stranded	DNA	of	
the	 HC	 and	 not	 the	 junctions	 of	 the	 strands	 of	 the	 HC,	 we	 performed	 two	 types	 of	
additional	experiments.	We	first	compared	the	binding	of	SND1	to	HC	and	the	binding	of	
SND1	to	C10ss	(the	circular	single	stranded	DNA	coming	from	the	nicking	of	dsMC10,	Fig	
EV1).	 Results	 showed	 that	 SND1-64	 did	 bind	 C10ss	 but	 the	 binding	was	weaker	 than	
that	measured	with	HC	(Figs	4D-E).	 In	 the	second	type	of	experiment,	we	 investigated	
whether	a	single	stranded	oligonucleotide	long	of	21	nucleotides	(OL21)	could	compete	
with	HC	for	the	binding	of	SND1.	To	that	end,	we	mixed	the	HC	substrate	(10	pM)	with	
increasing	amount	of	OL21	(from	0	to	7	nM),	added	SND1-64	to	the	mixture	and,	after	
25	 minutes	 of	 incubation	 at	 22°C,	 resolved	 the	 species	 by	 electrophoresis	 on	 a	
polyacrylamide	 gel	 under	 native	 conditions.	 Results	 indicated	 that	 the	 (SND1-64)-HC	
complex	was	highly	 resistant	 to	 the	presence	of	 the	OL21	 competitor	 since	 all	 the	HC	
could	still	be	bound	by	SND1-64	even	with	a	700	 fold	molar	excess	of	competitor	(Fig	
4H).	This	competition	experiment	confirmed	that	the	single	stranded	DNA	was	not	the	
only	binding	substrate	recognized	by	SND1-64	on	the	HC.	We	performed	the	same	kind	
of	 experiments	 with	 the	 SND1-110	 protein.	 Results	 indicated	 that	 SND1-110	 bound	
almost	 equally	 well	 HC	 and	 C10ss	 DNAs	 (Figs	 4F-G)	 and	 that	 OL21	 oligonucleotide	
poorly	competed	with	HC	to	bind	to	SND1-110	(Fig	4I).		
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Conclusion	

In	 this	work	we	 identified	 SND1	 as	 a	 protein	 exhibiting	 a	 high	 specificity	 for	 the	 four	
strand	junction	of	the	HC.	It	is	known	that	SND1	protein	interacts	with	various	proteins	
of	 the	 transcription	 machinery,	 including	 the	 RNA	 polymerase	 II	 [35]	 and	 the	
transcription	 initiation	 factor	TFIIE	 [34].	 Therefore,	 it	 is	 tempting	 to	propose	 that	 the	
binding	of	SND1	to	HCs	participates	into	some	essential	functions	of	SND1,	including	the	
function	 of	 regulation	 of	 gene	 expression.	 Considering	 the	 proposed	 role	 of	 HCs	 as	
potential	 structures	affecting	dynamically	genome	organization	and	 transcription	 [19],	
SND1	 could	 for	 example	 act	 by	 bridging	 hemicatenated	 structures	 and	 the	 basal	
transcription	machinery.	 The	 dynamics	 of	 HC	 structures,	 whose	 location	may	 change	
with	time,	cell	types	or	upon	external	stresses,	could	therefore	be	modulated	by	specific	
binding	of	SND1.	Given	the	essential	role	of	the	SND1	in	transcription	regulation	and	in	
oncogenic	 progression,	 our	 results	 invite	 to	 explore	 further	 the	 interaction	 between	
SND1	and	HCs.		

	

Materials	and	Methods	

Materials		

The	Hela	nuclei	were	from	Ipracell	and	were	resuspended	in	10	mM	Hepes	pH	7.9,	1.5	
mM	 MgCl2,	 10	 mM	 KCl,	 0.5	 mM	 DTT.	 Oligonucleotides	 were	 from	 Eurogentec.	 T4	
polynucleotide	kinase,	T4	DNA	ligase,	Nt.BbvcI	and	Nb.BbvcI	nicking	enzymes	were	from	
New	England	Biolabs.	Wheat	 germ	 topoisomerase	was	 from	 Inspiralis.	E.	coli	 SSB	was	
from	Ubs.	γ32P-ATP	was	from	Perkin	Elmer.	Trypsin	was	from	Promega	(USA).	Cellulose	
phosphate	was	 from	Sigma.	The	HiTrap	ButylFF	 column	of	1	mL	and	 the	gel	 filtration	
column	Superdex	200	10/300	GL	were	from	GE	Healthcare.	MacroPrep	HighS	resin	was	
from	 Biorad.	 All	 columns	 were	 prepared	 as	 recommended	 by	 the	 manufacturer	 and	
equilibrated	 in	 the	 indicated	 loading	 buffer	 before	 use.	 λ	 DNA	 was	 from	 Sigma.	
Acrylamide	 and	 bisacrylamide	 stock	 solutions	 were	 from	 Euromedex.	 Proteinase	
inhibitor	cocktail	was	 from	Roche.	Anti-SND1	and	anti-PTPB1	antibodies	were	 from	St	
John’s	Laboratory.	Anti-SFPQ	antibody	was	from	Novusbio.	Anti-PSPC1	was	from	Abcam.	
The	sequence	of	the	oligonucleotide	OL21	(from	Eurogenetec)	was:		

5’-CCCTAACCCTAACCCTAACCC-3’.	

Preparation	of	HCs	

	HCs	 were	 prepared	 as	 described	 in	 [20]	 with	 three	 modifications	 in	 the	 procedure.	
Firstly,	 the	production	of	dsMCs	was	performed	 in	 the	presence	of	 ethydium	bromide	
(0.35	 µg/mL)	 to	 favor	 circularization	 of	 DNA	 fragments	 into	 monomeric	 circles.	
Secondly,	 dsMCs	were	 purified	 on	 a	 4%	 acrylamide	 (29:1	 =	 acrylamide:bisacrylamide	
mass	ratio)	gel	made	in	TBE	0.5X	before	performing	the	nicking	reaction.	Thirdly,	after	
the	nicking	reaction,	the	circular	and	linear	single	stranded	fragments	were	purified	on	a	
4%	acrylamide	(29:1	=	acrylamide:bisacrylamide	mass	ratio)	gel	made	in	TBE	0.5X	+	7M	
Urea.		
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Preparation	of	protein	extract	from	Hela	nuclei	

6	mL	of	 lysis	buffer	containing	10	mM	Hepes	pH	7.8,	0.6	M	NaCl,	1.5	mM	MgCl2,	5	mM	
DTT,	0.8	mg/mL	PMSF	and	a	cocktail	of	proteinase	inhibitors	were	added	to	the	12	mL	
containing	15x109	Hela	nuclei	and	 left	on	 ice	until	 thawed.	While	gently	vortexing	 the	
nuclei,	EDTA	was	added	to	a	final	concentration	of	2.5	mM	and	410	µL	of	NaCl	5	M	were	
added	 four	 times	 at	 intervals	 of	 five	minutes.	 The	0.6	M	NaCl	 final	 concentration	 that	
was	reached	at	the	end	permitted	to	the	chromatin	to	gently	swell.	The	sample	was	left	
on	 ice	 for	 45	 minutes	 and	 centrifuged	 60	 minutes	 at	 4°C	 and	 at	 184000	 g.	 The	
supernatant	 of	 the	 centrifugation	 that	 constituted	 the	 nuclei	 protein	 extract	was	 next	
fractionated	 by	 different	 means	 (see	 “Fractionation	 of	 nuclei	 proteins”	 section).	 Each	
step	 of	 fractionation	 generated	 fractions	 that	 were	 tested	 for	 containing	 HC-specific	
binding	 proteins	 (see	 “Test	 of	 chromatographic	 fractions	 for	 containing	 HC-specific	
binding	activity”).	Interesting	fractions	were	next	combined	and	applied	to	the	next	step	
of	the	fractionation	procedure.	

Test	of	chromatographic	fractions	for	containing	a	HC-specific	binding	activity	

Unless	 indicated	 otherwise,	 the	 test	 consisted	 of	 performing	 an	 interaction	 between	
DNA	(HC	or	dsMC)	and	chromatography	fractions	by	mixing	8	µL	of	each	fraction	with	1	
µL	of	DNA	(0.1	femtomole)	in	a	1.5	mL	Eppendorf	tube.	Competitor	λ	DNA	(48502	base	
pairs)	was	added	at	the	indicated	concentration	(from	0	to	30	ng	(1	femtomole)	of	DNA	
molecule).	 The	 mixtures	 were	 incubated	 for	 30	 minutes	 at	 22°C.	 At	 the	 end	 of	 the	
incubation	glycerol	was	added	to	a	final	concentration	of	5%.	The	samples	were	loaded	
on	 a	 4%	 acrylamide	 (29:1	 =	 acrylamide:bisacrylamide	 mass	 ratio)	 gel	 made	 in	 Tris-
Borate	 89	 mM,	 boric	 acid	 89	 mM	 EDTA	 2	 mM	 (TBE)	 0.5X.	 Electrophoresis	 was	
performed	 at	 4°C	 for	 4	 hours	 and	 at	 150	 V.	 The	 gel	 was	 dried	 and	 exposed	 on	 a	 32P	
sensitive	 screen.	 The	 fractions	 that	 permitted	 the	 HC	 (and	 not	 the	 dsMC)	 to	 shift	 by	
decreasing	 its	 mobility	 in	 the	 gel	 were	 considered	 as	 containing	 HC-specific	 binding	
proteins.		

Fractionation	of	nuclei	protein	extract	

The	 first	 step	of	 protein	 fractionation	was	 a	protein	precipitation	 that	was	performed	
with	 5%	 of	 ammonium	 sulfate.	 Ammonium	 sulfate	 was	 slowly	 added	 to	 the	 protein	
extract	 under	 slow	 stirring	 and	 at	 4°C.	 Proteins	 were	 let	 precipitated	 overnight.	
Precipitated	proteins	were	recovered	by	centrifugation	(20	minutes,	4°C,	1200	g).	The	
pellet	of	proteins	was	resolubilized	in	27	mL	of	a	low	salt	(Low	KP)	buffer	containing	25	
mM	 potassium	 phosphate	 pH	 7.5,	 2	 mM	 EDTA,	 10%	 glycerol,	 12.5	 mM	 DTT.	 The	
resolubilized	 proteins	 were	 next	 loaded	 at	 a	 0.5	 mL/min	 flow	 rate	 on	 a	 column	 of	
cellulose	phosphate	of	4	mL	equilibrated	in	the	Low	KP	buffer.	After	the	load	of	proteins,	
the	column	was	washed	with	20	mL	of	Low	KP	buffer.	The	bound	proteins	were	eluted	
with	 a	 high	 salt	 buffer	 containing	 500	mM	potassium	phosphate	 pH	7.5,	 2	mM	EDTA,	
10%	 glycerol,	 12.5	 mM	 DTT	 and	 contained	 HC-specific	 binding	 proteins.	 They	 were	
combined	 and	 dialyzed	 against	 a	 high	 salt	 buffer	 (High	 KP)	 containing	 500	 mM	
potassium	phosphate	pH	7.5,	2	mM	EDTA,	10%	glycerol,	2	mM	DTT.	After	dialysis,	 the	
protein	sample	was	loaded	at	a	flow	rate	of	0.3	mL/min	on	the	1	mL	HighTrap	Butyl-FF	
column	 equilibrated	 with	 the	 High	 KP	 buffer.	 The	 flow	 through	 of	 the	 column	 was	
collected	and	dialyzed	overnight	against	a	low	salt	buffer	containing	25	mM	potassium	
phosphate	pH	6.6,	25	mM	KCl,	2	mM	EDTA,	10%	glycerol,	2	mM	DTT.	After	dialysis,	the	
protein	sample	was	 loaded	on	a	1	mL	MacroPrep	High	S	at	a	 flow	rate	of	0.7	mL/min.	
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After	 loading,	 the	 column	 was	 washed	 with	 15	 mL	 of	 the	 low	 salt	 buffer	 (25	 mM	
potassium	phosphate	pH	6.6,	25	mM	KCl,	2	mM	EDTA,	10%	glycerol,	2	mM	DTT).	The	
proteins	were	eluted	with	a	15	mL	salt	gradient	(KCl	raising	from	25	mM	to	500	mM).	
Fractions	containing	HC-specific	binding	proteins	were	pooled,	concentrated	and	loaded	
on	a	 Superdex	200	 (10/300	GL)	 equilibrated	 in	 a	buffer	 containing	25	mM	potassium	
phosphate	 pH	 7.5,	 150	mM	 KCl,	 2	 mM	 EDTA,	 10%	 glycerol,	 2	 mM	 DTT.	 Fractions	 of	
interest	were	kept	at	-80°C	in	small	aliquots.		

Sample	preparation	for	mass	spectrometry	analysis	

A	 large	 scale	 interaction	 between	 16	 femtomoles	 of	 HC	 and	 the	 designated	
chromatography	fraction	was	performed	in	a	final	volume	of	150	µL	of	buffer	containing	
7.5	mM	potassium	phosphate	buffer	pH	7.5,	34	mM	Tris	HCl	pH	7.5,	45	mM	KCl,	34	mM	
NaCl,	 1	 mM	 EDTA,	 0.03	 %	 Triton	 X100,	 3%	 glycerol,	 2	 mM	 DTT.	 When	 present	
competitor	λ	 DNA	was	 added	 at	 the	 indicated	 concentration.	 The	 control	 sample	 that	
was	included	in	the	analysis	consisted	of	the	protein	fraction	alone	(no	HC)	made	in	the	
same	 interaction	buffer.	The	mixtures	were	next	 incubated	 for	30	minutes	at	22°C.	At	
the	end	of	the	incubation	glycerol	was	added	to	a	final	concentration	of	5%.	The	samples	
were	loaded	on	a	4%	acrylamide	(29:1	=	acrylamide:bisacrylamide	mass	ratio)	gel	made	
in	 TBE	 0.5X.	 Electrophoresis	 was	 performed	 at	 4°C	 for	 4	 hours	 and	 at	 150	 V.	 After	
electrophoresis	the	gel	was	exposed	on	a	32P	sensitive	screen.	The	material	(as	gel	cubes	
manually	 excised	 from	 the	 gel)	 that	 migrated	 above	 the	 HC	 was	 analyzed	 by	 mass	
spectrometry	for	its	protein	content.		

Protein	identification	by	LC-MS/MS	analysis	

In-gel	digestion	was	carried	out	with	trypsin:	sample	were	washed	twice	with	a	mixture	
of	100	mM	ammonium	bicarbonate	(ABC)	and	50%	(vol/vol)	acetonitrile	(ACN)	for	20	
min	 at	 room	 temperature	 and	 then	 dehydrated	 using	 100%	 ACN	 for	 20	 min,	 before	
being	reduced	with	25	mM	ABC	containing	10	mM	DTT	 for	1	h	at	56	°C	and	alkylated	
with	55	mM	iodoacetamide	in	25	mM	ABC	for	30	min	in	the	dark	at	room	temperature.	
Gel	 pieces	were	washed	 twice	with	25	mM	ABC	 and	dehydrated	 (twice,	 20	min)	with	
100%	 ACN.	 Gel	 cubes	 were	 incubated	 with	 sequencing	 grade-modified	 trypsin	 (12.5	
ng/μl	in	40	mM	ABC	with	10%	ACN,	pH	8.0)	overnight	at	37	°C.	After	digestion,	peptides	
were	extracted	twice	from	gel	pieces	with	a	mixture	of	50%	ACN	–	5%	formic	acid	(FA)	
and	then	with	100%	ACN.	Extracts	were	dried	using	a	vacuum	centrifuge	concentrator	
plus	(Eppendorf).	

Mass	 spectrometry	 (MS)	 analyses	were	 performed	 on	 a	 Dionex	 U3000	 RSLC	 nano-LC	
system	 coupled	 to	 an	 Orbitrap	 Fusion	 Tribrid	 mass	 spectrometer	 (Thermo	 Fisher	
Scientific).	After	drying,	peptides	were	solubilized	 in	7	µL	of	0.1	%	trifluoroacetic	acid	
(TFA)	containing	10	%	acetonitrile	(ACN).	One	µL	was	loaded,	concentrated	and	washed	
for	3	min	on	a	C18	reverse	phase	precolumn	(3	µm	particle	size,	100	Å	pore	size,	75	µm	
inner	diameter,	2	cm	length,	Thermo	Fisher	Scientific).	Peptides	were	separated	on	a	C18	
reverse	phase	resin	(2	µm	particle	size,	100	Å	pore	size,	75	µm	inner	diameter,	25	cm	
length	from	Thermo	Fisher	Scientific)	with	a	30	minutes	gradient	starting	from	99	%	of	
solvent	A	containing	0.1	%	FA	in	H2O	and	ending	in	90	%	of	solvent	B	containing	80	%	
ACN,	0.085	%	FA	in	H2O.	The	mass	spectrometer	acquired	data	throughout	the	elution	
process	and	operated	in	a	data-dependent	scheme	with	full	MS	scans	acquired	with	the	
Orbitrap,	 followed	 by	MS/MS	HCD	 fragmentations	 acquired	with	 the	 Ion	 Trap	 on	 the	
most	 abundant	 ions	 detected	 in	 top	 speed	mode	 for	 3	 seconds.	 Resolution	was	 set	 to	
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60,000	 for	 full	 scans	 at	 AGC	 target	 2.0e5	 within	 60	 ms	 maximum	 injection	 ion	 time	
(MIIT).	The	MS	scans	spanned	from	350	to	1500	m/z.	Precursor	selection	window	was	
set	at	1.6	m/z,	and	MS/MS	scan	resolution	was	set	with	AGC	target	2.0e4	within	100	ms	
MIIT.	HCD	Collision	Energy	was	set	at	30	%.	Dynamic	exclusion	was	set	to	30	s	duration.	
For	 the	 spectral	 processing,	 the	 software	 used	 to	 generate	 .mgf	 files	 was	 Proteome	
Discoverer	 1.4	 (ThermoFisher	 Scientific).	 The	mass	 spectrometry	 data	were	 analyzed	
using	 Mascot	 v2.5	 (Matrix	 science)	 on	 Homo	 sapiens	 (20,243	 sequences)	 from	 the	
SwissProt	databank	containing	553,655	sequences;	198,177,566	residues	(April	2017).	
The	 enzyme	 specificity	was	Trypsin’s	 and	up	 to	1	missed	 cleavage	was	 tolerated.	 The	
precursor	mass	tolerance	was	set	to	4	ppm	and	the	fragment	mass	tolerance	to	0.55	Da	
for	Fusion	data.	Carbamidomethylation	of	 cysteins	 and	oxidation	of	methionines	were	
set	 as	 variable	modifications.	 Among	 positive	 identifications	 based	 on	 a	Mascot	 score	
above	 the	 significance	 threshold	p<5%,	we	 selected	proteins	 identified	with	at	 least	2	
peptides	with	an	ion	score	>	25	for	each	of	them.	

Sucrose	gradient		

The	solution	used	 to	prepare	 the	sucrose	gradient	 contained	50	mM	Tris	HCl	p7.5,	50	
mM	NaCl,	0.5	mM	EDTA,	2	mM	DTT	and	either	5	%	or	40	%	sucrose.	A	5	mL	gradient	of	5	
to	 40	 %	 sucrose	 was	 prepared	 with	 a	 gradient	 maker	 and	 a	 peristaltic	 pump	 and	
equilibrated	 at	 8°C	 for	 two	 hours	 before	 use.	 The	 interaction	 between	 HC	 and	 the	
designated	 fraction	 from	 the	 gel	 filtration	 was	 performed	 in	 a	 90	 µL	 volume	 and	 its	
product	was	carefully	loaded	on	top	of	the	sucrose	gradient.	Two	control	samples	were	
also	run	at	the	same	time:	a	sample	containing	only	the	HC	and	a	sample	containing	only	
the	designated	fraction	from	the	gel	filtration.	The	centrifugation	was	performed	at	8°C,	
64090g	in	SW	55Ti	rotor	for	12	hours.	At	the	end	of	the	run,	 fractions	of	200	µL	were	
recovered	from	the	top	to	the	bottom	of	the	gradient	and	tested	for	the	presence	of	(i)	
HC	by	measuring	their	reactivity	level	and	(ii)	the	SND1	protein	by	western	blot.		

Western	Blot	

	Western	 blot	 was	 performed	 with	 nitrocellulose	 membrane	 and	 in	 TBS	 buffer	
supplemented	with	 0.1	%	Tween20	 and	 5	%	 low	 fat	milk.	 Anti-PSPC1	 and	 anti-SND1	
antibodies	were	used	at	a	final	concentration	of	1	µg/mL,	anti-SFPQ	at	0.4	µg/mL	(final	
concentration)	and	anti-PTBP1	at	0.1	µg/L	(final	concentration).		

Purification	of	SND1	proteins		

Plasmids	 overexpressing	 the	 human	 Tudor-Staphylococcal	 Nuclease-like	 protein	 from	
amino	acids	33	to	888	(SND1-110)	and	from	amino	acids	315	to	863	(SND1-64)	were	a	
gift	 from	 Pr.	 Hanna	 S.	 Yuan.	 The	 purification	 of	 the	 two	 proteins	 was	 performed	 as	
described	in	[38].	

Purification	of	PSPC1	homo-dimer	and	PSPC1-SFPQ	hetero-dimer	

Plasmids	 overexpressing	 PSPC1	 protein	 from	 residues	 53	 to	 320	 and	 SFPQ	 from	
residues	 276	 to	 535	 were	 a	 gift	 from	 Pr.	 Mihwa	 Lee.	 The	 purification	 of	 PSPC1	 was	
performed	 as	 described	 in	 the	 thesis	 manuscript	 of	 Daniel	 Michael	 Passon	 [25].	 The	
purification	of	the	PSPC1-SFPQ	heterodimer	was	performed	as	described	in	[24].	 
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Interaction	between	DNA	and	purified	proteins		

Unless	 mentioned	 otherwise,	 the	 interaction	 between	 0.1	 femtomole	 of	 DNA	
(radiolabeled	 HC,	 radiolabeled	 dsMC	 or	 radiolabeled	 circular	 single	 stranded	 DNA	
C10ss)	and	the	purified	proteins	was	performed	in	8	µL	of	TENT	buffer	(10	mM	Tris	HCl	
pH	pH	7.5,	50	mM	NaCl,	0.5	mM	EDTA,	0.05	%	Triton	X100)	supplemented	with	2	mM	
DTT.	The	concentrations	of	proteins	were	as	indicated	in	the	figure	legend.	The	mixtures	
were	incubated	for	30	minutes	at	22°C.	At	the	end	of	the	incubation	glycerol	was	added	
to	a	final	concentration	of	5	%.	The	samples	were	loaded	on	a	4	%	acrylamide	(29:1	=	
acrylamide:bisacrylamide	 mass	 ratio)	 gel	 made	 in	 TBE	 0.5X.	 Electrophoresis	 was	
performed	 at	 4°C	 for	 3	 hours	 and	 at	 150	 V.	 The	 gel	 was	 dried	 and	 exposed	 on	 a	 32P	
sensitive	 screen.	After	 exposure,	 the	 screen	was	 scanned	 and	quantification	of	 the	 gel	
was	performed	using	the	ImageQuant	TL	Software.		
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Figure	legends	

Figure	1.	Fractionation	of	Hela	nuclear	extracts.	

A		 Schematic	representation	of	a	DNA	hemicatenane.	In	this	scheme,	the	two	double	
stranded	DNAs	that	are	topologically	linked	by	a	hemicatenane	are	not	homologous	and	
therefore	are	represented	by	two	different	colors:	blue	and	red.	The	light	and	dark	blue	
strands	are	complementary,	as	the	light	and	dark	red	strands.	

B	 Scheme	of	the	procedure	of	fractionation	of	Hela	nuclear	extracts.	The	procedure	
starts	 with	 an	 ammonium	 sulfate	 precipitation	 that	 is	 followed	 by	 four	
chromatographies	on	different	media,	as	indicated.	

C	 Proteins	contained	in	1	µL	of	fraction	A10	of	the	size	exclusion	chromatography	
were	 incubated	with	 radiolabeled	 dsMC09	 (lanes	 1-4,	 9)	 or	 HC	 (lanes	 5-8,	 10)	 in	 the	
presence	of	increasing	amount	of	λ	DNA	(0	(lanes	4	and	8),	5	(lanes	3	and	7),	10	(lanes	2	
and	 6),	 30	 (lanes	 1	 and	 5)	 ng).	 After	 incubation,	 species	 were	 resolved	 by	
electrophoresis	on	a	native	polyacrylamide	gel.	Free	DNA	(dsMC09	or	HC)	and	Protein-
HC	complexes	are	indicated.			

D	 Analysis	 of	 the	 fraction	 A10	 of	 the	 size	 exclusion	 chromatography	 by	
electrophoresis	on	a	polyacrylamide	gel	followed	by	a	silver	staining	of	the	gel.	Lane	1:	
MW;	the	size	of	the	proteins	is	given	in	kDa;	lane2:	30	µL	of	fraction	A10.	

	

	

	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/844126doi: bioRxiv preprint first posted online Nov. 19, 2019; 

http://dx.doi.org/10.1101/844126
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16	

Figure	 2.	 Identification	 of	 HC-specific	 binding	 proteins	 in	 the	 fractions	 A10	 and	
A11	of	the	size	exclusion	chromatography.	

A	 Products	 of	 the	 interaction	 between	 radiolabeled	 HC	 (16	 femtomoles)	 and	
proteins	of	the	fraction	A10	of	the	size	exclusion	chromatography	(45	µL)	were	resolved	
by	electrophoresis	on	a	polyacrylamide	gel	(lanes	3,	5,	8,	10).	12	(lanes	2,	3,	7,	8)	or	23	
(lanes	 4,	 5,	 9,	 10)	 ng	 of	 λ	 DNA	 were	 added	 to	 reduce	 non	 specific	 binding.	 Sample	
without	protein	(lanes	1	and	6)	or	without	HC	(lanes	2,	4,	7,	9)	were	also	loaded	to	serve	
as	 control	 for	 mass	 spectrometry	 analysis.	 Free	 DNA	 (dsMC	 or	 HC)	 and	 Protein-HC	
complexes	are	indicated.	On	the	right	panel,	the	gel	pieces	that	were	analyzed	by	mass	
spectrometry	are	shown	as	green	rectangles	and	the	name	of	the	gel	pieces	of	interest	is	
indicated	on	the	right	side	of	the	figure.	

B	 Same	as	in	(A)	but	with	fraction	A11	of	the	size	exclusion	chromatography.	No	λ	
DNA	was	added	in	the	reaction	mixes.	Lanes	1	and	4:	HC	without	fraction	A11;	lanes	2	
and	5:		fraction	A11	without	HC;	lanes	3	and	6:	HC	+	fraction	A11.	On	the	right	panel,	the	
green	rectangles	represent	the	two	gel	pieces	that	were	analyzed	by	mass	spectrometry.	
The	name	of	the	gel	piece	of	interest	is	indicated	on	the	right	side	of	the	figure.	

C	 Fractions	A10	and	A11	were	tested	 for	 their	content	of	PSPC1,	SND1,	SFPQ	and	
PTBP1	proteins	by	western	blot.	Lanes	1,	4,	7,	10:	MW;	the	size	of	the	proteins	is	given	in	
kDa;	 lanes	2,	 5,	 8,	 11:	 fraction	A10;	 lanes	3,	 6,	 9,	 12:	 fraction	A11.	The	 identity	 of	 the	
antibodies	used	to	probe	the	faction	is	indicated	above	each	panel.	The	arrow	points	to	
the	protein	of	interest.	

D	and	E	 Three	 samples	 were	 prepared	 and	 centrifuged	 on	 a	 sucrose	 gradient:	
sample	with	HC,	sample	with	fraction	A10	and	sample	with	fraction	A10	mixed	with	HC.	
After	centrifugation,	200	µL	fractions	were	collected	from	the	top	to	the	bottom	of	the	
gradient.	Number	of	the	fraction	increases	from	top	to	bottom.	In	(D),	fractions	5	to	10	of	
the	 sucrose	 gradients	 were	 tested	 for	 their	 SND1	 content	 by	 western	 blot	 (band	
indicated	by	an	arrow	on	the	right	side	of	the	panel).	Lanes	1,	3,	5,	7,	9,	11:	the	fraction	
A10	was	 loaded	on	 the	sucrose	gradient.	Lanes	2,	4,	6,	8,	10,	12:	 the	mixture	(fraction	
A10	+	HC)	was	loaded	on	the	sucrose	gradient.	Bands	on	the	membrane	were	quantified	
using	Image	J	software	and	the	relative	intensity	of	each	band	is	plotted	as	a	function	of	
fraction.	The	white	bars	correspond	to	the	fraction	A10	sample	and	the	hatched	bars	to	
the	(fraction	A10	+	HC)	sample.	 In	(E),	 fractions	5	to	10	of	 the	sucrose	gradients	were	
tested	for	their	radioactivity	content.	An	aliquot	of	each	fraction	(0.5	µL)	was	spotted	on	
a	nitrocellulose	membrane.	When	dried,	the	membrane	was	exposed	on	a	32P-sensitive	
screen.	 After	 exposure,	 the	 screen	 was	 scanned.	 The	 radioactivity	 profile	 of	 the	 HC	
sample	is	compared	with	that	of	the	(fraction	A10	+	HC)	sample.	
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Figure	3.	Interaction	between	purified	PSPC1	or	PSPC1-SFPQ	with	DNA.		

A	 The	 organization	 of	 SFPQ	 and	 PSPC1	 in	 domains	 is	 shown.	 The	 double	 arrow	
underneath	 each	 schematic	 representation	 corresponds	 to	 the	 truncated	 protein	
expressed	in	E.	coli	and	purified.		

B	to	E	 Molecular	 interactions	 were	 performed	 in	 a	 final	 volume	 of	 7.75	 µL	 with	 0.1	
femtomole	 of	 radiolabeled	DNA	 and	 the	 indicated	 amount	 of	 purified	 protein.	 Species	
were	resolved	by	electrophoresis	on	a	polyacrylamide	native	gel.	Free	DNAs	and	bound	
DNAs	are	indicated.	

B	 The	 DNA	 used	 is	 HC	 and	 the	 tested	 protein	 is	 PSPC1	 homo-dimer.	 Lane	 1:	 no	
PSPC1;	 lane	2:	300	nM	PSPC1;	 lane	3:	1	µM	PSPC1;	 lane	4:	3	µM	PSPC1;	 lane	5:	9	µM	
PSPC1.		

C	 	The	DNA	used	is	C10ss	and	the	tested	protein	is	PSPC1.	Lane	1:	no	PSPC1;	lane	2:	
300	nM	PSPC1;	lane	3:	1	µM	PSPC1;	lane	4:	3	µM	PSPC1;	lane	5:	9	µM	PSPC1.	

D	 	The	DNA	used	is	HC	and	the	tested	protein	is	PSPC1-SFPQ	hetero-dimer.	Lane	1:	
no	PSPC1-SFPQ;	lane	2:	500	nM	PSPC1-SFPQ;	lane	3:	1.5	µM	PSPC1-SFPQ;	lane	4:	4.5	µM	
PSPC1-SFPQ;	lane	5:	13	µM	PSPC1-SFPQ.	

E	 	The	DNA	used	is	C10ss	and	the	tested	protein	is	PSPC1-SFPQ	hetero-dimer.	Lane	
1:	no	PSPC1-SFPQ;	lane	2:	500	nM	PSPC1-SFPQ;	lane	3:	1.5	µM	PSPC1-SFPQ;	lane	4:	4.5	
µM	PSPC1-SFPQ;	lane	5:	13	µM	PSPC1-SFPQ.	

	

Figure	4.	Interaction	between	purified	SND1	proteins	and	various	DNA	constructs.		

A	 The	organization	of	SND1	in	domains	is	shown.	The	double	arrow	underneath	the	
schematic	representation	corresponds	to	the	proteins	that	were	expressed	in	E.	coli	and	
purified.	 The	 name	 of	 the	 purified	 protein	 is	 indicated	 on	 the	 left	 side	 of	 the	 double	
arrow.	

B		 Interactions	were	performed	 in	 a	 final	 volume	of	 7.5	µL	with	0.1	 femtomole	of	
radiolabeled	DNA	and	the	 indicated	amount	of	purified	protein.	Species	were	resolved	
by	electrophoresis	under	native	conditions.	Three	DNAs	were	tested	for	their	binding	to	
SND1-64:	dsMC09	(lanes	1-5);	dsMC10	(lane	6-10);	HC	(lanes	11-15).	Concentrations	of	
protein	were	as	indicated	(lanes	1,	6,	11:	0;	lanes	2,	7,	12:	0.1	µM;	lanes	3,	8,	13:	0.3	µM;	
lanes	4,	9,	14:	0.9	µM;	lanes	5,	10,	15:	2.7	µM).	Free	DNAs	and	bound	DNAs	are	indicated.		

C	 Interactions	were	performed	in	a	final	volume	of	13.25	µL	with	0.1	femtomole	of	
radiolabeled	DNA	and	the	SDN1-110	at	70	nM.	Species	were	resolved	by	electrophoresis	
under	 native	 conditions.	 Three	 DNAs	 were	 tested	 for	 their	 binding	 to	 SND1-110:	
dsMC09	 (lanes	1	 and	2);	dsMC10	 (lanes	3	 and	4);	HC	 (lanes	5	 and	6).	 Free	DNAs	and	
bound	DNAs	are	indicated.	

D	 Interactions	were	 as	described	 in	 (A).	 The	DNA	was	C10ss,	 the	 single	 stranded	
circle	obtained	after	nicking	of	the	dsMC10	with	Nt.BbvcI.	0.1	femtomole	of	C10ss	was	
included	 in	 the	 reaction	mixture	 and	 the	 concentrations	 of	 protein	were	 as	 indicated	
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(lane	1:	0;	lane	2:	0.1	µM;	lane	3:	0.3	µM;	lane	4:	0.9	µM;	lane	5:	2.7	µM).	Free	DNAs	and	
bound	DNAs	are	indicated.	

E	 	The	two	curves	(one	for	HC	and	one	for	C10ss)	show	the	percentage	of	(SDN1-
64)-DNA	complexes	as	a	function	of	protein	concentration.	Error	bars	correspond	to	the	
standard	deviation.	Percentages	are	the	mean	of	three	independent	experiments.		

F	 Interactions	were	as	described	in	(C).	C10ss	is	the	single	stranded	circle	obtained	
after	nicking	of	the	dsMC10	with	Nt.BbvcI.	0.1	femtomole	of	C10ss	or	HC	was	included	in	
the	reaction	mixture	and	the	concentration	of	protein	was	70	nM.	Free	DNAs	and	bound	
DNAs	are	indicated.	

G	 The	plot	 shows	 the	percentage	of	 (SDN1-110)-DNA	complexes	assembled	at	70	
nM	 SND1-110.	 Error	 bars	 correspond	 to	 the	 standard	 deviation.	 Percentages	 are	 the	
mean	of	three	independent	experiments.		

H	 The	 interaction	 between	 radiolabeled	 HC	 and	 SND1-64	 was	 tested	 in	 the	
presence	of	OL21,	an	oligonucleotide	long	of	21	nucleotides.	SDN1-64	was	at	2.7	µM	and	
HC	at	14	pM.	HC	was	premixed	with	 increasing	amount	of	OL21	 (lane	1:	no	OL21,	no	
SND1-64;	lane	2:	no	OL21;	lane	3:	0.2	nM	OL21;	lane	4:	0.7	nM	OL21;	lane	5:	2	nM	OL21;	
lane	6:	7	nM	OL21)	before	adding	SND1-64.	Free	DNAs	and	bound	DNAs	are	indicated.	

I	 The	 interaction	 between	 radiolabeled	 HC	 and	 SND1-110	 was	 tested	 in	 the	
presence	 of	OL21,	 an	 oligonucleotide	 long	 of	 21	nucleotides.	 SDN1-110	was	 at	 70	nM	
and	HC	at	7.5	pM.	HC	was	premixed	with	increasing	amount	of	OL21	(lane	1:	no	OL21,	
no	SND1-110;	lane	2:	no	OL21;	lane	3:	0.2	nM	OL21;	lane	4:	0.7	nM	OL21;	lane	5:	2	nM	
OL21;	 lane	 6:	 7	 nM	 OL21)	 before	 adding	 SND1-110.	 	 Species	 are	 separated	 by	
electrophoresis	on	a	polyacrylamide	gel.	Free	DNAs	and	bound	DNAs	are	indicated.	The	
plot	shows	the	percentage	of	(SND1-110)-HC	complexes	as	function	of	concentration	of	
OL21.	The	standard	deviation	is	calculated	from	two	independent	experiments.	

	

Figure	5.	Interaction	between	E.	coli	SSB	and	DNA.	

Interactions	 were	 performed	 in	 a	 final	 volume	 of	 7.75	 µL	 with	 0.1	 femtomole	 of	
radiolabeled	DNA	and	the	 indicated	amount	of	purified	protein.	Species	were	resolved	
by	electrophoresis	under	native	conditions.	Free	DNAs	and	bound	DNAs	are	indicated.	

A	 The	DNA	used	was	HC.	Lane	1:	no	E.	coli	SSB;	lane	2:	20	nM	E.	coli	SSB;	lane	3:	200	
nM	E.	coli	SSB;	lane	4:	2	µM	E.	coli	SSB;	lane	5:	20	µM	E.	coli	SSB.	

B	 The	DNA	used	is	dsMC09.	Lane	1:	2	µM	E.	coli	SSB;	lane	2:	0.4	µM	E.	coli	SSB;	Lane	
3:	no	E.	coli	SSB	
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Table	

Table	1.	Names	and	parameters	of	 identification	of	HC-binding	proteins	by	mass	
spectrometry.	

Name	of	the	protein	 Name	of	the	
gel	piece	

Mascot	score	 Peptide	
number	

%	of	
coverage	

Annexin	A2	 10p2-β	 64	 2	 5	
PSPC1	(ParaSpeckle	
Protein	Component	1)	

10p2-γ	 78	 3	 5.9	
10p1-β	 74	 3	 5	
11p-β	 91	 2	 3.6	

PTBP1	(Polypyrimidine	
Tract-Binding	Protein	1)	

11p-β	 77	 3	 5.1	

SFPQ	(Splicing	Factor	
Proline	Glutamine-rich)	

10p1-β	 97	 3	 4.8	

SND1	(Staphylococcal	
Nuclease	Domain-like	

protein	1)	

10p1-β	 98	 2	 2.6	

	

Expanded	View	Figure	Legend	

Figure	EV1.	Scheme	of	construction	of	DNA	HCs	from	two	dsMCs.	

Radiolabeled	dsMCs09	and	dsMCs10	were	prepared	from	32P	-end	labeled	linear	double	
stranded	fragments	of	215	(colored	in	red)	and	235	(colored	in	blue)	base	pairs.	Their	
nicking	by	specific	enzymes	led	to	two	linear	single	stranded	fragments	(L09ss	in	blue	
and	 L10ss	 in	 red)	 and	 two	 single	 stranded	 circles	 (C09ss	 in	 blue	 and	 C10ss	 in	 red).	
Single	stranded	catenanes	were	assembled	from	the	circularization	of	L09ss	and	L10ss	
under	specific	conditions:	the	linker	oligonucleotide	complementary	to	25	nucleotides	of	
L09ss	 and	 25	 nucleotides	 of	 L10ss	 brings	 together	 the	 two	 strands	 and	 favors	 the	
catenation.	 The	 single	 stranded	 catenanes	were	 gel-purified	 and	 re-annealed	with	 the	
C09ss	 and	 C10ss	 using	 the	 wheat	 germ	 Topoisomerase	 I	 to	 finally	 get	 the	 DNA	 HCs.	
Adapted	from	[20].	
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Figure 4
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