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A B S T R A C T

Evaluating the causes and consequences of dominance by a limited number of taxa in phytoplankton commu-

nities is of huge importance in the current context of increasing anthropogenic pressures on natural ecosys-

tems. This is of particular concern in densely populated urban areas where usages and impacts of human

populations on water ecosystems are strongly interconnected. Microbial biodiversity is commonly used as a

bioindicator of environmental quality and ecosystem functioning, but there are few studies at the regional

scale that integrate the drivers of dominance in phytoplankton communities and their consequences on the

structure and functioning of these communities. Here, we studied the causes and consequences of phyto-

plankton dominance in 50 environmentally contrasted waterbodies, sampled over four summer campaigns

in the highly-populated Île-de-France region (IDF). Phytoplankton dominance was observed in 32 52% of

the communities and most cases were attributed to Chlorophyta (35.5 40.6% of cases) and Cyanobacteria

(30.3 36.5%). The best predictors of dominance were identified using multinomial logistic regression and

included waterbody features (surface, depth and connection to the hydrological network) and water column

characteristics (total N, TN:TP ratio, water temperature and stratification). The consequences of dominance

were dependent on the identity of the dominant organisms and included modifications of biological attributes

(richness, cohesion) and functioning (biomass, RUE) of phytoplankton communities. We constructed co-oc-

currence networks using high resolution phytoplankton biomass and demonstrated that networks under dom-

inance by Chlorophyta and Cyanobacteria exhibited significantly different structure compared with networks

without dominance. Furthermore, dominance by Cyanobacteria was associated with more profound network

modifications (e.g. cohesion, size, density, efficiency and proportion of negative links), suggesting a stronger

disruption of the structure and functioning of phytoplankton communities in the conditions in which this group

dominates. Finally, we provide a synthesis on the relationships between environmental drivers, dominance

status, community attributes and network structure.

© 2019.

1. Introduction

Continental aquatic ecosystems are considered among the most

vulnerable to the combined pressure of anthropogenic activities and

climate change (Adrian et al., 2009). In the recent decades, these pres-

sures have led to an increase in the frequency and intensity of phyto-

plankton blooms in lakes all around the world (Aguilera et al., 2017b;

Almanza et al., 2018; Beaver et al., 2018; Dokulil and Teubner, 2000;

Moura et al., 2018; Ndlela et al., 2016; Paerl and Huisman, 2008;

Paerl and Otten, 2016). Phytoplankton blooms correspond to rapid

increases of primary producer's biomass, often associated with the

dominance of only a handful of taxa. Even if blooms
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are naturally occurring phenomena, repeated dominance events have

been associated with reduced number of species in eukaryotic and

prokaryotic communities in lake ecosystems (Bagatini et al., 2014;

Louati et al., 2015; Toporowska and Pawlik-Skowrońska, 2014; J. R.

Yang et al., 2017a,b). In addition, the decomposition of phytoplank-

ton blooms has been shown to generate greenhouse gases (CO2, CH4,

N2O) and release dissolved nutrients that can retroactively favor cli-

mate change and eutrophication (Li et al., 2017). Further, biomass ac-

cumulation into a single group of primary producers can modify the

resource use efficiency of phytoplankton and the transfer of biomass

to zooplankton communities (Filstrup et al., 2014; Tian et al., 2017).

Ultimately this may generate ecosystem-wide modifications of food

web dynamics leading to trophic collapse (Filstrup et al., 2014; Ullah

et al., 2018), impacting on the long term the numerous services that

lakes provide to human populations (Vaughn, 2010). This is of partic-

ular concern in densely populated urban areas where usages and im-

pacts of human populations on lakes ecosystems are strongly inter-

connected. Surprisingly, studies at the regional scale on the drivers of

https://doi.org/10.1016/j.watres.2019.114893

0043-1354/ © 2019.
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Table 1
Accuracy of classification approaches for the identification of dominance status in phy-

toplankton communities.

MLR RF

Model 1 0.63±0.07 0.43±0.03
Bacillariophyta 0.84±0.16 0.17±0.16

Chlorophyta 0.68±0.07 0.50±0.16

Cyanobacteria 0.61±0.06 0.55±0.12

Dinophyta 0.61±0.23 0.00±0.00

Others 0.73±0.19 0.33±0.07

No dominance 0.59±0.06 0.39±0.20

Model 2 0.69±0.08 0.67±0.12
Dominance 0.73±0.09 0.84±0.13

No dominance 0.58±0.17 0.19±0.16

Model 3 0.80±0.14 0.57±0.02
Bacillariophyta 0.98±0.06 0.31±0.26

Chlorophyta 0.79±0.14 0.74±0.03

Cyanobacteria 0.81±0.14 0.72±0.06

Dinophyta 0.72±0.22 0.00±0.00

Others 0.83±0.16 0.37±0.06

This table represents the proportion of communities under dominance by a given group

that were correctly classified as dominated by this group. For each model and each

group, accuracy values were averaged (mean ±sd) across the nine combinations of

dominance thresholds. MLR: multinomial logistic regression; RF: random forest.

dominance in phytoplankton communities are still relatively scarce

(Almanza et al., 2018) or were mostly focused on Cyanobacteria

(Beaver et al., 2018; Marion et al., 2017; O'Farrell et al., 2019) and

sometimes on only one or two species (Bonilla et al., 2012; Marmen

et al., 2016). Moreover, there is no comparison of the consequence of

dominance by various organisms on the structure and functioning of

phytoplankton communities.

There is increasing evidences that the capacity of microbial sys-

tems to support ecological functions and resist environmental forcing

are emerging properties arising from the interactions between many

taxa (Dai et al., 2018; Faust and Raes, 2012; Goldford et al., 2018;

Peura et al., 2015; Shi et al., 2016). Network-based approaches pro-

vide an integrated representation of such inter-taxa associations in mi-

crobial communities (Barberán et al., 2012; Deng et al., 2012) and

were thus recently proposed as potential indicators of environmental

quality (Karimi et al., 2017). Similarly, other approaches have been

developed to estimate the amount of cohesion experienced by micro-

bial communities, with the underlying idea that this constitutes a fun-

damental yet neglected facet of the biodiversity of microbial commu-

nities (Dai et al., 2018; Danczak et al., 2018; Herren and McMahon,

2018, 2017). Most studies on planktonic networks in lakes focused

on bacterial communities or were based on sequencing data (Van

Goethem et al., 2017; Woodhouse et al., 2016; C. Yang et al., 2017a,b;

Zhao et al., 2016). Additionally, there are few studies related to the im-

pact of dominance on the structure of phytoplankton networks (Carey

et al., 2017; Moe et al., 2016), despite the fact that recent studies

have shown the under-appreciated role of evenness (the inverse of

dominance) in shaping microbial co-occurrence networks (Faust et al.,

2015; L. Liu et al., 2019a,b; M. Liu et al., 2019a,b; Xue et al., 2018).

In addition, the ability of network approaches to provide meaningful

ecological information and to reflect the impact of dominance on com-

munities is still a matter of debate (Röttjers and Faust, 2018).

In this study, we wanted to address two main objectives. In a

first time, to identify the factors driving the dominance by a limited

number of taxa in phytoplankton communities from periurban wa-

terbodies located in a highly-populated region and representing con-

trasted environmental conditions (e.g. size, depth, watershed charac-

teristics, anthropogenic pressure). In a second time, to determine the

consequences of dominance on the structure and functioning of phyto-

plankton communities, and more particularly on the characteristics of

co-occurrence networks. To do so, we analyzed phytoplankton com-

munities across four summer campaigns in 50 waterbodies located in

the IDF region and estimated the absolute biomass of taxa compos-

ing them. Then, we combined variables at various spatial scales (wa-

ter column, waterbody, catchment) to identify the drivers of domi-

nance and analyzed its consequences on the biological and ecologi-

cal characteristics of these communities. Our approach is based on the

hypothesis that dominance should be triggered by a combination of

drivers directly related to the intensity of human pressures on these

ecosystems with consequences on the structure and functioning of

phytoplankton communities depending on the dominant phytoplank-

ton group.

Table 2
Environmental drivers of dominance in phytoplankton communities.

Predictors Model 1 Model 2 Model 3

Average

2
number of

p.value <0.05

Average

2
number of

p.value <0.05

Average

2
number of

p.value <0.05

Water
column

Total Nitrogen 9.4 4 0.2 0 6.4 4

Total Phosphorus 4.2 0 0.7 0 4.5 1

N:P ratio 9.3 2 1.5 1 10.0 3

Temperature 9.6 3 1.1 0 11.0 4

Thermal stratification of lake

water

7.0 1 1.3 0 9.6 3

Waterbody Surface of waterbodies 7.0 1 1.0 0 7.9 2

Depth of waterbodies 5.8 1 1.5 0 10.0 3

Altitude of waterbodies 7.3 1 0.6 0 2.8 0

Connection with hydrological

network

12.9 3 0.7 0 11.0 2

Waterbody is on a flooded area 2.8 0 0.1 0 1.6 0

Catchment Surface of catchment 4.4 0 0.3 0 4.1 1

Catchment to waterbody surface

ratio

5.3 0 0.4 0 5.4 0

Drainage intensity 6.7 0 1.1 0 3.7 0

Percentage of impervious surface 0.6 0 0.0 0 2.2 1

Percentage of agricultural surface 1.8 0 0.0 0 1.7 1

Percentage of forested surface 0.4 0 0.0 0 0.0 0

The three models are multinomial logistic regressions (MLR). Average
2

values and number of times the variable participated significantly in the classification were estimated across

the nine threshold combinations.
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Fig. 1. Biological characteristics of phytoplankton communities in various dominance contexts. Here, and for illustrative purpose, we present the case were both the dominance

and relative biomass thresholds were set to 0.5. Communities were first separated according to the estimated value of the dominance index, i.e. no dominance (index <0.5) or under

dominance (index >0.5). Then communities under dominance were grouped according to which phyla was dominating the community (i.e. with a relative biomass >0.5). The box and

whiskers plots represent the median (black line) the first and fourth quantiles (colored boxes) and the 95% confidence interval (whiskers). The dots represent actual data points.
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Table 3
Global test for differences across dominance groups for various community-level prop-

erties.

Kruskal Wallis test df 2 p.value number of p.value <0.05

log(Biomass) 5 23.4 0.000 9

Richness 5 29.2 0.000 9

RUEP 5 13.8 0.023 8

RUEN 5 24.3 0.000 9

Negative cohesion 5 43.8 0.000 9

Positive cohesion 5 44.8 0.000 9

Evenness 5 72.1 0.000 9

The 2 and p.values presented are averages estimated across the nine thresholds

combinations.

2. Material and methods

2.1. Study area, sampling and in situ data acquisition

A stratified sampling strategy was used to select 50 waterbodies

(Figure A1) representative of the contrasted environmental conditions

observed in the 248 waterbodies of IDF with a surface area >5 ha

(Catherine et al., 2008). According to the chlorophyll a-based OECD

definition (OCED, 1982), 6% of the selected waterbodies are olig-

otrophic, 24% mesotrophic, 26% eutrophic and 44% hypereutrophic

(Catherine et al., 2010). Sampling was conducted over two weeks in

summers 2006, 2011, 2012 and 2013, where we sampled 50, 48, 49

and 49 waterbodies, respectively, providing a total of 196 phytoplank-

ton samples. To integrate spatial heterogeneity, each waterbody was

sampled in three stations and each station was sampled at three depths

using a 5L Niskin water sampler. The nine samples per waterbody

were pooled for microscopy analyses. Ammonium (NH4
+
), orthophos-

phate (PO4
3−

), total nitrogen (TN) and total phosphorus (TP) analy-

ses were carried out using colorimetric methods previously described

(Beck et al., 1992). Nitrate (NO3
−
) was measured using a DX600 ion

chromatograph equipped with an AS14 Ion Pack analytical column

(Dionex Corp.,Westmont, IL). Dissolved oxygen concentration, wa-

ter temperature, depth and pH were measured using a multiparameter

Sea-Bird SBE 19 Seacat Profiler (Sea-Bird Electronics Inc., WA). The

values for each of the three sampling stations were averaged to obtain

a single value per waterbody.

2.2. Phytoplankton data

Phytoplankton characterization was done in triplicate from the

pooled nine samples from each waterbody using an inverted micro

Fig. 2. Structures of phytoplankton co-occurrence networks under various dominance contexts. Nodes correspond to taxa and links correspond to significantly positive (green)

and negative (red) associations. Nodes are colored according to their taxonomy. Nodes size represents their average biomass in the communities composing the network. These

networks were constructed based on communities grouping determined using both dominance and relative biomass thresholds equal to 0.5. . (For interpretation of the references to

color in this figure legend, the reader is referred to the Web version of this article.
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Table 4
Characteristics of co-occurrence networks.

Number of communities

used to construct networks

No

dominance

Chlorophyta

dominated

Cyanobacteria

dominated

35.7±14.3 30.4±7.0 26.1±3.4

Global network characteristics
Number of nodes 89±10 106±4 64±7

Number of links 838±611 1312±595 728±232

% of negative links 34.7±24.8 34.5±14.7 48.0±7.5

Density 0.20±0.11 0.23±0.1 0.35±0.08

Geodesic efficiency 0.54±0.1 0.58±0.07 0.66±0.05

Average geodesic distance 2.20±0.44 1.98±0.24 1.76±0.15

Nodes characteristics
Average degree 18.1±10.8 24.7±10.7 22.3±5.8

Average betweenness 52.2±18.2 50.9±12.4 24.1±5.0

Average clustering

coefficient

0.58±0.08 0.55±0.04 0.65±0.05

The presented index values are mean ±sd estimated across the nine thresholds

combinations.

Table 5
Relationship between biomass and centrality in phytoplankton co-occurrence networks.

df stat r p.value

Number of

significant cases

Node degree
Not dominated 87 −1.87 −0.18 0.375 3

Chlorophyta 104 −1.75 −0.17 0.232 3

Cyanobacteria 62 −2.69 −0.32 0.023 8

Node betweenness
Not dominated 87 −1.08 −0.12 0.305 0

Chlorophyta 104 −1.07 −0.10 0.364 0

Cyanobacteria 62 −1.53 −0.19 0.194 4

The presented index values are mean ±sd estimated across the nine thresholds

combinations.

scope (Nikon Eclipse TS100) following the Utermöhl method (CEN

(European Committee for Standardization), 2006). A minimum of 500

units (single cells, colonies and filaments) were counted in each sam-

ple. To estimate the biovolume, each identified taxon was associated

to a geometric shape (Hillebrand, 1999; Sun and Liu, 2003). For each

waterbody-campaign combination, we measured the dimensions on 30

individuals from each taxon representing more than 5% of the total

abundance, and reported it in a database that was used to infer the bio-

volume of those taxa when they represented less than 5% of the to-

tal abundance. The biovolume of rare taxa was taken from the HEL-

COM phytoplankton check list (Olenina et al., 2006). Phytoplankton

carbon biomass was estimated from biovolumes assuming a density of

1gcm
−3

as suggested elsewhere (Filstrup et al., 2014; Holmes et al.,

1969).

We estimated three proxies of phytoplankton communities func-

tioning. Total community biomass was estimated as the summed phy-

toplankton carbon biomass in the community (Filstrup et al., 2014).

Resource use efficiency (RUE) was estimated as community bio-

mass divided by the amount of available resources, both for TP and

TN (Ptacnik et al., 2008). Although the sampling strategy and the

counting procedure were shown to provide accurate estimates of lo-

cal taxa richness (Maloufi et al., 2016), direct estimation of taxa rich-

ness might be biased by low detection limit of rare taxa in communi-

ties under a strong gradient of dominance. To safeguard against such a

bias, community taxa richness was estimated from individuals counts

using abundance-based Chao extrapolation method (function esti

mateR from the R package vegan v 3.4.4; (Chiu et al., 2014; Oksanen

et al., 2016).

2.3. Determination of taxa connectedness and community cohesion

We used the recently developed cohesion framework (Herren and

McMahon, 2018, 2017) to describe the potential of individual taxon

for inter-taxa associations (i.e. connectedness) but also the overall de-

gree of connectivity within communities (i.e. cohesion). First, we es-

timated the pairwise correlation matrices between taxa across all com-

munities, separately for positive and negative correlations. Then, we

used a null model to account for bias in these correlations due to the

skewed distribution of taxa biomass (Herren and McMahon, 2017).

We followed the authors recommendations to select appropriated type

of null model and after considering taxa distribution across and within

communities we choose to maintain taxa average biomass while ran-

domizing the data. Then, expected correlations generated by the null

model were subtracted from the original correlation matrices to obtain

corrected correlations matrices. For each taxon, the average positive

and negative corrected correlation corresponded to their positive and

negative connectedness values, respectively. Connectedness was esti-

mated for the 227 taxa (out of the 506 detected) that appeared in at

least four out of the 196 sampled communities. For each community,

cohesion was calculated as the summed connectedness of taxa com-

posing the community, weighted by their respective biomass. Because

positive and negative connectedness are calculated separately there are

two metrics of cohesion, a positive and a negative one.

Differences in connectedness between eight phytoplankton phyla

(i.e. Bacillariophyta, Chlorophyta, Cryptophyta, Cyanobacteria, Dino-

phyta, Euglenophyta, Chrysophyta and Xantophyta) were tested us-

ing Kruskal-Wallis rank sum test and Dunn test (R package dunn.test;
Dinno, 2017).

2.4. Definition and estimation of dominance

The first step to identify the drivers and consequences of domi-

nance in phytoplankton communities was to identify groups of com-

munities under various dominance scenarii. In other terms, we needed

to identify (i) whether communities were under dominance by a re-

duced set of taxa or not, and (ii) what was the identity of the dominant

taxon. In a first time, for each community we calculated a dominance

index that corresponded to 1 minus the Pielou evenness index esti-

mated using biomass matrices (evenness =H /log(S); with H =Shan-

non-Weiner diversity and S = taxa richness). This dominance index

ranged from 0 when the biomass distribution across taxa was per-

fectly even to 1 when community biomass corresponded to a single

taxon. Then, this index was used to separate communities not under

dominance (i.e. with index < threshold) from those under dominance

(index > threshold). In a second time, communities considered under

dominance in step 1 were grouped according to the identity of the

dominant phyla, that is the phyla whose relative biomass was above

a selected threshold. In order to avoid biases related to the selection

of a unique threshold for each of these steps, we used a range of val-

ues for the dominance (0.45, 0.5, 0.55) and relative biomass (0.45,

0.5, 0.55) thresholds, which generated nine thresholds combinations

that were used to separate communities into various dominance groups

(i.e. not-dominated and dominated by different phyla, Table A1). Data

were analyzed in a similar way for each of the nine thresholds com-

binations and the results were summarized across all combinations to

identify the global trends in our data.
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Fig. 3. Drivers and consequences of dominance in phytoplankton communities. This figure synthesizes the results from the paper (cf. section 4.3 of the main text and conclusion).

2.5. Identification of the drivers of dominance in phytoplankton
communities

To identify the environmental drivers of dominance in the IDF re-

gion, we used classification models and variables at the water col-

umn, waterbody and catchment scales to p the dominance group in

which communities belong to. The set of predictor variables was de-

fined on the basis of their assumed contribution to the environmen-

tal conditions experienced within the waterbodies and modified from

(Table A2, Catherine et al., 2010). At the water column scale, nu-

trient concentration (total N and P) were used to reflect the quantity

of available resources, while water temperature and thermal stratifi-

cation were used to reflect physical conditions of the water column.

At the waterbody scale, several predictors related to their characteris-

tics were included. Mean depth and waterbody surface were used as

variables reflecting the capacity of the lake to dilute nutrient loadings.

Waterbodies position within the landscape was reflected by their al-

titude, their connection to the hydrological network (i.e. the network

of channels connecting small rivers and waterbodies throughout the

IDF region) or their location in a regularly flooded area. At the catch-

ment scale, the ratio between catchment and waterbody size was used

to reflect the loading potential of a catchment system relative to the

waterbody buffering capacity (Almanza et al., 2018). The density of

drainage connections within catchments was considered as it affects

the catchment's ability to transport nutrients. Land use variables such

as the proportion of catchment surface classified as forest, agricul-

tural and urban, suburban or industrial referred as impervious cover

were included as they constitute variables known to affect both the

quantity and nature of loading. Variables at the catchment scale were

estimated using the Carthage 3.0 hydrological database (IGN-MATE,

2005) and the MOS databases ( www.iau-idf.fr ).

Two classification approaches were compared, random forest (RF

using the randomForest function from the R package randomForest
v 3.4.4, with n=1000 trees, Liaw and Wiener, 2002), which has been

shown to accurately predict the eutrophication level of waterbodies

in the region (Catherine et al., 2010) and multinomial logistic regres-

sion (MLR) using the multinom function from the R package nnet v
3.4.0 (Venables and Ripley, 2002). Three models were tested (Table

A3). Model 1 was the more complex and aimed at predicting the clas-

sification of communities into six groups that corresponded to the

absence of dominance or the dominance by Bacillariophyta, Chloro-

phyta, Cyanobacteria, Dinophyta or other phyla. Model 2 focused on

predicting the dichotomy between dominated versus not-dominated

communities. Model 3, focused on communities under dominance and

aimed at predicting the identity of the dominating taxon. For each

model the RF and MLR methods were compared based on the pro-

portion of communities accurately classified in their respective group

(i.e. confusion matrices). The predictor variables that contributed to

the classification success were subsequently identified using likeli-

hood ratio Chi-square test (O'Farrell et al., 2019; Venables and Ripley,

2002).

2.6. Determination of the consequences of dominance on community-
level properties

To determine the consequence of dominance at the community

level we compared the communities under various dominance sce-

narii in terms of community biomass, estimated taxa richness, RUE

(separately for N- and P-based RUE) and cohesion (positive and neg
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ative). As widely different numbers of communities composed the

different dominance groups, global and pairwise differences between

groups were tested using non-parametric Kruskal-Wallis rank sum test

and Dunn test, respectively (R package dunn.test; Dinno, 2017). Com-

munity biomass and RUE were log transformed before analyses.

2.7. Construction and characterization of co-occurrence networks

Co-occurrence networks were used to summarize the impact of

dominance by a limited number of species on the structure of phyto-

plankton communities (Deng et al., 2012). Albeit promising, network

approaches are not devoid of limitations (Röttjers and Faust, 2018).

First, a large number of replicates are required to create a single net-

work as its construction relies on co-variations in the biomass of taxa

across communities. Hence, only the three groups with the largest

number of communities were analyzed using this approach: no-dom-

inance (17<n<56 depending on the selected thresholds), dominance

by Chlorophyta (22 <n<39) and dominance by Cyanobacteria

(22 <n<n 31). Second, microbial data are compositional by nature

(Faust and Raes, 2012) and are thus prone to spurious correlations

(Jackson, 1997; Lovell et al., 2011). To limit these compositional

biases, we used absolute taxa biomass to estimate taxa association.

Third, microbial matrices contain a large proportion of zeros, a phe-

nomenon referred as the data sparsity problem (Paulson et al., 2013).

Hence, organisms absent from too many samples are often excluded

from the analysis in search for a trade-off between the amount of avail-

able data and their reliability. Here, networks from each group were

constructed using taxa detected in more than 12.5% of communities,

which corresponded to a compromise between the need to keep taxa

with a maximum number of observations to accurately estimate their

co-occurrence and the need to keep enough taxa in the analysis to con-

struct networks that are representative of the communities observed in

the field (we also tried with 7.5, 10, 12.5, 15, 20 and 25%, Röttjers

and Faust, 2018). Another issue lies in the choice of the metric used

to estimate taxa association, which should be made to reduce as much

as possible the number of false-positives (Karimi et al., 2017). Here

we used the Pearson correlation, which is the standard in microbial

networks studies and has been successfully used in association with

Random Matrix Theory in soils (Deng et al., 2012; Wang et al., 2015),

rhizosphere (Shi et al., 2016) and lakes (J. R. Yang et al., 2017a,b;

Zhao et al., 2016). This index assumes linear relationships between

taxa biomass and is sensitive to data sparsity and compositional issues

(Kurtz et al., 2015). However, we are confident that we considered all

the ways to reduce the impact of methodological biases on our corre-

lation-based analyses. Then, Random Matrix Theory (RMT) was used

to objectively identify a cutoff determining which associations were

kept in the final network (Luo et al., 2006). Networks were generated

using the Molecular Ecological Network Analyses (MENA) pipeline

(Deng et al., 2012) and represented using Cytoscape 3.6.0 (Shannon et

al., 2003).

Networks are composed of nodes, which correspond to individual

taxon, connected by links (or edges), that represent significant asso-

ciations between nodes. Networks structure was characterized using

indexes derived from the graph theory (Pavlopoulos et al., 2011) and

recently suggested as potential bioindicators of the state of a system

(Karimi et al., 2017). At the node level, we estimated two centrality

indexes describing the importance of nodes in the network. Node de-
gree was defined as the number of links to this node while node be-
tweenness was defined as the number of geodesics (i.e. shortest path

between two nodes) passing through the node. Betweenness reflects

how central and influent a node may be in the network by being on the

paths relating other nodes in the network. We also tested whether the

biomass of a taxon was related to its centrality in the network using

correlation tests (cor.test function in R). Nodes clustering coefficient
was used to describe how well a node was connected with its neigh-

bors. At the network level, we estimated the proportion of positive

and negative links, along with global network properties (Deng et al.,

2012). Average geodesic distance corresponds to the average length

of the shortest path between every pairs of nodes in the network. Geo-
desic efficiency reflects the size of the network while network density
reflects its complexity and corresponded to the ratio between realized

and potential links.

3. Results

3.1. Characteristics of phytoplankton communities in the waterbodies
of the IDF region

A total of 506 phytoplankton taxa corresponding to 181 genera

were identified across the 196 samples (four campaigns with 48 50

waterbodies), 72.5% were classified at the species level and the re-

maining 27.5% at the genus level. The generic term taxa will be used

in the text to refer to the diversity unit used in this study. Community

richness ranged from four to 213 taxa per community, with an aver-

age of 42.6±27.8. The proportion of communities identified as dom-

inated by a reduced number of taxa during summer in the IDF region

ranged from 31.6 to 51.5%, depending on thresholds combinations

used to define groups (Table A1). The proportion of communities not

under dominance was more variable and ranged from nine to 29%.

Two phylum, the Chlorophyta and the Cyanobacteria, represented

most of the cases of dominance, with 35.5 40.6% and 30.3 36.5%

of dominance cases, respectively. The most dominant Chlorophytes

taxa included Coelastrum polychordum, Botryococcus sp., Pedias-
trum boryanum, Pediastrum simplex, Pediastrum duplex and Pan-
dorina sp. The most dominant Cyanobacteria taxa included Aphani-
zomenon flos-aquae, Dolichospermum sp., Aphanizomenon klebahnii,
Planktothrix agardhii, Dolichospermum flos-aquae and Microcystis
aeruginosa. The other phyla dominated in a smaller number of cases:

Dinophyta (9.4 11.0%), Bacillariophyta (7.3 9.0%) and the remain-

ing other groups (8.8 12.5%).

3.2. Association potential of phytoplankton organisms

The inter-taxa association potential (i.e. connectedness) was esti-

mated for the 227 most occurring taxa and significant differences were

observed across phyla. The effect of phylum was stronger for positive

than for negative connectedness (Kruskal-Wallis test, p.value <0.001

and 0.039, respectively, supplementary Figure A2 and Table A4).

Pairwise tests revealed that Cryptophyta and Dinophyta exhibited sig-

nificantly stronger negative connectedness than other phyla (Dunn

test, p.value <0.05, Table A3). However, these two groups exhibited

highly variable negative connectedness and were represented by a

limited number of taxa (n =4 and 5, respectively). In terms of pos-

itive connectedness, Cyanobacteria differed significantly from five

out of the seven other phyla (Dunn test, p.value <0.05, Table A5),

with the exception of Xantophyta and Bacillariophyta. This later phyla

was significantly different than Chlorophyta. These results position

Cyanobacteria apart from the other phytoplankton phyla, with lower

positive inter-taxa association.
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3.3. Environmental drivers of dominance in phytoplankton
communities

Classification approaches were used to identify the environmental

factors that determined the dominance status in phytoplankton com-

munities (cf. Table A3 for a description of data). For each of the

three tested models, multinomial logistic regression (MLR) was more

accurate than random forest (RF) to determine the dominance status

of phytoplankton communities using the selected predictor variables

(Table 1). Indeed, MLR accurately classified communities in 63, 69

and 80% of the cases while RF accurately classified communities in

43, 67 and 57% of the cases, for models 1, 2 and 3, respectively. This

was mostly due to the low accuracy of RF in categories with low sam-

ple sizes (i.e. Bacillariophyta, Dinophyta and Others categories). In-

terestingly, both models that included a no-dominance category (1 and

2) exhibited a low classification accuracy for this category.

The predictors that contributed in the accuracy of MLR models

included variables at various scales, from the water column physi-

cal and chemical features to the catchment characteristics (Table 2).

Overall, the variables with the highest number of significant contribu-

tions were the total N concentration followed by the water tempera-

ture, the TN:TP ratio and the connection of the waterbody to the hy-

drological network, while water thermal stratification, depth and wa-

terbody surface contributed less frequently. Regarding the quantitative

contribution to classification accuracy (i.e. 2
values), the connection

of the waterbody to the hydrological network, the water temperature

and TN:TP ratio were the prominent variables. Variables represent-

ing the state of the water column and the characteristics of the water-

body were mostly influencing classification accuracy in models that

included the identity of the dominant taxon (models 1 and 3). In model

2, only TN:TP ratio was significant across the nine tested dominance

thresholds.

3.4. Structure and functioning of phytoplankton communities under
various dominance scenarii

We compared several community-level properties across domi-

nance scenarii to determine whether dominance and the identity of

the dominant group were associated with differences in the struc-

ture and functioning of phytoplankton communities (Fig. 1). All the

tested variables significantly differed across groups (Kruskal-Wallis

test, p.value <0.05, Table 3), but a more detailed picture was pro-

vided by pairwise comparison (Table A6). In terms of total commu-

nity biomass, we observed a clear dichotomy, with the communities

dominated by Bacillariophyta, Chlorophyta or Cyanobacteria reach-

ing a significantly higher biomass than communities from the others

groups. Regarding community richness, the effect of dominance ap-

peared more contrasted and dependent on the identity of the domi-

nant phylum (Fig. 1). On one hand, Chlorophyta-dominated commu-

nities exhibited a higher richness compared to all the groups, with the

exception of Bacillariophyta. On the other hand, communities dom-

inated by Cyanobacteria and Others organisms exhibited lower rich-

ness than the no-dominance and the Bacillariophyta groups. In terms

of RUE, two groups clearly stood out, Chlorophyta and Cyanobac-

teria, which were the only ones to differ significantly from the Oth-

ers and no-dominance groups. This was particularly striking for the

use of nitrogen resources (i.e. RUEN). In terms of community cohe-

sion, the Cyanobacteria-dominated communities were apart from the

others, exhibiting significantly lower negative and positive cohesion

(Fig. 1). To conclude, the consequence of dominance on community

structure and functioning appeared taxa-specific and dependent on

the considered community-level property. Overall, dominance by

Cyanobacteria showed the strongest effect on all the studied variables

and tend to separate these communities from others, notably in terms

of cohesion. Dominance by Chlorophyta also has strong effects on

community functioning while Bacillariophyta dominance seemed to

have a lower, albeit significant effect.

3.5. Characteristics of phytoplankton co-occurrence networks in
various dominance scenarii

We constructed co-occurrence networks to summarize the struc-

ture of phytoplankton communities in various scenarii of dominance

by a limited number of taxa (Fig. 2 and Figure A3). This was done

for the nine tested combinations of dominance index and relative

biomass thresholds and for the three groups for which we had the

most replicates: dominance by Chlorophyta or Cyanobacteria and ab-

sence of dominance. The pairwise similarity cutoffs estimated using

RMT were similar among the three groups and across the nine thresh-

olds combinations, with average values of 0.33±0.02, 0.32±0.01 and

0.32±0.03 for Chlorophyta, Cyanobacteria and no-dominance, re-

spectively. Comparison of observed networks topological properties

with those of randomized networks indicated that networks structures

were non-random and unlikely due to chance. The observed networks

exhibited a ratio of clustering coefficient to geodesic distance higher

than 1, which is thought to be characteristic of small-world networks

(Humphries and Gurney, 2008). This ratio was the highest in the

no-dominance networks (2.1 ±0.9), then decreased under dominance

with intermediate and low values for the Chlorophyta- (1.5 ±0.3) and

Cyanobacteria-dominated (1.2 ±0.1) networks.

The observed numbers of nodes and links decreased from the

Chlorophyta-dominated networks, the no-dominance and the

Cyanobacteria-dominated networks (Table 4). Network density was

the highest in the Cyanobacteria-dominated networks while the

Chlorophyta and no-dominance networks exhibited lower and more

similar density. Two indexes reflecting the size of the networks, geo-

desic efficiency and average geodesic distance, respectively increased

and decreased from no-dominance, Chlorophyta- and Cyanobacte-

ria-dominated networks. The highest proportion of negative links was

observed in the Cyanobacteria-dominated networks with, on aver-

age, 48.0±7.5% of negative links. No-dominance (34.7 ±24.8%) and

Chlorophyta-dominated (34.5±14.7%) networks exhibited lower pro-

portions of negative links. The wide range of values observed in the

no-dominance networks (5.3 71.4% of negative links) was associated

with a more variable number of communities used for constructing

networks in this group. It is worth noting that the most extreme values

(i.e. 63.3 and 71.4% of negative links) were observed in networks con-

structed with the smallest number of communities, that is with n=17,

20 and 20 communities.

In terms of average node degree, the three networks differed sig-

nificantly (in eight out of nine thresholds combinations, Kruskal,

p.value <0.05, Table S8), with the networks under dominance ex-

hibiting higher average node degree than the no-dominance network

(Dunn, p.value <0.05). The three networks differed significantly in

terms of node betweenness (for every threshold combination, Kruskal,

p.value <0.001) and Cyanobacteria-dominated networks exhibited

systematically lower values compared with other groups. In terms of

clustering coefficients, the three networks differed significantly (in

eight out of nine thresholds combinations, Kruskal, p.value <0.05),

with Cyanobacteria-dominated networks exhibiting higher values than

other groups.

Then, we tested whether the biomass of a taxon was related to its

centrality in the network using Pearson correlation (i.e. degree and
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betweenness, Table 5 and Figure A4) and all the estimated correlation

coefficients were negative. In the absence of dominance centrality and

biomass appeared unrelated. Betweenness was never significantly re-

lated to biomass across the tested threshold combinations while degree

and biomass were significantly related three times. As observed for the

proportion of negative links, these significant relationships were only

observed in networks constructed with the lowest number of obser-

vations. In Chlorophyta-dominated networks, betweenness was never

significantly related to biomass, while node degree was related to bio-

mass three times and only with the most stringent dominance thresh-

old, i.e. 0.55. In Cyanobacteria-dominated networks, betweenness was

significantly related to biomass four times, while node degree was sig-

nificantly related to biomass eight out of nine times.

4. Discussion

4.1. Drivers of dominance in phytoplankton communities from the
periurban waterbodies of the IDF region

The best predictors of the dominance status in phytoplankton com-

munities of the periurban waterbodies of the IDF region during sum-

mer were related to human pressures on these ecosystems. Dominance

by a limited number of taxa was frequently observed (31.6 51.5%,

depending on the thresholds used) and was mostly attributed to two

phyla, Chlorophyta (35.5 40.6% of the cases) and Cyanobacteria

(30.3 36.5%). Dominance was determined by a combination of (i)

water column characteristics, that are related to the intensity of local

anthropogenic pressures (TN and TN:TP) and meteorological condi-

tions (water temperature and stratification), and (ii) the capacity of wa-

terbodies to buffer these pressures (surface, depth) or the potential for

immigration of taxa from other lakes including harmful algea (connec-

tion to the hydrological network). Our results support previous inves-

tigations showing that high N concentrations (Almanza et al., 2018;

Beaver et al., 2018; Bonilla et al., 2012; Marion et al., 2017; Paerl

and Otten, 2016; Persaud et al., 2015) and warmer waters (Dokulil

and Teubner, 2000; Paerl and Huisman, 2008; Wagner and Adrian,

2009) favor the dominance of Cyanobacteria in phytoplankton com-

munities at large scales. This is thought to be related to the particular

ecological traits of these organisms (Mantzouki et al., 2016), such as

higher increase in growth rates per unit of temperature compared with

other groups (Carey et al., 2012), their ability to fix atmospheric N2, or

to regulate their buoyancy in stratified water columns associated with

warmer waters (Rinke et al., 2010). Regarding dominant Chlorophyta

taxa, the most prominent genera (Coelastrum, Pediastrum and Pan-

dorina) were known for their wide spatial distribution and their high

abundance in meso to eutrophic freshwater ecosystems. Additionally,

these genera exhibited similar features. They are known for their colo-

nial lifestyle and for being hard to graze by zooplankton due to a com-

bination of thick cellulose cell walls and the production of a gelati-

nous envelope (Porter, 1977). Further, these genera are known for self

regulating their vertical position and are typically blooming in early

summer, often preceding blooms of Cyanobacteria (Salmaso, 2000;

Salmaso et al., 2015).

The classification accuracy of MLR models was remarkable

(63 80% depending on the models). This approach has been com-

pared with RF for classifying soil types and exhibited either higher

(Bernhardt-Barry et al., 2018) or lower performances (Camera et al.,

2017). In a more similar context, (O'Farrell et al., 2019) obtained ac-

curacy values comparable to ours while trying to classify Cyanobac-

teria into different ecological strategies. Additionally, MLR models

were more accurate in predicting the presence than the absence of

dominance, which contradicts results from the above-mentioned study

(O'Farrell et al., 2019). This might be due to the selected variables

that, in our case, were chosen for their expected influence on envi-

ronmental characteristics within the waterbodies. Another explanation

could be that a non-dominated phytoplankton community can be ob-

served in a wide array of environmental conditions and be composed

of many combinations of organisms. On the contrary, dominance im-

plies that particular organisms have been selected by a narrower set

of environmental conditions. In that sense, it appears less complex to

identify favorable than unfavorable conditions to dominance.

4.2. Considerations regarding the use of networks approaches

Networks-based approaches provide an integrated and explicit rep-

resentation of microbial communities, opening the way for a better un-

derstanding of their structure and functioning (Faust and Raes, 2012;

Karimi et al., 2017). Here we assessed and compared the co-occur-

rence patterns of phytoplankton organisms under the dominance by

two different phyla, Chlorophyta and Cyanobacteria, and in the ab-

sence of dominance. The constructed networks represent co-varia-

tions in the biomass of phytoplankton organisms across space and

time, which could result from similar response to environmental dri-

vers or from inter-dependencies taking the form of biological inter-

actions (Röttjers and Faust, 2018). While positive associations might

result from similar niche or mutualism, negative associations might

reflect non-overlapping niche or antagonism. Analyses of macro-eco-

logical networks have shown that co-occurrences may better reflect

niche preferences than biotic interactions (Freilich et al., 2018). This

is an important point to keep in mind, as trying to infer associations

using network analysis in highly heterogeneous environments might

produces erroneous results (Röttjers and Faust, 2018). Here, we tried

to avoid such bias by not considering networks as representations of

biological interactions but rather as a synthetic representation of the

structure of phytoplankton communities in various ecological contexts

(in our case phytoplankton dominance scenarii).

4.3. Relationships between phytoplankton communities structure,
functioning and co-occurrence networks

There is still no consensus about the ability of network-based

analyses to reflect biologically and/or ecologically meaningful proper-

ties of environmental communities (Röttjers and Faust, 2018). In the

following sections, we discuss whether the observed modifications in

the structure and functioning of phytoplankton communities were re-

flected in co-occurrence networks.

The co-occurrence networks observed in this study exhibited

small-world characteristics (low geodesic, high average degree and

high efficiency) and this type of network tend to be considered as

robust to perturbations and the random loss of nodes (Peura et al.,

2015; Watts and Strogatz, 1998). Interestingly, the test proposed by

Humphries and Gurney (2008) suggested that under dominance net-

works departed from the typical small-world network.

Community richness was highly influenced by the level of dom-

inance and the identity of dominant taxa. Dominance by Bacillario-

phyta and Chlorophyta was associated with a higher richness, while

dominance by Cyanobacteria and other groups was associated with

lower richness compared with the no-dominance communities. This

was well reflected in the number of nodes composing the networks.

(Aguilera et al., 2017a; Dokulil and Teubner, 2000; Litchman, 2003).

Similarly, observations of reduced number of taxa in microbial com-

munities dominated by Cyanobacteria are legions (Bagatini et al.,
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2014; Filstrup et al., 2014; Holland and Kinnear, 2013; Louati et al.,

2015; Toporowska and Pawlik-Skowrońska, 2014; C. Yang et al.,

2017a,b; J. R. Yang et al., 2017a,b; Zhao et al., 2016).

Although composed of fewer nodes and links, the Cyanobacte-

ria-dominated networks can be considered as more complex than the

others as exhibiting a higher link density and higher average number

of links (degree) per node. Similar reductions in size and increased

complexity have been reported in networks associated with Micro-
cystis aeruginosa colonies (C. Yang et al., 2017a,b) and after inocu-

lation of freshwater mesocosms with the large colonial Cyanobacte-

ria Gloeotrichia echinulata (Carey et al., 2017). This later study re-

ported that increasing densities G. echinulata increased the richness,

biomass, evenness and composition stability of phytoplankton com-

munities. However, this study was done in oligotrophic waters and

the effects of G. echinulata were mostly attributed to its ability to re-

lease N and P in the environment (Carey et al., 2014). Consequently,

these results might be specific to the conditions testedin this study and

not generalizable to a wider context. On the contrary, by studying 50

waterbodies that represent heterogeneous and mostly non-oligotrophic

environmental conditions, we observed that the increasing presence of

Cyanobacteria was associated with higher biomass along with lower

richness and evenness. In addition, the lowest evenness, richness and

number of nodes in the networks were associated with higher propor-

tions of negative links and corresponded to conditions of dominance

by Cyanobacteria. Similar results were reported in a large-scale analy-

sis on the role of dominance in shaping microbial co-occurrence net-

works (Faust et al., 2015). The proportions of negative links ( 50%)

observed under cyanobacterial dominance appear relatively high re-

garding the values reported for other networks in the literature: 12%

(C. Yang et al., 2017a,b), <20% (Shi et al., 2016), <5% (Van Goethem

et al., 2017), 23% (Hu et al., 2017) and 37 44% (Jones et al., 2018).

Similarly, many negative associations have been reported in bacterial

co-occurrence networks during a Dolichospermum-Microcystis bloom

(Guedes et al., 2018; Woodhouse et al., 2016).

The modifications of structure observed in conditions of dom-

inance were translated in modifications of community functioning,

with higher biomass and efficiency of resource use (N and P) un-

der dominance, as observed in other studies (Filstrup et al., 2014;

Gamfeldt and Hillebrand, 2011; Hodapp et al., 2015; Lehtinen et

al., 2017). Similarly, we observed higher efficiency in networks un-

der dominance, as suggested by shorter distance between nodes and

higher geodesic efficiency. In addition, community functioning de-

pended on the identity of the dominant taxa, with Bacillariophyta,

Chlorophyta and Cyanobacteria reaching the highest biomass when

dominant. Interestingly, Bacillariophyta reached high biomass with-

out exhibiting high efficiency but rather when total N concentrations

were very high. On the contrary, Chlorophyta and Cyanobacteria dom-

inance were associated with elevated efficiency (RUEN and RUEP)

and were observed in low TN:TP ratio conditions but also across a

wide range of TN and TP concentrations. This suggests that these two

groups are able to bloom in a wider array of environmental conditions

which can explain why they were responsible for most of the cases of

dominance.

Cohesion metrics were developed to reflect the degree of con-

nectivity in a microbial community (Dai et al., 2018; Herren and

McMahon, 2018) or its complexity/interconnectedness (Danczak et

al., 2018). In addition, stronger cohesion (negative or positive) is

thought to reflect the stabilizing effect of biotic interactions on com-

munity composition (Dai et al., 2018; Herren and McMahon, 2018,

2017). We observed that community cohesion was the lowest and dif-

fered the most from the no-dominance communities under cyanobac

terial dominance. This agree with studies reporting few and weak pos-

itive correlations of cyanobacterial nodes with other phyla (C. Yang

et al., 2017a,b; Zhao et al., 2016) and suggests that these communi-

ties should be less stable. However, other studies at the regional scale

reported higher temporal and spatial stability in community compo-

sition under the combined pressure of climate change, eutrophication

and cyanobacterial dominance (Filstrup et al., 2014; Monchamp et al.,

2018). Taken together, these results show that phytoplankton commu-

nities under Cyanobacteria dominance exhibit a lower cohesion and

less interactions between taxa but at nonetheless compositionally sta-

ble.

A significant negative relationship was observed between the bio-

mass of a taxon and its centrality in the networks (degree or between-

ness) in conditions of Cyanobacteria dominance, suggesting that most

of the community biomass was redirected toward the outer part of

the network. These relationships were driven by cyanobacterial nodes,

which exhibited a low number of connections (low degree) or were

located on the edges of the networks (low betweenness) while repre-

senting medium to high biomass. Cyanobacteria could redirect com-

munity biomass without participating in inter-taxa interactions. Exper-

imental studies testing the relationship between biodiversity and func-

tioning in phytoplankton communities have shown that Cyanobacte-

ria exhibited a high selection - low complementarity effect on com-

munity biomass (Behl et al., 2011; Gamfeldt and Hillebrand, 2011).

In other terms, they influence biomass through their high productivity

and competitiveness rather than their ability to positively interact with

other species.

To summarize, the characteristics of co-occurrence networks

seemed to reflect the modifications of phytoplankton communities

structure (reduced richness, lower cohesion) and functioning (higher

biomass and RUE) observed in conditions of dominance. Reduction

in community richness was reflected in the number of nodes compos-

ing the network and might be explained by the fact that environmen-

tal conditions allowing cyanobacterial dominance are suitable to fewer

taxa than conditions allowing the dominance by other groups (i.e. en-

vironment filtering). Dominance was associated with more complex

but also smaller and more efficient networks, which exhibited en-

hanced community functioning. In addition, more efficient commu-

nity functioning seemed to arise through selection effect (Gamfeldt

and Hillebrand, 2011), as suggested by the negative relationship be-

tween centrality and biomass in conditions of Cyanobacteria domi-

nance. Further, the potential of organisms for inter-taxa association

(i.e. connectedness) was reflected in their degree in the network and

dominance by organisms with low potential corresponded to lower

community cohesion. The isolation of a taxon, represented by its low

centrality and connectedness, is not necessarily deleterious and may

even be beneficial if it reflects its ability to fill a specific niche space

for which no direct competitor exists (Peura et al., 2015). Several

studies have shown that cyanobacterial dominance generates envi-

ronmental conditions that are favorable to its maintenance and can

consequently thus be observed for prolonged periods (Corcoran and

Boeing, 2012; Filstrup et al., 2014; Scheffer et al., 1997). This might

be related to specific cyanobacterial traits involved in their high bio-

mass development (e.g. nitrogen fixation, specific CO2 fixation, buoy-

ancy). Another hypothesis might be related to the effect of compe-

tition/exclusion mechanisms on community composition (Aguilera et

al., 2017a; Dokulil and Teubner, 2000; Litchman, 2003). For instance,

Cyanobacteria are more efficient than other groups for light-harvest-

ing in low-light conditions generated by high biomass (Litchman,

2003; Schwaderer et al., 2011) and are able to release a wide va-

riety of allelochemical compounds (Dias et al., 2017; Holland and

Kinnear, 2013; Leflaive and Ten-Hage, 2007). To conclude, it ap
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pears that the ecological particularities of this group allow their dom-

inance in waterbodies under anthropogenic pressure, and this resulted

in enhanced community functioning through selection effect. Once es-

tablished, dominance creates environmental conditions favorable to its

maintenance and we can hypothesize that the resulting network (more

complex, higher density and proportion of negative links) reflect the

fact the remaining taxa are involved in more interactions (e.g. com-

mensalism, mutualism, competition) in order to occupy the few avail-

able niches and scavenge the remaining resources.

5. Conclusions

We used a multidisciplinary approach that combined high reso-

lution biomass reconstruction, dominance modeling using predictor

variables at various scales (catchment, waterbody and water column),

biodiversity and functioning estimation at the community level and

co-occurrence networks. This approach was successful as it provides

a synthetic perspective on the causes and consequences of dominance

in phytoplankton communities from 50 waterbodies in the highly pop-

ulated IDF region (Fig. 3). Our results support the idea that the phyto-

plankton composition and dominance status are directly related to (i)

the intensity of human pressures on these ecosystems, and their impact

on water column characteristics (total N, TN:TP ratio, water temper-

ature and stratification), but also to (ii) their capacity to buffer such

pressures, which depends on their surface, depth and connection to the

hydrological network). The consequences of dominance were depen-

dent on the identity of the dominant taxa, and conditions leading to

Cyanobacteria dominance challenge more strongly the structure and

functioning of phytoplankton communities than conditions favoring

the dominance by other groups. Finally, once established this domi-

nance appear to create condition favorables to its self-maintenance as

suggested by worldwide increases in the frequency and intensity of

cyanobacterial blooms.
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