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Abstract

The development of novel therapeutics to prevent cognitive decline of Alzheimer’s disease

(AD) is facing paramount difficulties since the translational efficacy of rodent models did not

resulted in better clinical results. Currently approved treatments, including the acetylcholin-

esterase inhibitor donepezil (DON) and the N-methyl-D-aspartate antagonist memantine

(MEM) provide marginal therapeutic benefits to AD patients. There is an urgent need to

develop a predictive animal model that is phylogenetically proximal to humans to achieve

better translation. The non-human primate grey mouse lemur (Microcebus murinus) is

increasingly used in aging research, but there is no published results related to the impact of

known pharmacological treatments on age-related cognitive impairment observed in this

primate. In the present study we investigated the effects of DON and MEM on sleep-depri-

vation (SD)—induced memory impairment in young and aged male mouse lemurs. In partic-

ular, spatial memory impairment was evaluated using a circular platform task after 8 h of

total SD. Acute single doses of DON or MEM (0.1 and 1mg/kg) or vehicle were administered

intraperitoneally 3 h before the cognitive task during the SD procedure. Results indicated

that both doses of DON were able to prevent the SD-induced deficits in retrieval of spatial

memory as compared to vehicle-treated animals, both in young and aged animals Likewise,

MEM show a similar profile at 1 mg/kg but not at 0.1mg/kg. Taken together, these results

indicate that two widely used drugs for mitigating cognitive deficits in AD were partially effec-

tive in sleep deprived mouse lemurs, which further support the translational potential of this

animal model. Our findings demonstrate the utility of this primate model for further testing

cognitive enhancing drugs in development for AD or other neuropsychiatric conditions.
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Introduction

Alzheimer’s disease (AD), the most common form of dementia, is a neurodegenerative disor-

der clinically characterized by progressive deterioration of cognitive and behavioral function.

AD patients exhibit gradual memory and learning impairment, behavioral and personality

alterations, and loss of language skills, all of which greatly impairs the individual’s daily func-

tioning and ultimately leading to death [1]. Post-mortem brain sections of AD patients show

hallmark histopathological features, including extracellular amyloid-beta (Aß) peptide-con-

taining plaques and intracellular neurofibrillary tangles composed of hyperphosphorylated tau

protein [2,3]. While the exact etiology of AD is not yet determined, a cascade of pathophysio-

logical events takes place causing neuronal loss, synaptic dysfunction and neurotransmitter

deficiency as the disease progresses. This on-going event impairs crucial memory-related

structures, including hippocampus and entorhinal cortex, association cortices and the cerebral

default network, causing regional and then diffuse neuronal loss and atrophy [4,5]. This patho-

logical event causes the functional deterioration of neurotransmitter system, leading to a

decreased amount of acetylcholine, and activities of choline acetyltransferase (ChAT) and

acetylcholinesterase (AChE) in almost the entire neocortex [6]. Impairments in the glutamate

neurotransmission system, on the other hand, mediate oxidative stress and excitotoxicity [7,8],

resulting in cellular injury and apoptotic cell death.

At present, there are only four FDA-approved, marketed drugs for the symptomatic treat-

ment of AD. Three of these drugs, Donepezil (DON), galantamine and rivastigmine are acetyl-

cholinesterase (AChE) inhibitors and were developed based upon the fact that AD brains show

the highest level of cholinergic neuron degeneration in the basal forebrain, resulting in a subse-

quent reduction in cholinergic transmission to the cerebral cortex [9,10,6]. The fourth drug,

memantine (MEM), a low-to-moderate affinity non-competitive antagonist for N-methyl-D-

aspartate (NMDA) receptors was developed based upon the observation that soluble Aß oligo-

mers induce memory impairment and synapse loss by NMDA receptor activation [11,12,13].

Despite the evidence for impaired function of other neurotransmitter systems in AD [14,15],

findings of reduced cholinergic activity in the basal forebrain-cortical projections in brains of

AD patients with cognitive deficits [16] constitute the main rationale of cholinergic replace-

ment therapy as the principal therapeutic approach. The most prescribed drug DON is a highly

brain-selective, reversible, competitive AChE inhibitor that has a very prolonged half-life (~70

h) and has been shown to be somewhat effective but quite well tolerated in AD patients [17].

Large-scale clinical studies have reported variable efficacy of DON in mild, moderate and even

severe stages of AD based upon cognitive function, daily activities and behavior [18]. In pre-

clinical studies treatment with DON has been shown to improve cognitive performance in sev-

eral pharmacological models of impaired learning and memory [19,20]. MEM is the only

glutamatergic drug approved for the treatment of moderate-to-severe AD patients [21]. There

are conflicting results reported regarding the efficacy of MEM treatment. A handful of studies

have demonstrated positive results [22,23,24] whereas some other studies reported insignifi-

cant or even negative cognitive outcomes [25,26,27]. Despite the reported symptomatic and

cognitive benefits of DON and MEM in patients with mild to severe dementia [28,10,29,30],

these two drugs neither cure nor prevent progression of the disease and their reported symp-

tomatic benefits could be debated as to whether they reached clinical significance or not [31].

Animal models are essential for investigating the pathophysiological processes underlying

AD and the effects of drug therapies. Animal models, especially transgenic AD mouse models

provided valuable insight regarding the pathophysiological aspects of the disease but the suc-

cessful outcome of therapeutic trials based on data generated in these models has so far been

lacking [32,33]. For decades researchers had been searching for a valid and more predictive
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animal model to investigate the disease mechanisms, test treatments and evaluate preventive

strategies and cures. Recently, the grey mouse lemur (Microcebus murinus), a non-human pri-

mate with median survival of 5.7 years for males and a maximum longevity of 12 years, has

drawn interest as a potential model for research on ageing (see [34] for extensive review).

Age associated functional deficits have been investigated in this species and an age-dependent

cerebral atrophy was found to correlate with cognitive impairment. More specifically, the

impairment of spatial memory performances was related to the atrophy of the hippocampus

and entorhinal cortex in older animals [35]. More recently, it has been demonstrated that

about half of the old mouse lemurs displayed a specific deficit in long-term memory retention

but not in acquisition in a visual discrimination task [36].

The challenge paradigm, namely sleep-deprivation (SD), used in this study is an established

method to induce transient cognitive impairment and has been used in many preclinical stud-

ies [37,38,39]. A number of publications reported that this procedure effectively induces tem-

porary cognitive deficits analogous to those shown by patients with AD-like dementia [40]. In

a previous study in adult mouse lemurs, we effectively demonstrated the disruptive effects of

the SD on spatial memory retrieval, a cognitive function that is affected in AD patients as the

disease progresses [41]. SD specifically reduces cortical ACh levels [42], and alters NMDA

receptors [43] what may, at least partially, contribute to spatial memory impairment observed

after SD. Both observations make this challenge appropriate when targeting an AChE inhibitor

such as DON and an NMDA receptors antagonist such as MEM.

We therefore have examined the efficacy of two above-mentioned drugs in the grey mouse

lemur, which is phylogenetically proximal to the human species and bears the natural inci-

dence of AD-like pathologies in some aged animals. To our knowledge, there has been no

study performed as a back translational experiment combining the effect of age and pharmaco-

therapy on cognitive function in this novel model. In the current study, we sought to deter-

mine the extent to which spatial memory performances would be disrupted by SD challenge in

mouse lemurs and also the extent to which an acute pre-treatment of DON or MEM could

decrease the negative impact of SD on cognitive processes. Since the disruptive effects of the

SD on spatial memory retrieval in our previous study using young animals was effective but

not very potent [41], we applied this paradigm in both young and aged animals. Because aged

animals have lower performances (more errors) compared to young ones in the spatial mem-

ory protocol used in this study [35], we expected a more challenging effect of SD in old animals

compared to their young counterparts. Based upon the findings of age-related cognitive

research in this primate model, our hypothesis was that DON or MEM would be able to pre-

vent the SD-induced spatial memory deficits.

Materials and methods

Ethics statement

All experiments were performed in accordance with the Principles of Laboratory Animal Care

(National Institutes of Health publication 86–23, revised 1985) and the European Communi-

ties Council Directive (86/609/EEC). The research was conducted under the authorization

number 91–305 from the “Direction Départementale de la Protection des Populations” and

under the approval of the Cuvier Ethical Committee (Committee number 68 of the "Comité
National de Réflexion Ethique sur l’Expérimentation Animale") under the authorization number

68–018. In accordance with the recommendations of the Weatherall report, “The use of non-

human primates in research”, special attention was paid to the welfare of the animals during

this work to minimize nociception [44].
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Animals

Sixty-nine male mouse lemurs were used in these experiments. The experiments were per-

formed in both young (2 to 3 years old) and aged (6 to 7 years old) animals. They were born

and raised in the laboratory breeding colony of Brunoy (MNHN, France, license approval N˚

A91.114.1) from a stock originally derived from the south-western coast of Madagascar 46

years ago. The animals were disease free and the general condition of captivity was maintained

under constant temperature of 24–26˚C and relative humidity of 55%. Measured food and

water were allocated to each animal. The daily food allocation consists of fresh banana, apple

and a hand-made mixture of cereals, eggs and milk. Animals were kept in alternating 6-month

period of long-days (light:dark 14:10) and short-days (light:dark 10:14). Mouse lemurs were

housed in individual cages enriched with tree branches and wooden nest.

Experimental design

All the experiments were performed during the long-day photoperiod (lights on at 08:00 and

off at 22:00). We induced transient reversible cognitive impairment by 8 h of total SD and spa-

tial memory performance was measured using a circular platform test. In DON experiment 13

young animals (0.1mg/kg, n = 6; 1mg/kg, n = 7) and 13 aged animals (0.1mg/kg, n = 6; 1mg/

kg, n = 7) were used. In MEM experiment, 13 young (0.1mg/kg, n = 6; 1mg/kg, n = 7) and 15

aged animals (0.1mg/kg, n = 7; 1mg/kg, n = 8) and in vehicle (Physiological saline) treated

experiment 8 young and 6 aged animals were used. All the animals underwent training during

day 1 (pre-SD session) and 8h of total SD was performed on day 2 followed by testing immedi-

ately after the SD challenge (post-SD session). DON, MEM or saline was injected intraperito-

neally 3h before the end of the SD or before the onset of the cognitive function test (Fig 1).

Circular platform test

Spatial performances were assessed in a circular platform apparatus [35] which is a modified

version of Barnes maze especially adapted for mouse lemurs. Briefly, the circular platform is

divided into 12 compartments with 12 equally spaced open circular holes (3 cm from perime-

ter) where a goal box can be affixed for the escape of the animal. The platform is fixed over a

spring rotator so it could rotate freely in both directions, to avoid the use of intra-maze cues

between successive trials. The whole platform is surrounded by a 15 cm high white wall with a

transparent Plexiglas ceiling that allows the mouse lemur to see the extra-maze visual cues.

The apparatus is surrounded by a black curtain hung from a square metallic frame, the ceiling

of which is a one-way mirror to allow observation for the experimenter. Twelve objects are

Fig 1. Experimental design including photoperiod. White bar indicates the light-on period and black bar indicate the light-off period.

Training started at 16:00 on day 1 and 8h of sleep deprivation (SD) started at 8:00 on day 2, the test was performed immediately after SD on

day 2 and DON, MEM or Saline injected 3h before the test.

https://doi.org/10.1371/journal.pone.0184822.g001
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attached along the inner surface of the frame to serve as visual cues. The starting box is an

open-ended dark cylinder positioned in the center of the platform.

In all experiments, training trials (day 1) consisted of 4 trials of maximum 10 min, with an

inter-trial interval of 5 min. During the first 2 trials, the animals were habituated in the maze

with only one open compartment that contains the goal box and rest of the compartment was

closed by thick white paper board. During the third and fourth trial, all the compartments

were open and only one compartment gave access to the goal box (the target). Testing con-

sisted of 2 trials of maximum 10 min, in the same condition as the last trials of the training

day. Each trial started with the placement of animal in the starting box at the center of the

maze. After 60 sec, the box was removed to release the animal. The aim of the tests was to

reach the goal box positioned beneath one of the 12 compartments. The position of the target

was fixed for each animal throughout the test during day 1 and day 2. When the animal

reached the target, the trial was stopped and the animal was allowed to remain in the goal

box for 2 min. Performance was assessed by the number of errors (entering the four limbs in

an incorrect compartment), the latency (the total time required by the animal to reach the tar-

get), the rank of the target zone (two adjacent quadrants surrounding either side of the goal-

box containing quadrant; the rank was measured by the number of errors to reach the target

zone), and the number of repetition (entry in the same quadrant more than one time) during

the testing. Results are expressed by day, each day representing the mean of the two trials of

the day.

SD challenge

Mouse lemurs were subjected to 8h total SD (8:00–16:00) starting at the onset of light period

(usual resting phase). The total SD was carried out in the first part of the light period because

the sleep is at its maximum during this period [45]. During the whole SD period, mouse

lemurs were under constant visual observation in their home cage. The nest and the tree

branches were removed from the cage for proper visualization of the animals. SD was achieved

by gentle handling, which consists of a standardized procedure of tapping on the cage, moving

the index finger in front of the cage and gently shaking the cage if required. Gentle handling

was performed if the animal shows signs of sleep such as eye closer, behavioral arrest more

than 60 s or huddled body posture. When the above measures were not sufficient to keep the

animals awake the front door was opened and closed to stimulate the animals. The electroen-

cephalographic recording confirmed that these interventions keep the animals in a state of

wakefulness for 8 h in our previous study [41].

Drug administration

DON hydrochloride or MEM hydrochloride (generous gift from Dr. Darrel Pemberton, Jans-

sen pharmaceuticals, B-2340, Beerse, Belgium) was dissolved freshly each day in physiological

saline to a concentration of 1mg or 10mg/mL (20 μl of tween 80 was added to DON for com-

plete dissolution). DON and MEM (0.1 and 1mg/kg) were injected intraperitoneally (i.p.) to

young and aged mouse lemurs 3 h before the end of sleep deprivation and the onset of cogni-

tive function test.

Rationale for dose choice

DON and MEM doses were chosen to obtain a similar exposure in mouse lemurs as observed

at steady state in humans after therapeutic doses. For DON, plasma steady state concentrations

of 22.8 and 45.0 ng/mL are reported for 5 and 10 mg/d, respectively [27]. For MEM, plasma

steady state concentrations range from 19 to 77 ng/mL after 5 and 20 mg/d, respectively
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[46,47]. Based on the data from a preliminary pharmacokinetic (PK) study study in grey

mouse lemurs, two population PK models were built, one for each drug (not published), using

NONMEM 7.2 (Icon Development Solutions, Hanover, Maryland). With these PK models,

concentration profiles for different doses of DON and MEM were simulated, eventually lead-

ing to the selection of the dose that would satisfy the aforementioned criterion, i.e.0.1 and 1

mg/kg.

Statistical analysis

For all statistical assessments, data were first assessed for normality using GraphPad Prism

software (version 5.01; GraphPad Software Inc. CA, USA). Effect of sessions was evaluated by

paired Wilcoxon signed rank test (comparing condition during pre-SD session to condition

during post-SD session). To compare the effect of SD between young and aged animals in

saline condition, we tested the variation in number of errors between day 1 and day 2 in young

vs aged animals (number of errors during day 2—number of errors during day 1). Test was

performed using a non-parametric Mann-Whitney rank comparison. A p-value <0.05 was

considered as significant. All values are given as median and interquartile (IQ: lower quartile–

upper quartile) in the text and are represented as box plots in figures.

Results

DON effect on SD-induced cognitive deficits in young animals

When the animals under SD were treated with vehicle, they committed significantly more

errors during the day 2 trials (testing day) than during the day 1 trials (median: 2.5, IQ:

1.6–3.5 for day 1; median: 3.75, IQ: 2.6–5.3 for day 2, p = 0.021; Fig 2A). This SD-induced

increase in the number of errors in the saline group was not observed in the 0.1mg/kg DON

injected group (median: 4.25, IQ: 1.88–6.25 for day 1; median 1.5, IQ: 0.75–3.5, p = 0.247)

or 1mg/kg DON injected group (median: 4.5, IQ: 1.5–5 for day 1, median: 3, IQ: 2.5–3.5

for day 2, p = 0.734, Fig 2A). Between groups analyses of data for day 1 or day 2 did not

show any significant difference. No significant differences were observed for the latency

(p = 0.843, Fig 2B), the rank zone (p = 0.232, Fig 2C) and for the number of repetitions

(p = 0.824, Fig 2D) between day 1 and day 2 in the saline-treated group. Both doses of

DON did not show any significant difference for latency, rank zone or number of errors

between day 1 and day 2. Acute injection of DON 0.1 and 1mg/kg prevented the SD-

induced retrieval errors.

MEM effect on SD-induced cognitive deficits in young animals

Fig 2 shows the effects of MEM on spatial memory deficits in young animals. The observed sig-

nificant increase in the number of errors on day 2 in saline treated animals was prevented by

acute treatment with MEM 0.1mg/kg (median: 3, IQ: 2.88–5.25 for day 1; median: 6., IQ: 3.5–

7.38 for day 2, p = 0.312; Fig 2A) or 1mg/kg (median: 4, IQ: 3.5–6.5 for day 1; median: 4, IQ:

1–5.5 for day 2, p = 0.552; Fig 2A). Like for the saline treated group, no significant differences

were observed in MEM groups for the latency, rank zone or number of repetitions between

day 1 and day 2 (Fig 2B–2D). Acute injection of MEM at 0.1 and 1mg/kg prevented the SD-

induced retrieval errors.

DON effect on SD-induced cognitive deficits in aged animals

As shown in Fig 3A, saline treated-old animals made a significantly higher number of errors

during day 2 trials as compared to day 1 trials (median: 3.75, IQ: 2–6.38 for day 1; median: 9,
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IQ: 4.63–11.50 for day 2, p = 0.035). Analysis of data showed that the number of errors com-

mitted during day 2 in the DON groups administered with 0.1mg/kg i (median: 6.25, IQ:

4.75–11 for day 1, median: 5, IQ: 3–8.75 for day 2, p = 0.843) and 1mg/kg i (median: 4.5, IQ:

2.5–6 for day 1, median: 3.5, IQ: 1.5–4 for day 2, p = 0.141) were not significantly different in

comparison to day 1. The latency for saline treated- animals and DON treated- animals did

not show a significant difference between day 1 and day 2 (saline, p = 0.687; DON 0.1mg/kg,

p = 0.437; DON 1mg/kg, p = 0.109; Fig 3B). The number of rank zone in saline-treated ani-

mals in day 2 was higher as compared to day 1 and was closed to the chosen level of signifi-

cance (p = 0.057) whereas the number of rank zone in both doses of DON injected animals

was not different between day 1 and day 2 (DON 0.1mg/kg, p = 1.00; DON 1mg/kg,

p = 0.141; Fig 3C). The saline-treated old animals showed a significant higher number of rep-

etitions on day 2 as compared to day 1 (p = 0.034). This was not observed in either group of

DON injected animals (0.1mg/kg, P = 0.375; or 1mg/kg, p = 0.054; Fig 3D). The acute injec-

tion of DON (0.1 or 1mg/kg) was able to prevent SD-induced impairment of memory

retrieval in old animals.

Fig 2. Effects of donepezil (DON) and memantine (MEM) on sleep-deprivation induced spatial memory performances in circular

platform test of young grey mouse lemurs showing median. (A) number of errors, (B) latency, (C) rank zone, and (D) number of

repetitions. Significant differences for the comparison of day 1 and day 2 (Wilcoxon signed rank test) are indicated as * (p<0.05).

Performance was assessed by the number of errors (entering the four limbs in an incorrect compartment), the latency (the total time required

by the animal to reach the target), the rank of the target zone (two adjacent quadrants surrounding either side of the goal-box containing

quadrant; the rank was measured by the number of errors to reach the target zone), and the number of repetition (entry in the same quadrant

more than one time) during the testing.

https://doi.org/10.1371/journal.pone.0184822.g002
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MEM effect on SD-induced cognitive deficits in aged animals

The MEM 0.1mg/kg-injected group also showed a significant higher number of errors at day 2

as compared to day 1 (median: 2, IQ: 0.5–2.5 for day 1; median: 6, IQ: 5.5–9.5 for day 2,

p = 0.041). In contrast to vehicle- and MEM 0.1mg/kg- injected groups, the number of errors

observed in the MEM 1mg/kg -injected group did not differ between day 1 and day 2 (median:

4, IQ: 1.63–6 for day 1, median: 4.5, IQ: 3.13–8.75 for day 2, p = 0.361). Latency for saline-

treated animals and MEM-treated animals did not show any significant difference between

day 1 and day 2 (Saline, p = 0.687; MEM 0.1mg/kg, p = 0.932; MEM 1mg/kg, p = 1.00; Fig 3B).

For both doses, the number of rank zone of MEM injected animals did not show any signifi-

cant difference between day 1 and day 2 (MEM 0.1mg/kg, p = 0.149; MEM 1mg/kg, p = 0.611;

Fig 3C). Although the number of repetitions at day 2 in MEM 0.1mg/kg injected-animals was

not significantly different from day 1, a trend toward a statistically significant effect was noted

(p = 0.062, Fig 3D). The number of repetitions in MEM 1mg/kg-injected animals did not differ

significantly between day 1 and day 2. The High dose of MEM (1mg/kg) but not the low dose

(0.1mg/kg) was noted to prevent the SD-induced impairment of memory retrieval in old

animals.

Fig 3. Effects of donepezil (DON) and memantine (MEM) on sleep-deprivation induced spatial memory performances in circular

platform test of aged grey mouse lemurs showing median. (A) number of errors, (B) latency, (C) rank zone, and (D) number of

repetitions. Significant differences for the comparison of day 1 and day 2 (Wilcoxon signed rank test) are indicated as * (p<0.05).

Performance was assessed by the number of errors (entering the four limbs in an incorrect compartment), the latency (the total time required

by the animal to reach the target), the rank of the target zone (two adjacent quadrants surrounding either side of the goal-box containing

quadrant; the rank was measured by the number of errors to reach the target zone), and the number of repetition (entry in the same quadrant

more than one time) during the testing.

https://doi.org/10.1371/journal.pone.0184822.g003
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Comparison of the effects of SD on number of errors between young and

aged animals in saline condition

The variation in number of errors between day 1 and day 2 is significantly increased in aged

animals median: 7.0, IQ: 2.5–7.5) compared to young (median: 1.0, IQ: 0.5–1.75) (p = 0.0011).

Discussion & conclusion

In a previous study we demonstrated that 8h of SD by gentle handling was a valid paradigm to

induce a transient impairment of spatial memory performances in young mouse lemurs [41].

The present study confirms our former findings and demonstrates that SD-induced spatial

memory impairment can be reversed in both young and aged animals by an acute administra-

tion of DON and MEM.

The current treatments of AD are designed either to augment the cholinergic function by

inhibiting the enzyme AChE or to prevent the excitatory effect of NMDA receptors. A number

of preclinical studies have reported cognition-enhancing effects of DON [48,49,50,51] follow-

ing chronic administration in mouse models of AD. Few preclinical studies have tested the

effects of acute administration of DON or MEM on memory performances [52,53]. Our pres-

ent study is one of the first to test the acute effect of these clinically used drugs in a model

which is phylogenitically proximal to human and an important natural model relevant for

aging or neurodegenerative diseases.

We believe that our challenge paradigm of SD by gentle handling is a valid protocol for pro-

ducing a transient reversible cognitive impairment without causing much stress. SD proce-

dures in rodents are normally performed either by moving treadmills or rotating wheels or

"disk-over-water" method in which the method itself incurs a significant amount of stress in

addition to SD challenge. Moreover, we have successfully established this challenge paradigm

to induce a spatial memory impairment in a previous study in grey mouse lemurs [41] and

electroencephalographic recordings have shown that this intervention effectively maintains

the animals in a state of wakefulness for several hours both in mouse lemurs [41] and rats [54],

without substantial changes in serum cortisol level in mice [55]. Together, our data support

the utility of SD as a suitable paradigm for the induction of a cognitive impairment not only in

young animals but also in aged animals.

In the present study, DON was shown to be effective in young and aged animals; at both

low (0.1mg/kg) and high (1mg/kg) doses, DON was able to prevent the significant increase of

SD-induced spatial memory retrieval errors as compared to vehicle treated animals (Figs 2A

and 3A). Our finding is consistent with the finding of [56] indicating that DON at doses of 0.5

and 1 mg/kg was effective in reversing scopolamine-induced spatial memory performances in

rats submitted to a water maze task. By and large, DON has shown to reverse scopolamine-

induced learning deficits in reference and working memory tests in rodents [57,20,58]. Inter-

estingly, a study performed in transgenic AD mice revealed that sub-chronic administration of

DON for 2 weeks concomitantly improved the cognitive deficits along with the dose-depen-

dent decrease of brain soluble and insoluble Aβ40 and 42 [59]. Consistent with preclinical

studies, DON has been shown to counteract the negative impact of SD on cognitive function

in a group of healthy individuals whose cognitive performance was greatly impaired by SD

[60,61]. Previous studies using cholinomimetics and AChE inhibitors have reported that these

drugs were able to improve memory function at low doses but higher doses were shown to

impair memory function, thereby resulting in an inverted U-shaped dose-response curve

[62,63]. Despite the fact that we only used two doses, in the present study, we did not find this

bell-shaped curve since both the low and high doses were able to reduce the SD-induced mem-

ory impairment in young and aged animals.
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The excitatory amino acid, glutamate, acts through NMDA receptors and these receptors

play an important role in calcium homeostasis, synaptic plasticity, and learning and memory

[64]. Dysregulation of NMDA receptors have been found in AD, and it has been reported that

NMDA receptor-expressing neurons are more vulnerable to AD-related insults [65,66]. A

number of studies have examined the effect of MEM on cognitive functions following different

protocols in different animal models [48,49,67] and most of them reported positive effects of

MEM on cognitive function. In the present study, acute treatment with MEM at 0.1 and 1mg/

kg improved the memory retrieval performances in young animals that were perturbed by a

SD challenge. However, in aged animals, MEM failed to improve the spatial memory perfor-

mances induced by SD challenge at 0.1 mg/kg. Only the dose of 1 mg/kg successfully reversed

the SD-induced memory retrieval impairment. This suggests that the SD paradigm is more

challenging for aged animals compared to young ones. It is worth mentioning here that low

doses of MEM have been found to impair the retrieval memory after 24 h of learning in adult

rat [26]. Interestingly, [50] showed that acute treatment with MEM improved working and

spatial memory dysfunction in transgenic AD mice, which is in line with our findings. Also

consistent with our results, a recent study by [68] investigated the effect of MEM on SD-

induced cognitive impairment in Octodon degus, a rodent model that exhibits a natural occur-

rence of some AD-related neuropathologies. Their findings indicated that MEM was able to

prevent reference and working memory impairment caused by SD in both young and aged

animals. Several clinical studies in healthy volunteers have examined the effect of MEM after a

single dose on mood, attention, immediate or delayed verbal memory and visuospatial mem-

ory and reported either weak positive effect or a negative impact depending on the tasks used

[69,70,71]. In contrast, some clinical studies in patients with moderate to severe AD demon-

strate that MEM was able to slow cognitive decline [72,73].

From a pharmacokinetic perspective, two possible limitations to the interpretation of the

results are worth mentioning. The first is that the PK modelson which the doses were chosen

were built from PK data obtained in young adults: it is possible that age may affect the pharma-

cokinetics of the drugs. Hence, the same dose could in theory give different concentration lev-

els in young and aged mouse lemurs (and therefore could explain, at least in part, the lack of

efficacy in spatial memory performance shown by MEM at the lower dose). The second limita-

tion is the lack of information available regarding the distribution properties of DON and

MEM in mouse lemurs, and especially the drug penetration into the brain. Doses for both

compounds were chosen to reflect plasma steady state concentrations observed in humans,

but even when plasma concentrations match perfectly across species, it is not possible to infer

the amount of drug actually reaching AChE enzymes and NMDA receptors in the brain. With

regard to these limitations, further and specific studies are required. It is worth mentioning

here that we avoided sampling blood during the sleep deprivation procedure to avoid unneces-

sary stress to the mouse lemurs that could hamper the cognitive performance of the animals.

To obtain the optimum translational efficacy, a novel therapeutic agent should be tested in

an animal model that has a satisfactory level of construct, face and predictive validity. Clinical

efficacy and drug toxicity translated from preclinical rodent models to humans has not always

resulted in a reliable degree of predictability with regard to clinical outcome. If transgenic

mouse models of AD have been providing invaluable information regarding molecular and

pathophysiological aspects of the disease, their translational efficacy has been to date disap-

pointing. Independent of the problem of underpowered studies with a too small number of

animals that may partly explain the lack of translatability noted when one use transgenic mice

relevant for AD, an ideal preclinical approach should select the most relevant animal model

that can provide a reflective behavioural task measuring higher-level cognitive functions in

order to achieve the highest translational efficacy. Considering the complexity of the human
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brain, and the high genetic homology between non-human primates and human species, the

non-human primate mouse lemurs may serve as a potential model for evaluating cognition-

enhancing therapeutic agents. In terms of construct validity, some aged mouse lemurs show

most of the AD-related neuropathological hallmarks as demonstrated by pathological studies

on brain section [74]. In our previous study we demonstrated that spatial memory perfor-

mances could be impaired transiently in young animals by SD [41], which was more challeng-

ing in aged animals as suggested by the present study. Indeed, SD impacts more aged animals

as revealed by their higher increase in number of errors between day 1 and day 2 compared to

young. Moreover, [35] and [75], using magnetic resonance imaging and behavioural studies,

recently demonstrated that both executive function and spatial memory decline with age in

this primate. This provides partial face validity of this animal model. The interest of using

non-human primates to obtain the optimum translational efficacy is supported by similar

studies in other non-human primates. In the study by [76], testing the effects of memantine

and galantamine on cognitive performances in aged rhesus macaques, the authors report mild

beneficial effects on some aspects of cognitive performance in aged animals. This observation

is in accordance with the present results and in agreement with the human observations

with these drugs, but in contrast to the more positive effects reported in the rodent literature.

These data suggest that the nonhuman primate might have more predictive validity for drug

development in this area than comparable rodent assays. This higher predictive validity can

be explained by the closer phylogenic proximity of primates, but also maybe by the higher

inter-individual variability that characterizes primates and may help mimic better human

variability.

In conclusion, the present study, to our knowledge, is the first in which acute administra-

tion of t two approved drugs for treating cognitive function in AD patients has been shown to

improve spatial memory impairment produced by a sleep deprivation procedure in the non-

human primate grey mouse lemur. Although the SD challenge could not induce a learning-as

opposed to retrieval- deficit in spatial memory [41], the symptomatic benefit observed after a

single administration of DON or MEM in the present study give more confidence in the pre-

dictive validity of this model. Further studies are required to achieve a higher level of validation

by including the testing of other cognitive domains and the use of different challenges to

induce transient cognitive impairment and understand the molecular and cellular mechanisms

subserving these alterations.
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