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INTRODUCTION

Over the past decades, gross primary production
(GPP) and benthic community respiration (BCR) of
intertidal sediments have been studied extensively. In-
deed, intertidal sediments play an important role in the
production and remineralization of organic matter.

Microphytobenthos (MPB) production is primarily
controlled by light availability (Parsons et al. 1984).
However, a wide range of factors are known to signifi-
cantly affect MPB biomass and production. Some stud-
ies have focused on the particular influence of sedi-
ment dynamics (Yin & Harrison 2000, Perkins et al.

2003), erosion (Delgado et al. 1991, de Jonge & van
Beusekom 1992, de Jonge & van Beusekom 1995), tem-
perature (Rasmussen et al. 1983, Blanchard et al. 1996,
Hancke & Glud 2004), nutrient availability (Under-
wood & Provot 2000, Thornton et al. 2002, Welker et al.
2002, Saburova & Polikarpov 2003), meiofauna/macro-
fauna feeding activity (Riera et al. 1996, Epstein
1997a,b, Blanchard et al. 2000, Hagerthey et al. 2002,
Pinckney et al. 2003), and bioturbation (Hansen & Kris-
tensen 1997, Goñi-Urriza et al. 1999, Pinckney et al.
2003). However, predominant regulating factors need
to be realized at the ecosystem level in order to draw
predictive models. Moreover, through detrital path-
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ABSTRACT: In this study, benthic metabolism was measured during low tide, in a small intertidal
bay. Gross primary production (GPP) and benthic community respiration (BCR) were calculated via
in situ CO2 flux measurements at the air-sediment interface within a benthic chamber. These rates
(GPP and BCR) were determined simultaneously with microphytobenthos (MPB), bacterial (BB),
macrofaunal (MaB) and meiofaunal (MeB) biomasses, grain size analysis and nutrient standing stocks
in sediment porewater (NO2

–, NO3
–, NH4

+, SiO3
2– and PO4

3–). The aims of this study were to deter-
mine (1) the relative influence of environmental regulating factors on benthic metabolism under in
situ conditions and (2) the relative contribution of benthic compartments to BCR. Among all the
potential regulating factors measured (i.e. sediment temperature, dissolved inorganic nutrient con-
centrations in porewater), and the entire size range of benthic organisms sampled (i.e. from macro-
fauna to bacteria), results showed that (1) granulometry strongly controlled the distribution of benthic
compartments at the bay scale and (2) GPP and BCR were mostly influenced by temperature at the
sampling site scale. Moreover, out of bacteria, macrofauna and meiofauna, bacterial activity
contributed the most to BCR (bacterial > macrofaunal > meiofaunal respiration). Mean bacterial res-
piration was estimated to be 1.5 ± 0.5 mgC m–2 h–1 and represented up to 88% of BCR in fine-sand
sediments.

KEY WORDS:  In situ measurements · Benthic primary production · Respiration · Microphytobenthos ·
Bacteria · Temperature · Nutrients

Resale or republication not permitted without written consent of the publisher



Mar Ecol Prog Ser 316: 53–68, 2006

ways, bacterial remineralization and production gen-
erally represent the main fate of intertidal MPB carbon
(Middelburg et al. 2000). However, despite some
strong assumptions, and with respect to other benthic
compartments, there is a lack of evidence showing that
bacterial heterotrophic activity is contributing signifi-
cantly to BCR. Indeed, no study has yet quantified all
heterotrophic and autotrophic components simultane-
ously with BCR rates.

The aims of this study were (1) to determine, among
the putative regulating factors (i.e. sediment tempera-
ture, dissolved inorganic nutrients concentrations in
porewater), the primarily regulating factors of primary
production in intertidal ecosystems during low tide
and (2) to test, among the entire size range of benthic
organisms (i.e. from macrofauna to bacteria), the
hypothesis that among macrofauna and meiofauna,
bacterial respiration is the highest contributor to ben-
thic community respiration (BCR). 

MATERIALS AND METHODS

In this study, GPP and BCR were measured in a small
intertidal bay (ca. 2 km2), from February 2003 to Feb-
ruary 2004, simultaneously with NO3

–, NO2
–, NH4

+,
SiO3

2– and PO4
3– concentrations in porewater, sedi-

ment grain size was analysed, sediment temperature
and macro-, meio- and microbenthic (MPB and bacte-
ria) biomass were also quantified.

Sampling area. The Roscoff Aber Bay (Fig. 1) is a
small intertidal bay (about 1 km wide and 2 km long),
entirely located above mid-tide level (Chauris 1988),
which allowed for measurements both at a microscale
and at the bay scale. This site includes different types
of intertidal sediments (Rullier 1959) and represents a
complex ecosystem. In the southern part, a locked gate
in a dyke allows small river inputs. Three sampling sta-
tions corresponding to 3 different intertidal sediments,
representative of the entire bay, were studied during
emersed periods. Sampling sites were selected along a
granulometric gradient. The ‘river station’ (Stn A:
48° 42.821’ N, 4° 00.050’ W) was located at the river
mouth (southern part of the bay) and corresponded to
the finest sediments. The ‘Lagadennou station’ (Stn B:
48° 42.996’ N, 3° 59.933’ W) was located in the middle
of the bay and corresponded to sandy sediments.
The ‘Roch Kroum station’ (Stn C: 48° 43.444’ N,
3° 59.765’ W) was the coarsest sampling site, located at
the entrance of the bay (around mid-tide level).

CO2 fluxes. CO2 fluxes at the air-sediment interface
were measured in situ within a benthic chamber
(Migné et al. 2002), functioning with a closed circuit of
CO2 analysis. This original method allowed measure-
ments of oxic and anoxic respiration. Both were mea-
sured during dark incubations, providing a measure of
decomposition that is not affected by terminal electron
acceptors. Indeed, benthic metabolism is traditionally
measured by sediment O2 exchanges, which could
lead to an underestimate of benthic respiration. Oxy-
gen-based measurements could leave out decomposi-
tion processes occurring during anaerobic respiration
if a lag time exists between the production of reduced
compounds and their reoxidation (Pickney et al. 2003).
Briefly, a 0.071 m2 sediment area (10 cm depth) was
enclosed and changes in air CO2 concentration (ppm)
were measured with a CO2 infrared gas analyser
(LiCor Li 800). Incident photosynthetically active radi-
ation (400–700 nm, PAR in μmol quanta m–2 s–1) was
also measured inside the benthic chamber with a LiCor
quantum sensor. Data were recorded with a data log-
ger (LiCor Li-1400) with a 30 s logging frequency. CO2

fluxes were then calculated from recorded data of both
light and dark incubation using the slope of CO2 con-
centration (μmol mol–1) against time (min). Results
were then expressed in carbon unit for the bulk ben-
thic community (mgC m–2 h–1) assuming a molar vol-
ume of 22.4 l mol–1 at standard temperature and pres-
sure (STP) and a molar mass of 12 g mol–1 for CO2.
Measurements were assessed at ambient light and in
darkness in order to estimate respectively, net benthic
primary production (NPP) and benthic community res-
piration (BCR). Benthic gross primary production
(GPP) was then calculated from NPP and BCR mea-
surements (GPP = NPP + BCR).
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Environmental measurements. Sediment porewater
was sampled beside the benthic chamber (triplicates)
at Stns A, B and C (5.4 cm inner diameter, 5 cm depth)
and stored in a cool box until returned to the labora-
tory. Nutrients concentrations were then measured
with a Technicon autoanalyser (Treguer & Le Corre
1975). Briefly, for nitrite (NO2

–), nitrate (NO3
–), reactive

silicate (SiO3
2–) and ortho-phosphate, measurements

were automatically assessed by colorimetry (respec-
tively according to Bendschneider & Robinson 1952,
Murphy & Riley 1962, Wood et al. 1967, Strickland &
Parsons 1972). Ammonia (NH4

+) concentrations were
measured manually by colorimetry (Koroleff 1969).

The sediment grain size analysis was assessed for
each sampling site. Sediment was also sampled (5 cm
depth) beside the benthic chamber, rinsed with fresh-
water and dried at 100°C for 48 h. Grain size analysis
was then assessed by standard sieve fractionation
(Folk 1980, Holme & McIntyre 1984, the finest sieve
used was 63 μm).

Temperature was measured every 20 min in the
superficial layer of the sediment next to the benthic
chamber during CO2 flux measurements with a pocket
digital thermometer (±0.1°C).

Chlorophyll a concentration. Since Roscoff sedi-
ments were not cohesive, the top 2 to 3 mm of sediment
were sampled (triplicates) inside the benthic chamber
area after the incubation period, using a 1.6 cm inner
diameter cut-off syringe with a piston. The core was
simply sliced in the field, stored in a cool box until
returned to the laboratory where it was then stored at
–32°C until analysis. The sample was defrosted in the
dark, and 5 ml of 90% acetone was added. Samples
were gently mixed and stored at 4°C for 4 h. After
Chl a extraction, the sample was centrifuged (800 × g,
3 min). The supernatant was removed and Chl a con-
centrations were measured by fluorimetry (Yentsch &
Menzel 1963) with a Turner designs 10 AU chlorophyll
fluorometer (excitation filter 430–450 nm, emission
filter 650–680 nm). Fluorescence was measured and
Chl a concentration was calculated according to
Lorenzen (1966).

Bacterial biomass. At each sampling site, from Feb-
ruary 2003 to February 2004, cores (1.6 cm inner dia-
meter, 1 cm depth) were collected with a cut off alcohol
cleaned syringe (triplicates) inside the benthic cham-
ber area. Samples were immediately fixed in a 20 ml
formaldehyde solution (final concentration 2 to 3%),
diluted with filtered sea water (0.22 μm) and saturated
with sodium tetraborate. Bacterial communities were
then extracted from sediment by (1) vortex agitation
which allowed homogeneous subsampling of 5 ml of
the sediment slurry, and (2) addition of 150 μl of poly-
oxyethylene sorbitan monoleate (Tween 80, Cheval-
donné & Godfroy 1997), followed by sonication

(35 kHz, 5 min). The samples were centrifuged (1750 ×
g, 10 min, 4°C), and 1 ml subsamples were stained with
4’,6’-diamidino-2-phenylindole (DAPI, 2 μg ml–1). Sed-
iment was incubated for 15 min with DAPI in the dark
at 4°C, and filtered on a black polycarbonate mem-
brane filter (GTBP Millipore, 0.2 μm) under low pres-
sure (<10 kPa). Bacteria were counted by epifluores-
cence microscopy (Leica, equipped with a 365 nm
filter) under non-fluorescent oil immersion, 10 ran-
domly selected fields (0.1 × 0.1 μm) were observed for
determination of bacterial abundance. Bacterial car-
bon biomass was estimated with a conversion factor of
20 fgC cell–1 (Cho & Azam 1990, Delmas et al. 1992,
Raghukumar et al. 2001).

Meiofauna and macrofauna biomass. Meiofauna
was sampled with a 50 ml tube (2.9 cm inner diameter,
2 cm depth; Coull & Bell 1979) next to the benthic
chamber, returned to the laboratory, killed with 10%
formaldehyde solution, saturated with sodium tetra-
borate and stored until analysis. Meiofauna was then
extracted from the sediment using colloidal silica soil
Ludox™ HS-40 (de Jonge & Bouwman 1977) as de-
scribed by Burgess (2001). Taxonomic diversity was
estimated (organisms were stained with Rose Bengal)
and meiofauna carbon biomass was then estimated. An
average biomass of 1 μC ind–1. (Manini et al. 2003) was
used. Macrofauna inhabiting the entire benthic cham-
ber surface area was sampled (0.071 m2, 10 cm depth),
directly sieved (1 mm) in the field, and returned to the
laboratory. Macrofauna was then killed with 10%
formaldehyde solution, saturated with sodium tetrabo-
rate and stored until analysis. The biggest organisms
were directly separated from sediment while smaller
ones were first detected with Rose Bengal coloration.
Macrofauna was then identified and counted and spe-
cies diversity was estimated. Ash-free dry weight
(AFDW) biomass was measured. Organisms were
dried at 100°C for 24 h, weighted (±0.01 mg), burned at
550°C for 4 h, after which the ashes were weighed
(±0.01 mg).

Statistics. Non-linear regressions: Temporal vari-
abilities of BB, BCR, GPP, and specific primary produc-
tion (SPP, mg C mg Chl a–1 h–1) were fitted with sinu-
soidal curves, using the SPSS Systat 9© software.

A wide range of mathematical models from power-
law/exponential growth curves (Thamdrup & Flei-
scher 1998, Epping & Kühl 2000, Wieland & Kühl
2000, Hancke & Glud 2004) to more sophisticated
equations involving cardinal temperature criteria
(Rosso et al. 1995, Blanchard et al. 1996) can be used
to describe temperature influence on benthic me-
tabolism. Temperature influence was thus first tested
with an exponential curve (Arrhenius plot) according
to Hancke & Glud (2004) using the SPSS Systat 9©

software:

55



Mar Ecol Prog Ser 316: 53–68, 2006

BCR  =  A1exp(–Ea1/R T) (1)

GPP  =  A2exp(–Ea2/R T) (2)

where GPP and BCR have units of mgC m–2 h–1, Ai is a
pre-exponential factor, Eai is the community response
of GPP and BCR to temperature (apparent activation
energy in J mol–1), R is the gas constant (8.3144 J K–1

mol–1) and T the absolute temperature (K).
However, since GPP against temperature expresses

a classical metabolic-temperature response at Stn A
(i.e. an increase of GPP until an optimal temperature
and then a decrease), a short-term temperature in-
fluence model (Eq. 2, Blanchard et al. 1996: cardinal
temperature model) was fitted to GPP at this sampling
site with the Statsoft, Statistica 6.1 software:

(3)
where GPPmax represented maximum GPP, T is tem-
perature (°C), Topt is optimal temperature (i.e. corre-
sponded to the maximum of GPP), Tmax is maximum
temperature supported by primary producers (i.e.
beyond Topt, GPP decreases to reach the zero value at
Tmax), and β is a dimensionless adjustment parameter.
This allowed the use of cardinal temperature criteria to
describe metabolic activity. The following criteria were
used for categorization: psychrophiles Topt ≤ 15°C and
Tmax ≤ 35°C, psychrotrophs Topt ≤ 25°C and Tmax ≤ 35°C,
and mesophiles Topt ~25 to 40°C and Tmax ≈ 35 to 45°C
(Isaksen & Jørgensen 1996, Hancke & Glud 2004).

The Q10 value was calculated directly from the non-
linear regressions of Eqs. (1), (2), & (3) using a temper-
ature interval from 10 to 20°C:

Q10 (BCR)  =  BCR20°C/BCR10°C (4)

Q10 (GPP)  =  GPP20°C/GPP10°C (5)

Multivariate analysis: In order to point out the envi-
ronmental gradient influence, PCA was calculated
with the software StatBox V6.1© using GPP, BCR, SPP,
T°C, median grain size, nutrients, Chl a, meiofauna
(MeB), macrofauna (MaB) and bacterial (BB) biomass
at all sampling occasions, at Stns A, B and C simultane-
ously. For all the sampling occasions, the name of the
station and the date (number of the month) were
reported (e.g. A2 for Stn A in February, A2’ when 2
samples were assessed in the same month).

According to van Es (1982), the contribution of dis-
solved inorganic nitrogen (DIN), silicate (DISi) and
phosphate (DIP) to GPP was tested using a multiple lin-
ear regression with the software StatBox V6.1©. The
contribution of BB, MaB, MeB and Chl a to BCR was
also tested:

BCR = C1 MaB + C2 MeB + C3 BB + C4 Chl a + Cs1 (6)

GPP = C5 DIN + C6 DISi + C7 DIP + Cs2 (7)

where Ci represents the variables coefficients and
Csi represents the constant. Variable coefficients indi-
cated, on the one hand, DIN, DISi, and DIP partial con-
tributions to GPP and, on the other hand, BB, MaB,
MeB and Chl a partial contributions to BCR. Standard-
ized coefficients (mean weight-normalized data) and
the probability associated to each variable coefficient
(Student t-test) were also calculated. The best fit of
variables, which both maximized the proportion of the
variability explained by the model and minimized the
number of variables used for the regression, was
estimated.

RESULTS

Environmental gradient

The median grain size (±SD) of each sampling site
was calculated for the entire year and described by the
Wentworth scale (Holme & McIntyre 1984): Stn A cor-
responded to very fine-sand sediments (132 ± 54 μm),
Stn B to fine-sand sediments (215 ± 43 μm) and Stn C
to medium-sand sediments (251 ± 10 μm). In order to
improve the reading of the paper, Stns A, B and C will
be described, respectively, as containing muddy (15 ±
8% mud), sandy and coarse sediments.

Results showed a nutrient concentration gradient
with the higher concentrations in the muddiest sedi-
ments. Moreover, at all sampling sites NH4

+ and SiO3
2–

porewater concentrations were higher than NO2
–,

NO3
– and PO4

3– concentrations (Fig. 2). Mean pore-
water nitrite and nitrate concentrations at Stns A, B
and C were respectively 1.8 ± 2.7, 0.4 ± 0.5 and 0.2 ±
0.2 μM for NO2

– and 10.0 ± 13.0, 6.5 ± 7.6 and 4.1 ± 3.9
μM for NO3

–. NO2
– represented, respectively, 1.4, 0.8

and 0.9% and NO3
– represented 7.7, 12.5 and 21.1% of

total DIN. Consequently, nitrite and nitrate were
grouped and expressed as nitrite + nitrate (NOx). The
relative importance of NOx (and particularly nitrate)
increased with increasing sediment grain size. More-
over, NH4

+ and SiO3
2– (Fig. 2a,b) seemed to be coupled

and showed similar patterns, with maximum values
occurring in spring and late autumn, while NOx and
PO4

3– (Fig. 2c,d) showed maximum values in winter
and summer.

PCA was calculated grouping GPP, BCR, SPP, T°C,
median grain size, nutrients, Chl a, meiofauna (MeB),
macrofauna (MaB) and bacterial (BB) biomass of the 3
sampling sites (Fig. 3a,b). Rows containing missing
data were systematically deleted. The F1 and F2 axes
together explained up to 71% of the total variability.
Along the F1 axis (51% of the total variability) median

GPP GPP
T – T

T – T
exp

T
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max

max opt
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grain size was negatively correlated to a group of
standing stock variables: nutrients (Pearson correla-
tions: r = –0.91, –0.83 and –0.82, for NH4

+, SiO3
2– and

PO4
3–, respectively, for all n = 31, p < 0.001) and ben-

thic compartments biomass (r = –0.60, –0.83, –0.66
and –0.61 for BB, MaB, MeB and Chl a, respectively,
for all n = 31, p < 0.001). Along the F2 axis (20% of
the total variability) temperature was positively corre-
lated only with benthic fluxes (r = 0.49, n = 31, p <
0.01 for BCR, r = 0.42, n = 31, p < 0.05 for GPP and r =
0.50, n = 31, p < 0.01 for SPP). Median grain size,
NH4

+, SiO3
2–, PO4

3–, BB, MeB, MaB and Chl a were
mostly contributing to F1 (respectively, 12, 13, 13, 9, 9,
10, 12 and 10%) while T°C, BCR, GPP and SPP were
mostly contributing to F2 (respectively 26, 15, 22 and
21%). Sampling sites were well separated and were
distributed along the F1 axis (Fig. 3b, with finest sedi-
ments at the right end of the graph and coarsest sedi-
ments at the left). Within each of the sampling sites,
sampling period (i.e. A2 to A11, B3 to B12 and C2 to C12

for Stns A, B and C, respectively) showed a high vari-
ability and were distributed along the F2 axis (with
summer values at the upper end of the graph and
winter values at the bottom). 

Benthic metabolism

GPP ranged from 7.2 to 30.2, 7.6 to 27.7 and 3.6 to
12.5 mgC m–2 h–1 at Stns A, B and C, respectively. GPP
rates were significantly different between the 3 sam-
pling sites (Kruskal-Wallis, p < 0.01) being higher at
Stn A (15.3 ± 7.4 mgC m–2 h–1) and B (16.9 ± 7.0 mgC
m–2 h–1) than at Stn C (7.2 ± 2.6 mgC m–2 h–1). GPP
showed a seasonal pattern (Fig. 4) and was fitted with
a sinusoidal curve at the 3 sampling sites:

Stn A; GPP  =  16.06 + 8.08 sin[(2π/365)d + 10.44] (8)
(R2 = 0.931, n = 16)

Stn B; GPP  =  17.74 + 7.74 sin[(2π/365)d + 10.00] (9)
(R2 = 0.950, n = 15)

Stn C; GPP  =  7.68 + 2.67 sin[(2π/365)d + 9.77] (10)
(R2 = 0.955, n = 16)

where d = the day number. Maximum values occurred
in summer (24.1, 25.5 and 10.3 mgC m–2 h–1 respec-
tively on, 8 August, 28 August, and 11 September, for
Stns A, B and C).

Specific primary production (SPP in mgC mgChl a–1

h–1, P:B ratio) clearly showed a seasonal pattern
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(Fig. 5). SPP was fitted with a sinusoidal model at the 3
sampling sites:

Stn A; SPP  =  0.49 – 0.28 sin[(2π/365)d + 1.44] (11)
(R2 =  0.922, n = 16)

Stn B; SPP  =  0.73 – 0.38 sin[(2π/365)d + 1.17] (12)
(R2 = 0.942, n = 15)

Stn C; SPP  =  0.53 – 0.07 sin[(2π/365)d + 1.15] (13)
(R2 = 0.953, n = 16)

Maximum values occurred in summer (0.8, 1.1 and
0.6 mgC mgChl a–1 h–1 respectively on 1 August,
and 25, 26 of July for Stns A, B and C). The empiri-
cal maximum assimilation number for microphyto-
benthos (1 mgC mgChl a–1 h–1, Migné et al. 2004
and references therein) was reported (Fig. 5, dashed
lines). 
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BCR also showed a seasonal pattern at all stations
(Fig. 6) and was fitted with a sinusoidal model:

Stn A; BCR  =  5.84 – 4.25 sin[(2π/365)d + 0.99] (14)
(R2 = 0.885, n = 16)

Stn B; BCR  =  1.84 – 1.71 sin[(2π/365)d + 1.19) (15)
(R2 = 0.701, n = 15)

Stn C; BCR  =  0.49 – 0.41 sin[(2π/365)d + 0.86] (16)
(R2 = 0.473, n = 16)

Maximum BCR values occurred in summer (10.1, 3.5
and 0.9 mgC m–2 h–1, respectively, on 5 August, 24 July

and 12 August for Stns A, B and C). BCR rates were
significantly different between the 3 sampling sites
(Kruskal-Wallis, p < 0.01) being higher at Stn A (5.4 ±
3.9 mgC m–2 h–1) than at Stns B (1.7 ± 2.1 mgC m–2 h–1)
and C (0.4 ± 0.8 mgC m–2 h–1).

Effect of temperature was tested both on BCR and
GPP. Significant exponential curves and cardinal tem-
perature models were reported (Fig. 7). Temperature
coefficients (Q10), which indicated an increase in GPP
and BCR rates for a 10°C rise in temperature, were cal-
culated (Tables 1 & 2). Optimal temperature at Stn A
was 21°C.
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Microphytobenthos and bacteria biomass 

Chl a ranged from 23.4 to 63.6, 12.9 to 47.9 and 7.3 to
18.8 mgChl a m–2 at Stns A, B and C, respectively
(Fig. 8). At Stns A and B, Chl a appeared relatively
stable from February to September (respectively from
23 to 37 and from 15 to 23 mg m–2) then increased in
autumn. At Stn C, Chl a concentrations appeared rela-
tively stable over the entire year. Statistical analysis
showed significant differences in Chl a between sam-
pling sites (Kruskal-Wallis, p < 0.01). Concentration
was higher at Stn A (34.4 ± 11.9) and B (24.6 ± 10.7)
than at Stn C (13.1 ± 3.6).

Bacterial abundance ranged from 0.8 to 1.8, 0.4 to 1.4
and 0.2 to 1.1 × 108 cells cm–2 at Stns A, B and C, respec-
tively. Biomass values reported in this study were
within the range reported in the literature for intertidal
mud- and sand-flats (Lucas et al. 1996, Epstein et al.
1997, Goñi-Urriza et al. 1999, Böttcher et al. 2000,
Danovaro et al. 2001). BB showed a seasonal pattern

(Fig. 9) and sinusoidal curves were fitted on BB data:

Stn A; BB  =  27.28 + 5.38 sin[(2π/365)d + 4.62] (17)
(R2 = 0.967, n = 16)

Stn B; BB  =  18.92 + 6.41 sin[(2π/365)d + 10.12] (18)
(R2 = 0.967, n = 15)

Stn C; BB  =  10.33 + 5.65 sin[(2π/365)d + 10.67] (19)
(R2 = 0.937, n =16)

Maximum BB occurred in summer (32.7, 25.3 and 16.0
mgC m–2, respectively, on 7 July, 21 August, and 21
July for Stns A, B and C). 

Meiofauna and macrofauna biomass

Maximum MeB occurred in spring at Stns A and B
and was relatively stable throughout the year at Stn C
(Fig. 10a–c). Statistical analysis showed significant dif-
ferences in MeB between the 3 sampling sites
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(Kruskal-Wallis, p < 0.01). The taxonomic composition
was similar among the 3 sampling sites. Nematoda was
the predominant taxonomic group during the year and
represented (mean ± SD) 77 ± 13, 80 ± 9 and 79 ± 9%
of meiofaunal abundance at Stns A, B and C, respec-
tively, which was consistent with previous studies car-
ried out in the Roscoff Aber Bay (Riera & Hubas 2003)
under similar conditions. The co-occurring main taxo-
nomic groups were ostracods and harpacticoid cope-
pods, together they represented 20 ± 11, 18 ± 6 and 9 ±
5% of meiofauna at Stns A, B and C, respectively.

Statistical analysis also showed significant differ-
ences in MaB between the 3 sampling sites (Kruskal-
Wallis, p < 0.01). MaB ranged from 6.7 to 29.3, 0.8 to 9.2
and 0.6 to 3.3 g AFDW m–2 at Stns A, B and C respec-
tively (Fig. 10d,e,f). The specific diversity was also rad-
ically different between the 3 sampling sites. Station A
was dominated by species typically found in mud and
muddy sand (Hayward & Ryland 1995), like the mud
snail Hydrobia ulvae, the amphipoda Corophium are-
narium and the bivalvia Cerastoderma edule and Abra
tenuis which represented 97 ± 3% of macrofauna bio-
mass (61 ± 12% for H. ulvae alone). At Stn B, C. edule
and A. tenuis were also present with the polychaeta
Scoloplos armiger and Pygospio elegans (85 ± 12% of

macrofaunal biomass), which both prefer fine sand
(Hayward & Ryland 1995). At Stn C, macrofauna bio-
mass was dominated by C. edule, S. armiger, Noto-
mastus latericeus and the Tanaïdacea Apseudes
latreillii (74 ± 19% of macrofauna biomass) who prefer
muddy gravels (Hayward & Ryland 1995).

Multiple regression analysis

Multiple regressions were assessed using (1) nutri-
ents and (2) benthic compartments as independent
parameters to determine the best predictors of GPP
and BCR (Tables 3, 4).

For GPP (Table 3), DIN and DIP coefficients and stan-
dardized coefficients were always higher (absolute
values) than DISi coefficients (except at Stn A). Signifi-
cant coefficients changed among the 3 sampling sites
(DIN and DIP at Stn B, DIP only at Stn C). However, DIP
was always recorded as a pertinent variable (best fit).

For BCR (Table 4), although R2 was not significant for
muddy sandy and coarse sediments, the analysis
showed that BB coefficients were always higher than
MaB, MeB and MPB coefficients. Moreover, BB stan-
dardized coefficients were also higher than MaB, MeB
and MPB standardized coefficients. BB coefficients
were also always significant except in muddy sedi-
ment. BB was always recorded as a pertinent variable
(best fit) with MaB except in coarse sediments where
BB alone was recorded as a pertinent variable (highest
coefficient, best fit).

DISCUSSION

Control of benthic metabolism at the bay scale

Metabolic activity of benthic organisms can be
influenced by a wide range of regulating factors. In
this study, the Roscoff Aber Bay represented a strong
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GPP Ai Eai Topt°C Tmax°C GPPmax R2
a n Q10

(kJ mol–1) (mgC m–2 h–1)

Arrhenius plot
A 1.4 × 107 32.8 – – – 0.49* 13 1.6
B 3.5 × 107 35.2 – – – 0.27* 14 1.7
C 1.5 × 105 24.0 – – – 0.16* 15 1.4

Cardinal temperature
A – – 21.0 32.5 25.7 0.79* 13 2.7

Table 1. Metabolism temperature response curve parameters calculated from non-linear regression using both cardinal temper-
ature criteria and an Arrhenius plot, for Stns A, B and C. Pre-exponential factor (Ai), and apparent activation energy (Eai, kJ mol–1)
are reported for the Arrhenius plot. Optimal temperature (Topt°C), maximum temperature (Tmax°C) and maximum GPP (GPPmax,
mgC m–2 h–1) are reported for the cardinal temperature model. For all the models adjusted R2 (R2

a, mean corrected R-square:
1–Residual/Corrected), number of couple values (n) and metabolism response to a 10°C rise of temperature (Q10) are shown. 

*p-values < 0.001

BCR Ai Eai R2
a n Q10

(kJ mol–1)

Arrhenius plot
A 1.5 × 1014 74.8 0.71* 15 3.0
B 4.5 × 1021 119.7 0.44* 13 5.7
C 3.6 × 1015 87.3 0.44* 14 3.5

Table 2. BCR temperature response curve parameters calcu-
lated from non-linear regression using an Arrhenius plot, for
Stns A, B and C. Pre-exponential factor (Ai), apparent activa-
tion energy (Eai, kJ mol–1), adjusted R2 (R2

a, mean corrected
R2 = 1–Residual/Corrected), number of couple values (n) and
metabolism response to a 10°C rise of temperature (Q10) are 

shown. *indicates p-value < 0.001
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GPP A B C
Ci Std Ci p Best fit Ci Std Ci p Best fit Ci Std Ci p Best fit

Cst 18.30 – 0.002 21.94 – 0.0001 5.12 – 0.002
DIN 0.02 0.16 0.35 –0.41 –1.53 0.002 X –0.07 –0.20 0.29
DISi –0.02 –0.19 0.31 0.004 0.01 0.48 0.01 0.03 0.45
DIP –0.53 –0.52 0.08 X 4.16 1.35 0.004 X 2.17 0.94 0.01 X
Model 0.40 R2 = 0.27 0.03 R2 = 0.67 0.03 R2 = 0.62

Table 3. Multiple linear regressions between GPP (mgC m–2 h–1) and dissolved inorganic nitrogen (DIN), phosphates (DIP) and
silicates (DISi) in μmol l–1, Constant (Cst), standardized (Std Ci) and non-standardized (Ci) variable coefficients were reported. P-
values associated to variable coefficients were calculated (p) and pertinent variables (best fit) were noted (X). Parameters were 

calculated at the sampling site scale (Stns A, B and C). Bold values were significant
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environmental gradient which directly constrained
the dynamics of benthic organisms. PCA explained
71% of the total variability. At the bay scale, PCA
showed that the granulometric gradient strongly
controlled the dynamics of benthic organisms and
the concentration of nutrients in sediments (i.e.
median grain size was contributing to F1 together

with BB, MaB, MeB, and nutrients but not with
benthic fluxes). However, at sampling site scale (i.e.
within each sampling site) the functioning of the
system was mostly influenced by seasonal variations
(i.e. temperature was contributing to F2 together
with GPP, BCR and SPP but not with nutrients and
benthic compartments).
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BCR A B C
Ci Std Ci p Best fit Ci Std Ci p Best fit Ci Std Ci p Best fit

Cst –2.03 – 0.38 –4.07 – 0.09 –0.40 – 0.33
BB 172.86 0.29 0.18 X 275.86 0.80 0.02 X 75.85 0.66 0.04 X
MeB –0.60 –0.08 0.38 0.62 0.11 0.38 –0.42 –0.17 0.32
MaB 0.14 0.22 0.26 X 0.23 0.31 0.21 X 0.07 0.10 0.37
MPB 36.35 0.11 0.36 –43.58 –0.22 0.23 –0.76 –0.004 0.49
Model 0.43 R2 = 0.27 0.11 R2 = 0.54 0.37 R2 = 0.35

Table 4. Multiple linear regressions between BCR (mgC m–2 h–1) and benthic compartments (bacteria biomass: BB, gC m–2; meio-
fauna biomass: MeB, gC m–2; macrofauna biomass: MaB, gAFDW m–2 and chlorophyll a concentration: MPB, g Chl a m–2). Con-
stant (Cst), standardized (Std Ci) and non standardized (Ci) variable coefficients were reported. P-values associated to variables
coefficients were calculated (p) and pertinent variables (best fit) were noted (X). Parameters were calculated at the sampling site 

scale (Stns A, B and C). Bold values were significant
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Temperature influence on benthic metabolism at
sampling site scale

Incident light intensity is known to be of primary im-
portance in determining seasonal patterns of primary
production in sediments (Parsons et al. 1984). However,
environmental factors like salinity, temperature (Ras-
mussen et al. 1983, Blanchard et al. 1996, Blanchard &
Guarini 1997), day:night and tidal cycles (van Es 1982,
Migné et al. 2004), and nutrients concentration (Under-
wood & Provot 2000) can have a significant influence.

In the Bay of Somme and the Bay of Seine (France)
GPP and BCR were fitted with sinusoidal curves
(Migné et al. 2004, Spilmont et al. 2006). The models
showed that maximum GPP occurred in July (i.e. max-
imum light intensity) while maximum BCR occurred in
August (i.e. maximum temperature), indicating that
GPP could be preferentially controlled by light inten-
sity. In the present study, the models indicated that
maximum GPP (Fig. 4a–c) occurred later or at the
same time than maximum BCR (mostly in August,
Fig. 6a–c). Moreover, the PCA (Fig. 3a,b) indicated
that within each sampling site benthic organism activ-
ity was probably not limited by physical and chemical
parameters of the sediment (i.e. granulometry, nutri-
ents concentrations) but rather by seasonal parameters
(i.e. temperature). Thus, in the present study: (1) the
seasonal cycle seemed to overrule all the scale size of
other parameters and seemed to constrain the activity
of benthic organisms; and (2) temperature influence
seemed to be more important than light intensity in the
control of benthic metabolism. In the Ems estuary,
despite the strong influence of the tidal cycle and the
wind action, the seasonal cycle also dominates pro-
cesses related to the biota (de Jonge 2000).

The effect of temperature fluctuation on GPP is well
established, particularly on exposed tidal flats (Admi-
raal 1977, Rasmussen et al. 1983, Blanchard et al. 1996,
Hancke & Glud 2004). However, comparison between
studies is complex due to different laboratory and in
situ techniques. In the Roscoff Aber Bay, since cardinal
criteria strongly increased the R2 at Stn A: from 49%
with the Arrhenius plot to 79% with cardinal tempera-
ture criteria, the latter was used to characterize the
response of GPP to temperature at Stn A. GPP showed
lower-end mesophilic temperature response curves at
this station (with Topt = 21°C), which indicated that
MPB was growing best at moderate temperatures.
Moreover, Q10 values of GPP calculated using this
model were within the range of published Q10 values.
A rise of 10°C would increase the GPP 2-fold (Q10 ~ 2,
Davison 1991). Thus, the cardinal temperature model
gave more appropriate Q10 values than the Arrhenius
plot, which was consistent with the results of Blan-
chard et al. (1996). Indeed, a curve with an optimum is

more likely to correctly describe the metabolism
increase (as a function of increasing temperature) than
an ongoing exponential increase. However, at Stns B
and C production rates are low and, compared to their
magnitude, highly variable. Thus, even if the optimum
is located in the observed range of temperature, it
would be difficult to fit the cardinal temperature model
properly. Consequently, at these stations, fitting the
cardinal temperature model to data that show practi-
cally no optimum was considered to be spurious.

BCR showed strong correlations with temperature
both at the bay scale and at the sampling site scale,
which was consistent with previous studies (van Es
1982 and references therein). In the present study,
BCR-temperature response curves did not show a
decrease beyond Topt. Since the exponential curves are
preferentially used in the literature to explain metabo-
lism variability versus temperature, an Arrhenius plot
was used to calculate Q10 values for BCR (Table 2). In
the present study (considering the Arrhenius plot only)
Q10 were higher for BCR than for GPP. Thus, a rise of
10°C would stimulate heterotrophic activity more than
photosynthesis. These results were consistent with
Hancke & Glud (2004). Due to low temperature vari-
ability, these authors rejected the idea that higher
Q10 for respiration was linked to a more efficient
acclimation of the phototrophic community to high
temperature. However, in intertidal ecosystems, tem-
perature variability was potentially more important
during exposure. Moreover, phototrophic organisms
inhabiting sediments are known to adapt themselves
to short term changes in light intensity through mi-
gration into the sediment layers. This is usually high-
lighted through photosynthesis/light intensity re-
sponse curves. Indeed, in natural environments,
benthic cyanobacteria (Epping & Kühl 2000, Wieland &
Kühl 2000) and microalgae (Davis & McIntire 1983,
Rasmussen et al. 1983, Migné et al. 2004) do not show
any photoinhibition (at least at the community level).
In the Roscoff Aber Bay, migration probably prevented
MPB from photoinhibition and high temperature.
Thus, since bacterial communities were probably not
able to migrate into the sediment, the higher Q10 val-
ues recorded for BCR than for GPP were rather a con-
sequence of behavioural processes inherent to benthic
autotrophs rather than a hypothetic change of MPB
physiological conditions.

Nutrient and grazing pressure: significant 
controlling mechanisms?

Multiple linear regression (Table 3) showed that GPP
was mainly influenced by DIP and DIN, but not DISi. An-
nual inorganic N:P ratios were calculated and were on
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average 17 ± 5:1, 16 ± 5:1, 10 ± 5:1 at Stns A, B and C, re-
spectively (mean ± SD). This indicated that over the year
N:P ratios were in the same order of magnitude as the
Redfield ratio (16:1). N:P ratios between 5:1 and 15:1 are
commonly reported (Welker et al. 2002). In the present
study, GPP was thus probably not limited by nutrients
concentrations in porewater. Indeed, since concentra-
tions recorded in porewater were high, a hypothetic lim-
itation by nutrients would be spurious. GPP was thus
more probably sustained in porewater, during low tide,
by balanced nitrogen and phosphate concentrations.

At Stn A, Hydrobia ulvae was the dominant deposit
feeder (67 ± 15% of the macrofaunal abundance) and
represented 14 000 ± 4000 snails m–2. According to an
experimental study in a similar environment (Blan-
chard et al. 2000) the mean ingestion rate would be
26.64 ± 1.14 ngChl a snail–1 h–1, which represented a
mean ingested capacity of 0.36 ± 0.11 mgChl a m–2 h–1.
Total carbon biomass ingested would be 10.8 ±
3.3 mgC m–2 h–1 (considering 30 mgC mgChl a–1; de
Jonge 1980, Sundbäck et al. 2000), which was close to
the mean GPP at Stn A (15 ± 7 mgC m–2 h–1). The H. ul-
vae grazing rate would therefore be totally supplied by
GPP at Stn A, which indicates that microphytobenthos
production would be, theoretically, limited by macro-
faunal grazing pressure at Stn A. However, no signifi-
cant correlation was found between H. ulvae biomass
and GPP. Dominant deposit feeders at Stn A were
therefore probably not preferentially using microphy-
tobenthos as a food source. Macroalgae deposits which
were regularly available in the Roscoff Aber Bay (Riera
& Hubas 2003) could potentially represent an impor-
tant food source for them. These authors highlighted
the meiofauna-microphytobenthos trophic relationship
in Roscoff Bay and showed that meiofauna feeding ac-
tivity on microphytobenthos was restricted to the sum-
mer period (when microphytobenthos was more im-
portant). The rest of the year, meiofauna preferentially
used detrital macroalgae as a food source.

Role of heterotrophic bacteria in BCR

Quantifying the role of heterotrophic bacteria in
BCR is of primary importance in determining the fate
of organic carbon in aquatic ecosystems (Jahnke &
Craven 1995). However, to our knowledge the relative
importance of bacterial respiration to BCR was never
highlighted in situ in intertidal sediments. Indeed, a
few studies yielded the contribution of benthic commu-
nities on BCR including the entire size range of benthic
organisms (Dye 1981, van Es 1982, Schwinghamer et
al. 1986, Piepenburg et al. 1995). These studies gener-
ally concluded that bacterial communities contribution
to BCR is important compared to their relative low bio-

mass. In the present study, the multiple linear regres-
sion (Table 4) showed that BCR was mostly influenced
by BB. However, at Stn A, BB standardized coefficients
were slightly higher than MaB coefficients. This could
indicate that in muddy sediments MaB contribution to
BCR was at least as important as BB contribution. With
increasing sediment grain size (at Stns B and C) MaB
contribution decreased while BB contribution in-
creased. This was consistent with results from Piepen-
burg et al. (1995) and Dye (1981) for exposed sandy
beaches. When MaB was important (18.6 ± 6.1 gAFDW
m–2 at Stn A), macrofauna contribution was at least as
important as BB contribution.

Direct comparison however between studies is lim-
ited. Respiration rates of the different benthic compart-
ments are mostly calculated from conversion factors
and/or from size partitioned oxygen measurements
(Dye 1981, Schwinghamer et al. 1986, Grant &
Schwinghamer 1987, Piepenburg et al. 1995). Due to
methodological limitation, bacterial respiration is thus
never measured and the role of heterotrophic bacteria
is mostly estimated from bacterial biomass production
(Jahnke & Craven 1995). In the present study, potential
annual bacterial respiration was calculated from mea-
sured data. When the linear regression between BCR
and BB was significant, potential bacterial respiration
was calculated (Stn B: BCR = 0.21BB – 2.19, r = 0.62, n =
14, p < 0.01). The slope of the linear regression gave
the maximum bacterial respiration efficiency (BRE,
h–1) at Stn B. BRE was multiplied to BB (at each sam-
pling occasion) to give potential bacterial respiration
(pBR, mgC m–2 h–1). Results were corrected by multi-
plying pBR by the R2 of the linear regression. Mean
bacterial respiration was estimated to 1.5 ± 0.5 mgC
m–2 h–1 and would represent 88% of BCR at Stn B.
Thus, BCR regression against BB gave a good estima-
tion of bacterial respiration in intertidal sediment dur-
ing emersion. Yet, uncertainties were associated with
this estimation: conversion factors were used for BB
calculation and BRE was probably not constant over
the year. Moreover, in intertidal sediments nanoflagel-
lates and ciliates could be responsible for removing up
to 53% of the bacterial production (Epstein 1997). In
the present study, these organisms probably con-
tributed to the BCR. However, due to the sonication,
the protocol proposed in the present study did not
allow the quantification of flagellates and ciliates.
Thus, estimation of the bacterial abundance would be
overestimated with DAPI counts (i.e. only a small frac-
tion of the bacterial community is active, Zweifel &
Hagström 1995, Choi et al. 1996), rather than overesti-
mation by counting bacteria plus ciliates. The bacterial
respiration estimation proposed in this study was thus
based on bacterial biomass only and would represent
the contribution of bacteria only.
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CONCLUSION

In the present study the dynamics of benthic organ-
isms was directly constrained by the strong environ-
mental gradient (i.e. granulometry) at the bay scale.
However, within each sampling site benthic organism
activity was probably not limited by physical and
chemical parameters of the sediment (i.e. granulome-
try, nutrients concentrations), but rather by tempera-
ture. At all the sampling sites, GPP was probably nei-
ther influenced by meiofauna nor by macrofauna
grazing pressure (i.e. no correlative evidence). Nutri-
ent standing stocks in sediment porewater were abun-
dant and not limiting, and GPP was probably sustained
during low tide by a balanced N:P ratio.

These results indicated that temperature influence
should be taken into account in order to draw pre-
dictive models. The cardinal temperature criteria model
proposed by Blanchard et al. (1996) can be used when
typical metabolism-temperature response curves are
observed. In the present study, GPP in muddy sedi-
ments showed lower-end mesophilic temperature re-
sponses and temperature influence was more important
for BCR than for GPP (Q10 values were higher for BCR
than for GPP). This was thought to be due to the migra-
tion of benthic diatoms which protect microalgae from
high temperature and photoinhibition.

The role of bacterial communities in BCR was also
revealed: (1) BB seasonal patterns were similar to BCR
seasonal pattern; and (2) the multivariate analysis
showed that bacterial communities were mostly con-
tributing to community respiration. Potential bacterial
respiration could represent up to 88% of BCR in inter-
tidal fine-sand sediments. According to Jahnke &
Craven (1995) further studies should focus on the
determination of BB production coupled to BCR mea-
surements (or at least directly bacterial respiration) in
order to understand the role of bacterial communities
in the carbon cycle.
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