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Highlights 

 Wheat variety mixtures have contrasting effects on aboveground arthropod 

communities 

 Wheat intraspecific diversity have a weak positive effect on predator abundances 

 Wheat intraspecific and functional diversity have a weak negative effect on spider 

evenness 
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 Few wheat stand characteristics have effects on ground or rove beetles 

 

Abstract 

Although modern agriculture generally relies on homogeneous varieties that are usually 

grown in pure stands, crop variety mixtures have been used for a long time, notably to 

improve resistance to fungal diseases. A growing number of studies suggest that intraspecific 

plant diversity may also enhance the abundance and diversity of wild species and thereby 

some ecosystem services such as biological control by natural predators. However, positive 

effects of the genetic diversity of plant species on the diversity of associated communities 

have mostly been documented in natural systems, with only a handful of studies targeting 

crop species in agroecosystems. Here, we investigated the ecological effects of the number of 

winter wheat varieties (Triticum aestivum) on aboveground arthropods and particularly 

predatory species. We manipulated the number of wheat varieties (1, 2, 4 or 8) in 120 plots 

(80 m² each) to examine how wheat diversity and stand characteristics impact communities of 

three dominant aboveground arthropod groups that include many predatory species: ground 

beetles, rove beetles and spiders. The number of wheat varieties had a weak, but positive 

effect on predator abundance, notably spider abundance. In contrast, wheat functional 

diversity, as assessed by the number of wheat functional groups, was only negatively related 

to the diversity of spiders. Among wheat stand characteristics, the variance in plant height, 

wheat biomass and the Green Area Index were weakly correlated with ground beetle, rove 

beetle and predatory diversity, respectively. The Green Area Index was also weakly correlated 

with ground beetle abundance. Our study suggests that wheat variety mixtures have variable 

and limited effects on aboveground arthropods and probably low effectiveness to enhance 

biological control, but these results should be further tested under low-input agriculture in real 

fields.  
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Introduction 

Intensive agriculture is based on substantial use of synthetic inputs such as pesticides, 

combined with high-yield, genetically homogeneous varieties that are usually grown in pure 

stands, i.e. with a single variety per field (Gaba et al., 2015). Such cropping systems are still 

widely used because of their high productivity but are now often considered unsustainable, at 

least because of side effects of inputs (e.g. impacts of pesticides on non-targeted species) and 

the dependence on fossil fuels (Shennan, 2008). Moreover, there are hints that crop yields are 

now plateauing after several decades of steady increase (Lobell et al., 2011). Alternative 

agricultural practices are thus developing and many authors plead for the application of 

ecological and evolutionary knowledge to agriculture (Loeuille et al., 2013; Gaba et al., 2018). 

Of particular interest is the use of both interspecific and intraspecific crop diversity in the 

field (Mijatović et al., 2013). Because low species and genetic diversities often lead to a low 

resilience to environmental changes, questions arise about the opportunity to go on using 

genetically homogeneous monocultures in an era of rapid global change (Tilman et al., 2001). 

Numerous ecological studies on communities of wild plants suggest that increasing plant 

species or genetic diversity tends to improve ecosystem functioning (Hughes et al., 2008). 

The most documented effect of plant species diversity and genetic diversity is an increase in 

primary production, total plant biomass (Cook-Patton et al., 2011; Hajjar et al., 2008) and in 

the stability of primary production through time (Nyfeler et al., 2009; Tilman & Downing, 

1996). The positive relationship between plant diversity and productivity is caused by a 

combination of complementarity (i.e. decrease in competition among individual plants) and 
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selection effects (Prieto et al., 2015) that can also stabilize production through differences 

between species or genotypes in their response to environmental conditions and perturbations 

(Loreau & Mazancourt, 2013). This benefit of within-field cultivated diversity explains the 

recent regain of interest for agricultural practices such as intercropping or variety mixtures 

(Barot et al., 2017, Gaba et al., 2015), both of which potentially allowing the use of lower 

amounts of fertilizers.  

Crop diversity, particularly variety mixtures, can also lower the use of pesticides, via an 

increase in resistance to pathogens (Finckh et al., 2000) and perhaps in the abundance and 

diversity of predatory arthropod species present in the field (Ratnadass et al., 2012; Siemann 

et al., 1998). The role of natural predators as potential biological control agents in variety 

mixtures has been recognized only recently. Experimental approaches in biodiversity-

ecosystem functioning (reviewed by Cook-Patton et al., 2011) and community genetics 

(Hersch-Green et al., 2011) have demonstrated that the positive effects of plant diversity on 

plant biomass can cascade through trophic levels and result in a larger biomass of herbivores 

and predatory species (Yee & Juliano, 2007). This effect can be caused by a general increase 

in resource availability for consumers and has been coined the “more individuals” hypothesis 

(Srivastava & Lawton, 1998). Alternatively, plant diversity may also lead to more diverse 

arthropod communities via an increase in the diversity of available resources (food or 

habitats, “more diversity” hypothesis, Southwood et al., 1979). 

Although the relationship between plant genetic diversity and arthropod communities has 

been extensively explored in natural systems, few studies have examined the effect of crop 

diversity on communities of aboveground arthropods (but see Chateil et al., 2013; Crutsinger 

et al., 2006). However, a number of aboveground arthropod groups found in cultivated fields 

include predatory species that may act as biological control agents. Among them, ground 

beetles, rove beetles and spiders represent an important part of the aboveground generalist 
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predators (Scheu, 2002) and their role as biological control agents has been recognized 

(Andersen et al., 1983; Bryan & Wratten, 1984; Harwood et al., 2001; Hatteland et al., 2010; 

Kromp, 1999; Lang, 2003; Nyffeler & Sunderland, 2003; Symondson, 2004). By analogy 

with the well documented effects of vegetation on arthropods (reviewed by Langellotto & 

Denno, 2004; Tews et al. 2004), we have the following expectation: (1) The abundance of 

ground-dwelling arthropods should increase with indices of wheat biomass or leaf area, which 

can be seen as a proxy for primary resources, with potential cascading effects along food 

chains, from herbivores to predators. Such effects would be consistent with the “more 

individuals” hypothesis (Srivastava & Lawton, 1998). (2) Variance in stem height should 

enhance the diversity of ground-dwelling arthropods due to its positive effects on 

microclimatic and habitat diversity as demonstrated for rove beetles (Bohac, 1999), ground 

beetles (Langellotto & Denno, 2004; Brose, 2003) and cursorial spiders (Tews et al. 2004). 

Such effects would be consistent with the “more diversity” hypothesis. 

Here, we used an experimental approach at the field scale to assess the effect of intraspecific 

crop diversity and stand characteristics on aboveground arthropod communities, with a focus 

on predatory species. We studied bread wheat (Triticum aestivum) as the dominant crop in 

northern France, and examined whether the identity and number of wheat varieties, hence the 

wheat stand characteristics, affected the diversity and abundance of predatory arthropods in 

the field. 

Materials and methods 

Site location, pedoclimatic conditions and experimental design 

The field site was located at the French National Institute for Agricultural Research 

experimental station in Versailles, France (48°81’ N, 2°09’ E, Fig. 1A). The experimental 

station is surrounded by hedgerows and neighboured by woody patches on the northern side. 

The field site is surrounded by grassy paths. 
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Sixteen T. aestivum (winter wheat) varieties were used for the experiment. These varieties 

were chosen from an initial collection of 57 varieties representing different breeding histories 

(from local landraces to modern elite varieties) and a large diversity of above- and 

belowground morphological, phenological and physiological traits. The 57 varieties were 

classified into four “functional groups” on the basis of their traits using ascending hierarchical 

classification (see Appendix A for details). Four varieties were chosen within each functional 

group for the field experiment. In a 2.6 ha field, 120 plots were randomly chosen (Fig. 1B) to 

be seeded with 1, 2, 4, or 8 varieties, with respectively 48 (three replicates of each 

monoculture), 24, 28 and 20 replicates for each number of varieties. We also varied the 

number of functional groups for each number of varieties above 1: there were “homogeneous” 

(a single functional group) vs. heterogeneous (two or more functional groups) mixtures (see 

Appendix A for the list of all variety mixtures). Functional group mixtures were therefore 

replicated in the experimental site, while variety mixtures were not. In November, all plots 

were sown with 250 g of seeds per m2. Varieties in a mixture were seeded in equal densities. 

All plots were of identical size (10.5 m x 8.0 m) except three monoculture plots that were 

halved in size (10.5 m x 4 m) due to limited seed availability. This size difference was, 

however, not a major issue because monocultures were replicated thrice, such that we could 

check that the small-size plots were not outliers. Each plot was buffered from adjacent plots 

or the field edge by a 1.75 m-wide row of triticale (x Triticosecale, Fig. 1C). The plots were 

managed conventionally, but with relatively low input levels. At the beginning of 

measurements, all plots had received one herbicide spray (Archipel® and Harmony Extra®) 

in mid-March and relatively low doses of a nitrogen fertilizer (ammonium-nitrate) applied in 

February (40 kgN.ha-1) and mid-April (80 kgN.ha-1). 

Wheat stand characteristics 

In each plot, several stand characteristics likely influencing the presence and abundance of 
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arthropods were measured: wheat biomass, the Green Area Index (GAI) and the mean and 

variance of plant height in the mixture. The GAI, an index of vegetation cover, was measured 

in May 2015 using the gap fraction method (hemispherical photography, Baret et al., 2010). 

In June 2015, wheat biomass was harvested at the onset of flowering in sub-plots of 50 x 52.5 

cm centred on three rows by uprooting whole plants. Roots were separated from shoots and 

samples were dried 72 hours at 65 °C and weighed. At the same time, the height of 10 wheat 

stalks was measured in the field to obtain the mean and coefficient of variation of plant height 

in each plot.  

Sampling and identification of aboveground arthropods 

Aboveground arthropods were sampled during the peak of activity of most western European 

species (Lövei & Sárospataki, 1990), May 5-18 2015. Exposure time of about 15 days is 

commonly used in the study of soil aboveground arthropods in agricultural environments 

(Bohan et al., 2011; Chateil et al., 2013; Schmidt et al., 2006; Vergnes et al., 2013). One 

plastic pitfall trap (8 cm diameter, 500 cm3, half-filled with propylene glycol) was dug into 

the ground with its rim flush with the ground surface in the centre of each plot. Propylene 

glycol is a preservative solution that is neither attractive nor toxic to invertebrates (Thomas, 

2008). A plastic roof (10 x 10 cm) was installed at approximately 2 cm above each pitfall trap 

to prevent rain and debris from entering the traps.  

All spiders, adult ground beetles (Carabidae) and adult rove beetles (Staphylinidae) were 

identified to species level where possible, except for immature spiders, which were identified 

to morphospecies level and Aleocharinae individuals (45% of total rove beetles), which were 

identified to subfamily level only (hereafter Aleocharinae spp). Spiders were identified using 

the keys of Roberts (2001), ground beetles with the keys of Roger et al. (2013) and Hůrka 

(1996) and rove beetles with the keys of Lot (2009) and Freude et al. (1964). Contrary to 

spiders that are all predatory, ground beetles and rove beetles have various diets: predatory, 
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phytophagous, detritivore or polyphagous (Bohac, 1999; Larochelle, 1990). Predatory species 

were identified using various bibliographic sources (see Appendix B: Table S1 for details).  

Data analysis  

Aboveground arthropod communities in each plot were characterized by (1) the abundance 

(number of individuals) of each species observed, (2) the total number of species observed 

(species richness) and (3) the evenness of species abundances using Pielou’s index (Shannon 

index /log(species richness)), (Vegan package, Oksanen et al., 2016). These three types of 

response variable were calculated for each taxonomic group of aboveground arthropods 

separately (ground beetles, rove beetles and spiders) and for the phylogenetically 

heterogeneous group of predatory species including all spiders and exclusively predatory 

ground and rove beetle species. 

On each of these three response variables, we tested the impact of different types of variables 

characterizing crop diversity and composition, (1) the number of wheat varieties (a proxy for 

crop genetic diversity), (2) the number of wheat functional groups (a proxy for crop trait 

diversity) and (3) the stand characteristics GAI, shoot biomass, the mean and the coefficient 

of variation of plant height. For all models, the spatial coordinates (longitude and latitude) of 

plots were included to account for the possibility of spatial gradients in arthropod community 

characteristics due to border effects. 

Analyses were conducted in three steps. First, the effects of the number of wheat varieties 

were tested (~ Longitude + Latitude + Number of wheat varieties). Second, the effects of the 

number of functional groups were tested in separate models (~ Longitude + Latitude + 

Number of functional groups) because of its correlation with the number of wheat varieties 

(Fig. 2). Finally, the effects of wheat stand characteristics were tested simultaneously in a 

single model (~ Longitude + Latitude + Wheat biomass + Mean plant height + Variance of 

plant height + GAI) but without including the number of varieties or the number of functional 
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groups because of correlations between stand characteristics and numbers of varieties or 

functional groups (Fig. 2). In models analysing wheat mixture characteristics, forward model 

selection was applied using the AIC (Akaike Information Criterion) before testing the 

significance of effects and the goodness of fit.  

Depending on the type of response variable, we used three types of statistical models. For 

species richness, we used generalized linear models (GLMs) with a Poisson error distribution 

(Crawley, 2009) and checked for overdispersion (Cameron & Trivedi, 1990). Because the 

number of species observed in a sample is known to increase with the number of individuals 

sampled (Gotelli & Colwell, 2011), the total abundance was added as a fixed covariate in the 

model to partly disentangle species richness from total abundance. This partly allowed us to 

test the “more diversity” hypothesis, under which we expect more invertebrate species 

associated with more wheat varieties, all else being equal (in particular, with the same total 

abundance). We checked that there were no multicollinearity issues between explanatory 

variables (squared variance inflation factors (VIF) < 2, Zuur et al., 2010). To study the 

abundance of species, the abundances of all species were studied together in a single model 

We used only species observed in at least ten percent of samples in order to avoid issues 

related to different distributions among species and the ensuing zero inflation in GLMM, 

(Zuur et al. 2012), including species identity as a random effect to control for differences in 

abundance across species. To do so we used mixed models (GLMMs) with Poisson error or 

negative binomial error distribution (Bolker et al., 2009) and checked for overdispersion with 

the overdisp_fun function (http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html). In 

GLMMs, the best fit between Poisson, negative binomial, zero-inflated Poisson and zero-

inflated negative binomial models was selected on the basis of the AIC. Finally, for the Pielou 

index, the rank-transformation (Akritas, 1990) was applied to reach a normal distribution of 

residuals and then analysed with linear models (LMs). When the normality was still not 

ACCEPTED M
ANUSCRIP

T

http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html


 

10 
 

verified, we used a Kruskal-Wallis test. 

The significance of effects was calculated using type II sums of squares for unbalanced 

designs (Bolker et al., 2009). The goodness of fit of each model was calculated as an adjusted 

R² for LMs, conditional R² (the total variance explained by random and fixed effects) and 

marginal R² (the variance explained by fixed effects alone) for GLMMs, and a pseudo R2 for 

GLMs. 

All data analyses were performed using the R software (version 3.4.1, R Development Core 

Team, 2017) and the car (for unbalanced design, Fox & Weisberg, 2011), lme4 and 

glmADMB (for GLMMs, Bates et al., 2015; Fournier et al., 2012; Skaug et al., 2016), 

MuMin (for forward model selection, Barton, 2017), piecewiseSEM (to compute coefficient 

of determination for GLMMs, Lefcheck, 2015) and AER (for GLM overdispersion test, 

Kleiber & Zeileis, 2008) packages.  

 

Results 

Description of aboveground arthropod communities and wheat stands 

Overall, 86 species were captured (1271 individuals from 25 species for ground beetles, 1436 

individuals from 25 morphospecies of rove beetles and 542 individuals from 36 

morphospecies for spiders), 67 of which were predatory. In each group, the most abundant 

species are commonly observed in European agroecosystems. The number of wheat varieties 

and the number of functional groups were highly correlated (Spearman correlation coefficient 

= 0.84). The number of wheat varieties was positively correlated with the mean and 

coefficient of variation of wheat height (0.23 and 0.72, respectively). The number of 

functional groups was also positively related to the mean and coefficient of variation of wheat 

height (0.22 and 0.73, respectively) but negatively correlated with wheat shoot biomass (- 

0.21). Wheat shoot biomass was negatively correlated with the coefficient of variation of the 
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height of wheat stalks (- 0.21) but positively correlated with the GAI (0.22). Finally, the mean 

and coefficient of variation of the height of wheat stalks were positively correlated (0.30) 

(Fig. 2).  

Effect of wheat intraspecific diversity on the abundance and diversity of aboveground 

arthropod communities 

Overall, wheat diversity had limited effect on aboveground arthropods, which differed across 

taxonomic groups and species within a group (see Appendix B: Tables S5-S8 for detailed 

values across wheat diversity treatments). The number of wheat varieties had a positive, but 

small effect on spider abundance (β = 0.052 ± 0.023, P = 0.027, marginal R² = 0.051, see 

Appendix B: Table S2). This effect was variable across species, with the most impacted 

species being Oedothorax apicatus, Tenuiphantes tenuis, Erigone atra, Oedothorax retusus 

and Pardosa prativaga (Fig. 3). These species are among the most abundant species and all 

belong to the Linyphiidae family with the exception of P. prativaga (Lycosidae) (Appendix B: 

Fig. S1C). Most likely as a result of the increased abundance of dominant species, the number 

of varieties had a negative effect on the evenness of spiders (i.e. Pielou index, β = - 0.20 ± 

0.10, P = 0.038, adjusted R² = 0.09, see Appendix B: Table S3A). The number of wheat 

varieties also had a positive, but small effect on predator abundance (β = 0.025 ± 0.010, P = 

0.012, marginal R² = 0.012, see Appendix B: Table S2). This effect was variable across 

species, with the most affected taxa being the two most abundant rove beetle taxa: 

Aleocharinae spp, and Tachyporus hypnorum and the three most abundant ground beetle 

species Poecilus cupreus, Phyla obtusa and Clivina fossor (Fig. 4, Appendix B: Figs. S1A 

and B). In contrast, none of the other aboveground arthropods (ground beetles or rove beetles) 

were impacted by the number of wheat varieties, regardless of the dependent variable 

considered (species abundance, richness or evenness) (see Appendix B: Tables S2 and S4). 

Finally, the number of wheat functional groups, a proxy for trait diversity, also had a limited 
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effect on aboveground arthropods with only a negative effect on the evenness of spiders (β = - 

0.22 ± 0.10, P = 0.026, adjusted R² = 0.1, see Appendix B: Table S3A).  

Effects of wheat stand characteristics  

The characteristics of wheat stands had in some cases an effect on the diversity of arthropods, 

but never on their abundance (see Appendix B: Table S5 for detailed values across wheat 

diversity treatments). Wheat shoot biomass had a positive effect on the evenness of ground 

beetles (Pielou index, β = 0.31 ± 0.09, P = 0.001, adjusted R² =0.10, see Appendix B: Table 

S3A) and predators as a whole (β = 0.23 ± 0.09, P = 0.012, adjusted R² =0.05, see Appendix 

B: Table S3A), while the GAI had a positive effect on ground beetle abundance (β = 0.082 ± 

0.042, P = 0.050, marginal R² = 0.019, see Appendix B: Table S2) and on rove beetle species 

richness (β = 0.221 ± 0.102, P = 0.039, pseudo R² = 0.31, see Appendix B: Table S4) and the 

variance of plant height had a negative effect on the evenness of rove beetles (Pielou index, β 

= - 0.21 ± 0.09, P = 0.017, adjusted R² = 0.12, see Appendix B: Table S3A).  

Weak signal of wheat mixture but stronger border effects 

In addition to the few and generally weak effects of the crop (0.025 < │β│ < 0.307), there 

was a stronger North-South gradient 0.139 < │β│ < 0.309) in the abundance and diversity of 

arthropod communities, with significantly more individuals and less even abundances at the 

northern end of the field site (significant positive, respectively negative “latitude” effect, 

Tables S2-S4), which lies closer to the woody patches (Figs 1A and B). Longitude had also, in 

fewer cases, a significant but weak negative effect (see Appendix B: Tables S2 and S4).  

 

Discussion 

Our experiment manipulated wheat intraspecific diversity and combinations of wheat traits to 

examine their impact on aboveground arthropods, with a focus on predatory species. We 

observed limited effects that can be summarized as a positive effect of the number of varieties 
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on the abundance of the most common spider species, as well as on the abundance of the most 

common predatory species (ground and rove beetles) and a few more significant relationships 

between wheat stand characteristics and (1) the abundance of ground beetles, (2) predators as 

a whole, (3) the diversity of ground and rove beetles and (4) the diversity of exclusive 

predator communities. Below, we discuss how these results compare to similar experiments in 

more natural settings, and whether crop variety mixtures can be expected to improve 

biological control in agroecosystems. 

Positive effect of wheat intraspecific diversity on several spider species and consequences 

on spider diversity  

The observation of an increased abundance of several spider species in plots with multiple 

varieties is consistent with previous experiments examining the effect of the genetic diversity 

of plant species on arthropod communities, although the mechanisms involved may differ. For 

example, Crutsinger et al. (2006) in Solidago altissima, Moreira and Mooney (2013) in 

Baccharis salicifolia, Abdala-Roberts et al. (2016) in Phaseolus lunatus or Chateil et al. 

(2013) in T. aestivum showed that higher plant genetic diversity was associated with higher 

abundance and/or species diversity of invertebrate taxa (mainly spiders). In our experiment, 

however, increased spider abundance was associated with decreased spider diversity (as 

indicated by a significant negative effect of the number of wheat varieties on the Pielou index, 

see Appendix B: Table S4). Although species diversity was not always measured with the 

same indices, this pattern contrasts with most previous findings that plant genetic diversity 

tends to increase arthropod diversity (Chateil et al., 2013; Crutsinger et al., 2006; Moreira & 

Mooney, 2013).  

Two main mechanisms are generally invoked to explain the positive relationship between 

plant genetic diversity and the abundance/diversity of invertebrates: (1) increased primary 

productivity resulting in more resources for herbivores and subsequently for the upper trophic 
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levels (“more individuals” hypothesis, Srivastava & Lauwton, 1998), which may increase 

species diversity via sampling effects or (2) increased diversity of resources for herbivores or 

increased diversity of microhabitats for all groups (“more diversity” hypothesis, Southwood et 

al., 1979). Here, this later mechanism is unlikely to be at play. First, wheat diversity was 

associated with decreased spider diversity (decreased evenness), whereas the opposite pattern 

is expected under the “more diversity” hypothesis. Second, we did not observe any significant 

relationship between spider abundance/diversity and wheat stand characteristics that are 

known to have a direct influence on spider communities. For example, complex vegetation 

structure is sometimes associated with increased spider abundance (Langellotto & Denno, 

2004) via the diversity of available microhabitats. However, the variance in plant height 

within a plot, a proxy for the complexity of vegetation structure, was not related to spider 

abundance or diversity (see Appendix B: Tables S2-S4). Higher spider abundance in variety 

mixtures is therefore likely an indirect consequence of higher primary productivity, mediated 

by the abundance of herbivorous preys, although the evidence for this mechanism is mixed. 

For example, increasing the number of wheat varieties increased plant height, but not shoot 

biomass (Fig. 2).  

The negative effect of intraspecific wheat diversity on spider evenness and the positive effect 

of intraspecific wheat diversity on spider abundance affecting preferentially the most 

abundant species may be explained by species-specific dispersal abilities. These abundant 

species were mostly Linyphiidae (O. apicatus, T. tenuis or E. atra, Fig. 3), which dominated 

spider communities, as is often the case in agroecosystems in northern-temperate Europe 

(Nyffeler & Sunderland, 2003). Linyphiids are small spiders (often less than 2 mm), which 

are capable of mass aerial dispersal (Bell et al., 2005). This dispersal strategy, coupled with 

their rapid population growth during spring time (Roberts, 2001), allows Linyphiidae to move 

to and thrive in areas of the fields that offer suitable micro-local conditions and higher prey 
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densities (Harwood et al., 2001). This may explain their higher sensitivity to wheat diversity 

than other spiders, also observed in Chateil et al. (2013). In our case, the effect of 

intraspecific wheat diversity seems limited to the more dispersive species, which are 

according to environmental filtering theory (Keddy, 1992) not filtered by landscape and so 

may colonize the experimental field and may spend more time foraging in the resourceful 

plots where they are captured in higher abundance. Species with lower dispersal ability may 

be absent from resourceful plots. This would be the case for wolf spiders (Lycosidae) 

(Blandenier, 2009), which are medium-sized predators (around 5 mm) capturing their prey by 

foraging on the ground. They were relatively frequent in our experimental site (as in Lang, 

2003), but were less sensitive to crop diversity (except for P. prativaga). 

Although the number of wheat varieties tended to increase the abundance of some spider 

species, the stand characteristics responsible for such effect were difficult to identify. This is 

exemplified first by the absence of a significant relation between any of the stand 

characteristics we studied and spider abundance, and second by the absence of a significant 

relationship between the number of wheat functional groups and spider abundance or species 

richness except evenness. Some authors have emphasized that trait or phenotypic diversity 

should matter more than genetic diversity per se in explaining the effects of plant species on 

their associated communities (Hersch-Green et al., 2011; Hughes et al., 2008). Yet, few 

studies have successfully identified traits responsible for the effects of genotypic diversity 

(Crustinger, 2016). Here, we used the number of functional groups as a proxy for phenotypic 

diversity: these groups of varieties were built on the basis of a large number of traits, covering 

components of plant shoot and root morphology, plant phenology, disease resistance, 

metabolism and yield. Because variety mixtures could contain more than one variety from the 

same functional group, the number of functional groups should have been a better driver of 

arthropod community abundance and diversity than the number of varieties. Yet the opposite 
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was observed. Besides, stand characteristics that had been chosen for their a priori expected 

effects on arthropods were poorly related to spider abundance and diversity. All these 

observations suggest that the most important stand characteristics and wheat traits driving the 

positive effect of the number of varieties on spider abundance remain to be identified. 

An overall limited effect of crop diversity and composition on aboveground arthropods  

Although we did detect a weak effect of intraspecific wheat diversity on spiders and on 

predatory species, in general the community of aboveground arthropods was little impacted 

by the number or functional diversity of wheat varieties in each plot, which conflicts with 

previous similar studies (see Crutsinger, 2016 for some examples). In some cases, the effect 

of plant genetic diversity on arthropod communities was even larger than the effect of 

interspecific plant diversity (Crawford & Rudgers, 2013). Assuming that there is no bias 

against negative results in the literature (but see Parker et al., 2016), so that the large number 

of articles reporting a significant effect of plant genetic diversity are representative of its true 

impact in nature, the possible causes for the limited effect of crop genetic diversity on 

predator communities observed here can be manifold. Below we discuss three of the most 

likely causes that are related to the ecology of the organisms studied and to agricultural 

practices. 

First, detecting an effect of plant (genetic) diversity on animal communities is a matter of 

appropriate spatial and temporal scales. The experiment should be designed such that the 

targeted taxonomic groups have ample time to reach their preferred plots and stay there or to 

multiply in the more favourable plots. In the case of an annual crop such as wheat, we were 

limited by crop rotation, such that the experiment could last no more than a few months at the 

maximum. As a result, the effects of wheat on arthropod communities were strongly 

dependent on the dispersal ability of the sampled organisms. We were also limited in plot 

size, with a strong trade-off between plot size and the number of replicates per mixture 
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treatment (i.e. number of varieties or functional groups). The size and time frame of this 

experiment was, however, comparable to other studies with a strong effect of genetic diversity 

on arthropod communities (e.g. Crutsinger et al., 2006, 1 m²-plots, one growing season). Yet, 

whether the time frame of the experiment was sufficient to detect an effect of wheat diversity 

on arthropod communities depends on the dispersal ability of the regional pool of species. The 

aboveground arthropod species trapped in this study (spiders, ground beetles and rove beetles) 

are generally representative of communities observed in European farmland and, as such, are 

thought to be able to colonize and to thrive in an open and non-permanent habitat, ploughed 

and harvested every year (Eyre, 1994). Regardless of the alleged good dispersal abilities of 

the various species, the size and time frame of our experiment was long enough for all of the 

species to forage in or disperse to the plots. However, we detected a strong border effect on 

either the abundance or the diversity of all taxa, suggesting source/sink dynamics between the 

border and the centre of the field, within the time frame of our study. In either case, these 

phenomena limited the abundance of arthropods in the experimental plots and may have 

masked a possible effect of mixture treatments. 

Second, if a plant species influences predatory arthropod communities through indirect, 

bottom-up effects, via e.g. more abundant or more diverse food sources for herbivorous preys, 

the bottom-up effects of both intra- and interspecific plant diversity on arthropods may be 

buffered down in higher trophic levels because of a top-down control by predators (Terborgh, 

2015). Pitfall traps are not the best setup to assess herbivore abundance, because they also live 

on vegetation. Here the herbivores captured in the pitfall traps were not numerous enough to 

test whether the effect of the number of wheat varieties was stronger on herbivores or on 

predators and the possibility of a top-down control. However, several studies (e.g. Johnson et 

al., 2006; Moreira & Mooney, 2013) did detect strong direct or indirect effects of plant 

genetic diversity on predators or parasitoids.  
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Third, most previous experiments on the impact of plant genetic diversity on arthropods were 

performed in ecological research stations (e.g. Abdala-Roberts et al., 2016; Crutsinger et al., 

2006; Moreira & Mooney, 2013) or under organic farming (Chateil et al., 2013), whereas this 

experiment was conducted under conventional farming, with moderate use of pesticides and 

fertilizers in the year of the experiment, but with a long history of more intensive farming in 

this agronomy research station. Intensive conventional farming is known to have strong 

negative effects on the abundance of most species and on the diversity of communities (see 

Kremen & Miles, 2012 for reviews; Pfiffner & Niggli, 1996) via the effects of synthetic 

inputs and ploughing (Bouthier et al., 2014). We observed much lower abundances of spiders 

and ground beetles in this experiment under conventional farming than in an earlier 

comparable experiment with bread wheat under organic farming (Chateil et al., 2013) and 

larger experimental plots but with a comparable sampling design: same period and duration of 

pitfall trapping (2-weeks trapping session in May, same density of pitfall traps): the mean (± 

standard error) number of individuals per trap in this experiment vs. Chateil et al.’s (2013) 

was 4.4 ± 0.3 vs. 25.6 ± 1.6 for spiders and 10.6 ± 0.4 vs. 38.9 ± 2.5 for ground beetles. In 

contrast, the number of rove beetles was similar in both experiments (12.0 ± 0.5 vs. 11.7 ± 

0.75). With a single replicate per farming type, we cannot conclude that farming system is the 

main driver of such differences in abundances, but the trend is consistent with the widely 

demonstrated negative impact of conventional farming on biodiversity (Lichtenberg et al., 

2017). Nevertheless, the low number of arthropod individuals observed in this experiment has 

likely lowered our ability to detect an effect of crop variety mixtures on predator 

communities.  

 

Conclusions  

In general we found congruent, but much weaker effects of crop genetic diversity than in 
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previous similar studies: only a few spider species exhibited increased abundance when the 

number of wheat varieties increased, whereas ground and rove beetles were largely unaffected 

by the crop structure and diversity. In particular, the distance to the field edge had a stronger 

effect on arthropod communities than the crop itself, which is consistent with the well-

documented general role of the landscape scale for aboveground arthropods and predation in 

farmland (Tscharntke et al., 2007). We were not able to conclude on the exact mechanism 

explaining the difference between our and previous studies, but part of the reason may be 

linked with conventional farming lowering the general abundance and diversity of arthropods 

in the field. Our results therefore suggest that wheat variety mixtures are unlikely to benefit 

aboveground arthropods, hence to improve biological control, under conventional farming. 

However this prediction needs to be tested with new experiments directly comparing the 

impact of the same mixtures between conventional farming, low-input farming and organic 

agriculture. Finally, further investigations are also needed to upscale the study of crop variety 

mixtures and examine whether within-field genetic diversity has stronger positive impacts on 

the diversity and abundance of arthropod predators on the longer term or at the farm scale, as 

suggested by Cardinale et al. (2011). 

 

Authors' Contributions 

S. Ba. and E. P. contributed to the experimental design; S. Ba., L. B., J. G, E. M. and A. V. 

collected the data; S. Be., J. G., I. L. V., E. M., and A. V. identified the aboveground 

arthropods; A. V, E. M. and F. D. analysed the data set; E. P. and C. K. assisted in the data 

analysis; S. Ba., F. D., E. P., and A. V. wrote the paper; C. K. and I. L. V. made valuable 

comments on the writing. All authors contributed critically to the drafts and gave final 

approval for publication.  

 

ACCEPTED M
ANUSCRIP

T



 

20 
 

Acknowledgments 

This work was supported by the ANR WHEATAMIX project, grant ANR-13-AGRO-0008 of 

the French National Research Agency. We thank all the persons who were involved in the 

management of the field experiment, and particularly Sébastien Saint-Jean, Christophe 

Montagnier and Pauline Lusley. We are also grateful to Pauline Lusley for technical 

assistance to obtain GAI data and Romain Angeleri for insightful comments. We would also 

like to thank anonymous reviewers for their useful comments that helped us improve the 

quality of the manuscript.  

ACCEPTED M
ANUSCRIP

T



 

21 
 

References 

Abdala-Roberts, L., Rasmann, S., Berny-Mier, Y., Tran, J. C., Covelo, F., Glauser, G., 

Moreira, X. (2016). Biotic and abiotic factors associated with altitudinal variation in plant 

traits and herbivory in a dominant oak species. Am. J. Bot. 103, 2070-2078. DOI: 

10.3732/ajb.1600310  

Andersen, A., Hansen, Å. G., Rydland, N., ØYre, G. (1983). Carabidae and Staphylinidae 

(Col.) as predators of eggs of the turnip root fly Delia floralis Fallén (Diptera, 

Anthomyiidae) in cage experiments. J. Appl. Entomol. 95, 499-506. DOI: 10.1111/j.1439-

0418.1983.tb02673.x  

Akritas, M, G. (1990). The rank-transformation method in some two-factor designs. J. Am. 

Stat. Assoc. 85, 73-78. DOI: 101080/01621459.1990.10475308  

Baret, F., de Solan, B., Lopez-Lozano, R., Ma, K., Weiss, M. (2010). GAI estimates of row 

crops from downward looking digital photos taken perpendicular to rows at zenith angle: 

Theoretical considerations based on 3D architecture models and application to wheat crops. 

Agric. For. Meteorol. 150, 1393–1401. DOI: 10.1016/j.agrformet.2010.04.011  

Barot, S., Allard, V., Cantarel, A., Enjalbert, J., Gauffreteau, A., Goldringer, I., Lata, J.-C., Le 

Roux X., Niboyet A. Porcher, E. (2017). Designing mixtures of varieties for multifunctional 

agriculture with the help of ecology. A review. Agron. Sustainable Dev. 37, 13. DOI: 

10.1007/s13593-017-0418-x  

Barton, K. (2017). MuMIn: Multi-Model Inference. R package version 1.16.6. https://cran.r-

project.org/web/packages/MuMIn/MuMIn.pdf  

Bates, D., Maechler, M., Bolker, B., Walker, S. (2015). Fitting linear mixed-effects models 

using lme4. J. Stat. Softw. 67, 1-48. DOI:10.18637/jss.v067.i01 

Bell, J. R., Bohan, D. A., Shaw, E. M., Weyman, G. S. (2005). Ballooning dispersal using 

silk: world fauna, phylogenies, genetics and models. Bull. Entomol. Res. 95, 69-114. DOI: 

ACCEPTED M
ANUSCRIP

T



 

22 
 

10.107BER2004350 

Blandenier G. (2009) Balloning of spiders (Araneae) in Switzerland; general results from an 

eleven-year survey. Bull. Br. Arachnol. Soc. 14, 308-316. DOI: 

10.13156/arac.2009.14.7.308 

Bohac, J. (1999). Staphylinid beetles as bioindicators. Agric. Ecosyst. Environ. 74, 357-372. 

DOI: 10.1016/S0167-8809(99)00043-2 

Bohan, D. A., Boursault, A., Brooks, D. R., Petit, S. (2011). National-scale regulation of the 

weed seedbank by carabid predators. J. Appl. Ecol. 48, 888-898. DOI: 

10.1111/j.1365.2011.02088.x 

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., 

White, J. S. S. (2009). Generalized linear mixed models: a practical guide for ecology and 

evolution. Trends Ecol. Evol. 24, 127-135. DOI: 10.1016/j.tree.2008.10.008  

Bouthier, A., Pelosi, P., Villenave, C., Peres, G., Hedde, M., Ranjard, L., Vian, J.F., Peigne, 

J., Cortet, J., Bispo, A., Piron, D. (2014). Impact du travail du sol sur son fonctionnement 

biologique, in: Labreuche J. Laurent F. Roger-Estrade J. (Eds.), Faut-il travailler le sol ? 

Quae Editiors, pp. 85-108. 

Brose, U. (2003). Bottom-up control of carabid beetle communities in early successional 

wetlands: mediated by vegetation structure or plant diversity? Oecologia 135, 407-413. DOI: 

10.1007/s00442-003-1222-7 

Bryan, K. M., Wratten, S. D. (1984). The responses of polyphagous predators to prey spatial 

heterogeneity - aggregation by carabid and staphylinid beetles to their cereal aphid prey. 

Ecol. Entomol. 9, 251-259. DOI: 10.1111/j.1365-2311.1984.tb00849.x  

Cameron, A. C., Trivedi, P. K. (1990). Regression-based tests for overdispersion in the 

Poisson model. J. Econom. 46, 347-364. DOI: 10.1016/0304-4076(90)90014-k  

Cardinale, B. J., Matulich, K. L., Hooper, D. U., Byrnes, J. E., Duffy, E., Gamfeldt, L., 

ACCEPTED M
ANUSCRIP

T



 

23 
 

Balvanera, P., O’Connor, M. I., Gonzalez A. 2011. The functional role of producer diversity 

in ecosystems. Am. J. Bot. 98: 572-592. DOI: 103732/ajb.1000364  

Chateil, C., Goldringer, I., Tarallo, L., Kerbiriou, C., Le Viol, I., Ponge, J. -F., Salmon, S., 

Gachet, S., Porcher, E. (2013). Crop genetic diversity benefits farmland biodiversity in 

cultivated fields. Agric. Ecosyst. Environ. 171, 25-32. DOI: 10.1016/j.agee.2013.03.004  

Cook-Patton, S. C., McArt, S. H., Parachnowitsch, A. L., Thaler, J. S., Agrawal, A. A. (2011). 

A direct comparison of the consequences of plant genotypic and species diversity on 

communities and ecosystem function. Ecology. 92, 915-923. DOI: 10.1890/10-0999.1  

Crawford, K.M., Rudgers, J.A. (2013). Genetic diversity within a dominant plant outweighs 

plant species diversity in structuring an arthropod community. Ecology. 94, 1025-1035. 

DOI: 10.1890/12-1468.1  

Crawley, M. J. (2009). The R book. Chicago, Wiley-Blackwell. DOI: 

10.1002/9781118448908  

Crutsinger, G. M., Collins, M. D., Fordyce, J. A,. Gompert, Z., Nice, C. C., Sanders, N. J. 

(2006). Plant genotypic diversity predicts community structure and governs an ecosystem 

process. Science. 313, 966-968. DOI: 10.1126/science.1128326  

Crutsinger, G. M. (2016). A community genetics perspective: opportunities for the coming 

decade. New Phyt. 210, 65-70. DOI: 10.1111/nph.13537  

Eyre, M. (1994). Strategic explanations of carabid species distributions in northern England, 

in: Desender, K., Dufrêne, M., Loreau, M., Luff, M.L., Maelfait, J.P. (Eds.), Carabid beetles: 

ecology and evolution. Series Entomologica, vol51. Springer, Dordrecht, pp. 267-275. DOI: 

10.1007/978-94-017-0968-2_41  

Finckh, M., Gacek, E., Goyeau, H., Lannou, C., Merz, U., Mundt, C., Munk, L., Nadziak, J., 

Newton, A., de Vallavieille-Pope, C. (2000). Cereal variety and species mixtures in practice, 

with emphasis on disease resistance. Agron. 20, 813-837. DOI: 10.1051/agro:2000177 

ACCEPTED M
ANUSCRIP

T



 

24 
 

Freude, H. K., Harde, W., Lohse, G. A. (1964). Die Käfer Mitteleuropas. Band4. 

Staphylinidae I (Micropeplinae bis Tachyporinae). Krefeld, Goecke & Evers Verlag. 

Fournier, D. A., Skaug, H. J., Ancheta, J., Ianelli. J., Magnusson. A., Maunder. M., Nielsen, 

A., Sibert. J. (2012). AD Model builder: using automatic differentiation for statistical 

inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27, 

233-249. DOI: 10.1080/10556788.2011.597854 

Fox, J., Weisberg, S. (2011) An R companion to applied regression. Second edition. 

Thousand Oaks CA: Sage.. http://socserv.socsci.mcmaster.ce/jfox/Books/Companion  

Gaba, S., Lescourret, F., Boudsocq, S., Enjalbert, J., Hinsinger, P., Journet, E.P., Navas, M.L., 

Wery, J., Louarn, G., Malézieux, E., Pelzer, E., Prudent, M., Ozier-Lafontaine, H. (2015). 

Multiple cropping systems as drivers for providing multiple ecosystem services: from 

concepts to design. Agron. Sustainable Dev. 35, 607-623. DOI: 10.1007/s13593-014-0272-z  

Gaba, S., Alignier,A., Aviron, S., Barot, S., Blouin, M., Hedde, M., Jabot, F., Vergnes, A., 

Bonis, A., Bonthoux, S.,Bourgeois, B., Bretagnolle, V., Catarino, R., Coux, C., Gardarin, A., 

Giffard, B., Le Gal, A., Lecomte, J., Miguet, P., Piutti, S., Rusch, A., Zwicke M., Couvet, D. 

(2018). Ecology for sustainable and multifunctional agriculture, in: Gaba, S., Smith, B., 

Lichfouse, E. (Eds.), Sustainable Agriculture Reviews 28, Ecology for Agriculture, Springer 

International Publishing, Cham. pp.: 1-46. DOI: 10.1007/978-3-319-90309-5_1 

Gotelli, N. J., Colwell, R. K. (2011). Estimating species richness, in: Magurran, A. E., 

McGill, B. J.. (Eds.), Biological diversity: frontiers in measurement and assessment. Oxford, 

Oxford University Press, pp.: 39-54. 

Hajjar, R., Jarvis, D. I., Gemmill-Herren, B. (2008). The utility of crop genetic diversity in 

maintaining ecosystem services. Agric. Ecosyst. Environ. 123, 261-270. DOI: 

10.1016/j.agee.2007.08.003 

Harwood, J., Sunderland, K., Symondson, W. (2001). Living where the food is: web location 

ACCEPTED M
ANUSCRIP

T



 

25 
 

by linyphiid spiders in relation to prey availability in winter wheat. J. Appl. Ecol. 38, 88-99. 

DOI: 10.1046/j.1365-2664.2001.00572.x  

Hatteland, B. A., Grutle, K., Mong, C. E., Skartveit, J., Symondson, W. O. C., Solhoy, T. 

(2010). Predation by beetles (Carabidae, Staphylinidae) on eggs and juveniles of the Iberian 

slug Arion lusitanicus in the laboratory. Bull. Entomol. Res. 100, 559-567. DOI: 

10.1017/S0007485309990629 

Hersch-Green, E. I., Turley, N. E., Johnson, M. T. J. (2011). Community genetics: what have 

we accomplished and where should we be going? Proc. R. Soc. B-Biol. 366, 1453–1460. 

DOI: 10.1098/rstb.2010.0331  

Hughes, A. R., Inouye, B. D., Johnson, M. T., Underwood, N., Vellend, M. (2008). 

Ecological consequences of genetic diversity. Ecol. Lett. 11, 609-623. DOI: 10.1111/j.1461-

0248.2008.01179.x 

Hůrka, K. (1996). Carabidae of the Czech and Slovak Republics. Ing. Vit Kabourek. 

Johnson, M. T. J., Lajeunesse, M. J., Agrawal, A. A. (2006). Additive and interactive effects 

of plant genotypic diversity on arthropod communities and plant fitness. Ecol. Lett. 9, 24-34. 

DOI: 10.1111/j.1461-0248.2005.00833.x 

Keddy, P. A. (1992). Assembly and response rules: two goals for predictive community 

ecology. J. Veg. Sci. 3,157-164. DOI: 10.23073235676 

Kindt, R., Coe, R. (2005). Tree diversity analysis. A manual and sofware for common 

statistical methods for ecology and biodiversity studies. World Agroforestry Center 

(ICRAF), Nairobi. 

Kleiber, C., Zeileis, A. (2008). Applied econometrics with R. New York: Springer-Verlag. 

https://CRAN.R-project.org/package=AER 

Kremen, C., Mile,s A. (2012). Ecosystem services in biological diversified versus 

conventional farming systems: benefits, externalities and trade-offs. Ecol. Soc. 17, 40. DOI: 

ACCEPTED M
ANUSCRIP

T



 

26 
 

10.5751/ES-05035-170440 

Kromp, B. (1999). Carabid beetles in sustainable agriculture: a review on pest control 

efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ. 74, 187-228. DOI: 

10.1016/S0167-8809(99)00037-7 

Lang, A. (2003). Intraguild interference and biocontrol effects of generalist predators in a 

winter wheat field. Oecologia. 134, 144-153. DOI: 10.1007/s00442-002-1091-5 

Langellotto, G. A., Denno, R. F. (2004). Responses of invertebrate natural enemies to 

complex-structured habitats: a meta-analytical synthesis. Oecologia. 139, 1-10. DOI: 

10.1007/s00442-004-1497-3 

Larochelle, A. (1990). Food of carabid beetles. Fabreries Supplement 5. 

Lefcheck, J. S. (2015). piecewiseSEM: piecewise structural equation modelling in R for 

ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573-579. DOI: 10.1111/2041-

210X.12512 

Lichtenberg, E. M., Kennedy, C. M ,Kremen, C.,Batary, P., Berendse, F., Bommarco, R., 

Bosque-Perez, N.A., Carvalheiro, L.G., Snyder, W.E., Williams, N.M., Winfree, R., Klatt, 

B.K., Aström, S., Benjamin, F., Brittain, C., Chaplin-Kramer, R., Clough, Y., Danforth, B., 

Diekötter, T., Eigenbrode, S.D., Ekroos, J,. Elle, E., Freitas, B.M., Fukuda, Y., Gaines-Day, 

H.R., Grab, H., Gratton, C., Holzschuh, A., Isaacs, R., Isaia, M., Jha, S., Jonason, D., Jones, 

V.P., Klein, A.M., Krauss. J., Letourneau, D.K., Macfadyen, S., Mallinger, R.E., Martin, 

E.A., Martinez, E., Memmott, J., Morandin, L., Neame, L., Otieno, M., Park, M.G., Pfiffner, 

L., Pocock, M.J.O., Ponce, C., Potts, S.G., Poveda, K,. Ramos, M., Rosenheim, J.A., 

Rundlöf, M., Sardinas, H., Saunders, M.E., Schon, N.L., Sciligo A.R., Sidhu, C.H., Steffan-

Dewenter, I., Tscharntke, T., Vesely, M., Weisser, W.W., Wilson, J.K., Crowder, D. W. 

(2017). A global synthesis of the effects of diversified farming systems on arthropod 

diversity within fields and across agricultural landscapes. Glob. Chang. Biol. Early View. 

ACCEPTED M
ANUSCRIP

T



 

27 
 

DOI: 10.1111/gcb.13714 

Lobell, D. B., Schlenker, W., Costa-Roberts, J. (2011). Climate trends and global crop 

production since 1980. Science. 333, 616-620. DOI: 10.1126/science.1204531 

Loeuille, N., Barot, S., Georgelin, E., Kylafis, G., Lavigne, C. (2013). Eco-evolutionary 

dynamics of agricultural networks: implications for sustainable management. Adv.Ecol. Res. 

49, 339-435. DOI: 10.1016/B978-12-420002-9.00006-8 

Loreau, M., Mazancourt, C. (2013). Biodiversity and ecosystem stability: a synthesis of 

underlying mechanisms. Ecol. Lett. 16: 106-115. DOI: 10.1111/ele.12073 

Lott, D. A. (2009). The Staphylinidae (rove beetles) of Britain and Ireland: Scaphidiinae, 

Piestinae, Oxytelinae. Pt. 5 (Handbooks for the Identification of British Insects) Royal 

Entomological Society. 

Lövei, G. L., Sárospataki, M. (1990). Carabid beetles in agricultural fields in eastern Europe, 

in: Stork, N.E., (Ed.), The role of ground beetles in ecological and environmental studies. 

Andover, Hampshire, Intercept, pp. 87-93. 

Mijatović, D., Van Oudenhoven, F., Eyzaguirre, P., Hodgkin, T. (2013). The role of 

agricultural biodiversity in strengthening resilience to climate change: towards an analytical 

framework. Int. J. Agr. Sustain. 11, 95-107. DOI: 10.1080/14735903.2012.691221 

Moreira, X., Mooney, K. A. (2013). Influence of plant genetic diversity on interactions 

between higher trophic levels. Biol. Lett. 9, 20130133. DOI: 10.106/rsbl.2013.0133 

Nyfeler, D., Huguenin‐Elie, O., Suter, M., Frossard, E., Connolly, J., Lüscher, A. (2009). 

Strong mixture effects among four species in fertilized agricultural grassland led to 

persistent and consistent transgressive overyielding. J. Appl. Ecol. 46, 683-691. DOI: 

10.1111/j.1365-2664.2009.01653.x 

Nyffeler, M., Sunderland, K. D. (2003). Composition, abundance and pest control potential of 

spider communities in agroecosystems: a comparison of European and US studies. Agric. 

ACCEPTED M
ANUSCRIP

T



 

28 
 

Ecosyst. Environ. 95, 579-612. DOI: 10.1016/S0167-8809(02)00181-0 

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, 

P.R., O'Hara, R.B., Simpson G.L, Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H. 

(2016). vegan: community ecology package. R package version 2.4-1 https://cran.r-

project.org/web/packages/vegan/vegan.pdf  

Parker, T. H., Forstmeier, W., Koricheva, J., Fidler, F., Hadfield, J. D., En Chee, Y., Kelly, 

C.D., Gurevitch, J., Nakagawa, S. (2016). Transparency in ecology and evolution: real 

problems, real solutions. Trends Ecol. Evol. 31, 711-719. DOI: 10.1016/j.tree.2016;07.002 

Peterson, B. G., Carl, P., Boudl, K., Bennett, R., Ulrich, J., Zivot, E., Lestel, M., Balkissoon, 

K., Wuertz, D. (2014). Performance analystics: econometric tools for performance and risk 

analysis. R package version 1.4.3541. https://cran.r-

project.org/web/packages/PerformanceAnalytics/PerformanceAnalytics.pdf 

Pfiffner, L., Niggli, U. (1996). Effects of bio-dynamic, organic and conventional farming on 

ground beetles (Col. carabidae) and other epigaeic arthrods in winter wheat. Biol. Agric. 

Hortic. 12, 353-364. DOI: 10.1080/01448765.1996.9754758 

Prieto, I., Violle, C., Barre, P., Durand, J. L., Ghesquiere, M., Litrico, I. (2015). 

Complementary effects of species and genetic diversity on productivity and stability of sown 

grasslands. Nat. Plants. 1, 15033. DOI: 10.1038/nplants.2015.33 

Ratnadass, A., Fernandes, P., Avelino, J., Habib, R. (2012). Plant species diversity for 

sustainable management of crop pests and diseases in agroecosystems: a review. Agron. 

Sustainable Dev. 32, 273-303. DOI: 10.1007/s13593-011-0022-4 

Roberts, M. J. (2001). Spiders of Britain and Northern Europe. London, Harper Collins. 

Roger, J. L., Jambon, O., Bouger, G. 2013. Clé de détermination des Carabidaes. Paysages 

agricoles du Nord-Ouest de la France. 

Scheu, S. (2002). The soil food web: structure and perspectives. European J. Soil Biol. 38, 11-

ACCEPTED M
ANUSCRIP

T



 

29 
 

20. DOI: 10.1016/S1164-5563(01)01117-7 

Schmidt, M. H., Clough, Y., Schulz, W., Westphalen, A., Tscharntke, T. (2006). Capture 

efficiency and preservation attributes of different fluids in pitfall traps. J. Arachnol. 34, 159-

162. DOI: 10.1636/T04-95.1 

Shennan, C. (2008). Biotic interactions, ecological knowledge and agriculture. Phil. Trans. R. 

Soc. B. 363, 717-739. DOI: 10.1098/rstb.2007.2180 

Siemann, E., Tilman, D., Haarstad, J., Ritchie, M., 1998. Experimental tests of the 

dependence of arthropod diversity on plant diversity. Am. Nat. 152, 738-750. DOI: 

10.1086/286204 

Skaug, H., Fournier, D., Bolker, B., Magnusson, A., Nielsen, A. (2016). Generalized linear 

mixed models using 'AD Model Builder'. R package version 0.8.3.3 

Southwood, T. R. E., Brown, V. K., Reader, P. M. (1979). The relationships of plant and 

insect diversities in succession. Biol. J. Linn. Soc. 12, 327-348. DOI: 10.1111/j.1095-

8312.1979.tb00063.x 

Srivastava, D. S., Lawton, J. H. (1998). Why more productive sites have more species: an 

experimental test of theory using tree‐hole communities. Am. Nat. 152, 510-529. DOI: 

10.1086/286187 

Symondson, W. O. C. (2004). Coleoptera (Carabidae, Staphylinidae, Lampyridae, Drilidae 

and Silphidae) as predators of terrestrial gastropods, in: Barker, G.M., (Ed), Natural Enemies 

of Terrestrial Molluscs. CABI Pub., pp. 37-84. 

Terborgh, J. W. (2015). Toward a trophic theory of species diversity. Proc. Nat. Acad. Sci. 

U.S.A. 112, 11415-11422. DOI: 10.1073/pnas.1501070112 

Tews, J., U. Brose, V. Grimm, K. Tielbörger, M. C. Wichmann, M. Schwager and F. Jeltsch 

(2004). Animal species diversity driven by habitat heterogeneity/diversity: the importance of 

keystone structures. J. Biogeogr. 31, 79-92. DOI: 10.1046/j.0305-0270.2003.0994.x 

ACCEPTED M
ANUSCRIP

T



 

30 
 

Thomas, D. B. (2008). Nontoxic antifreeze for insect traps. Entomol. News. 119, 361-365. 

DOI: 10.3157/0013-872X-119.4.361 

Tilman, D., Downing, J. A. (1996). Biodiversity and stability in grasslands. Nature, 367, 363-

365. DOI: 10.1038/367363a0 

Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., Schindler, D., 

Schlesinger, W.H., Simberloff, D., Swackhamer, D. (2001). Forecasting agriculturally 

driven global environmental change. Science. 292, 281-284. DOI: 10.1126/science.1057544 

Tscharntke, T., Bommarco, R., Clough, Y., Crist, T. O., Kleijn, D., Rand,, T.A., Tylianakis, 

J.M., van Nouhuysj S., Vidalj S. (2007). Conservation biological control and enemy 

diversity on a landscape scale. Biol. Control. 43, 294-309. DOI: 

10.1016/j.biocontrol.2007.08.006 

Vergnes, A., Pellissier, V., Lemperiere, G., Rollard, C., Clergeau, P. (2014). Urban 

densification causes the decline of ground-dwelling arthropods. Biodiversity Conserv. 23, 

1859-1877. DOI: 10.1007/s10531-014-0689-3 

Yee, D. A., Juliano, S. A. (2007). Abundance matters: a field experiment testing the more 

individuals hypothesis for richness–productivity relationships. Oecologia. 153, 153-162. 

DOI: 10.1007/s00442-007-0707-1 

Zuur, A. F., Ieno, E. N., Elphick, C. S. (2010). A protocol for data exploration to avoid 

common statistical problems. Methods Ecol. Evol. 1: 3-14. DOI: 10.1111/j.2041-

210X.2009.00001 

Zuur, A. F., Saveliev A. A., Ieno, E. N. (2012). Zero inflated models and generalized linear 

mixed models with R. Highland Statistics Ltd. 

 

  

ACCEPTED M
ANUSCRIP

T



 

31 
 

 

Figures 

 

Fig. 1. Location of field site (A) and plot distribution (B) in the experimental station of the 

French National Institute for Agricultural Research, in Versailles, France (48°81’ N, 2°09’ E). 

Each plot was buffered by a 1.75 m-wide row of triticale (C). 

 

Fig. 2. Spearman correlations between the number of wheat varieties, the number of 

functional groups and wheat stand characteristics (PerformanceAnalytics package, Peterson et 

al. 2014). The distribution of each variable is shown on the diagonal. In the lower triangle, 

bivariate scatter plots with a fitted line are displayed. In the upper triangle, the corresponding 

Spearman correlation coefficients are given. Significance levels are as follows: P < 

0.001(***), 0.01<P<0.05 (*), 0.05<P<0.1 (.). 

 

Fig. 3. Predicted abundance of spider species as a function of the number of wheat varieties. 

The dots and the lines are the values predicted by the generalized linear mixed-effect model 

including number of wheat varieties, latitude and longitude as explanatory variables. 

 

Fig. 4. Predicted abundance of predatory species as a function of the number of wheat 

varieties. Species names of ground beetles are in bold and rove beetles are underlined. Note 

that the spider species are the same as on Fig. 3, because all spiders are predators. The dots 

and the lines are the values predicted by the generalized linear mixed-effect model including 

number of wheat varieties, latitude and longitude as explanatory variables. 
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