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ABSTRACT26

The bimodal distribution of fitness effects of new mutations and standing genetic varia-27

tion, due to early-acting strongly deleterious recessive mutations and late-acting mildly28

deleterious mutations, is analyzed using the Kondrashov model for lethals (K), with29

either the infinitesimal model for selfing (IMS) or the Gaussian allele model (GAM)30

for quantitative genetic variance under stabilizing selection. In the combined models31

(KIMS and KGAM) high genomic mutation rates to lethals and weak stabilizing selec-32

tion on many characters create strong interactions between early and late inbreeding33

depression, by changing the distribution of lineages selfed consecutively for different34

numbers of generations. Alternative stable equilibria can exist at intermediate selfing35

rates for a given set of parameters. Evolution of quantitative genetic variance under36

multivariate stabilizing selection can strongly influence the purging of nearly recessive37

lethals, and sometimes vice versa. If the selfing rate at the purging threshold for quan-38

titative genetic variance in IMS or GAM alone exceeds that for nearly recessive lethals39

in K alone, then in KIMS and KGAM stabilizing selection causes selective interference40

with purging of lethals, increasing the mean number of lethals compared to K; other-41

wise, stabilizing selection causes selective facilitation in purging of lethals, decreasing42

the mean number of lethals.43
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Partially recessive deleterious mutations cause inbreeding depression, or loss of fitness44

upon matings between relatives, which is a major factor in the evolution of mixed45

mating systems, particularly mixed self-fertilization and outcrossing which occurs in46

many plants (Charlesworth and Charlesworth 1987; Charlesworth and Willis 2009) and47

some hermaphroditic animals (Jarne and Auld 2006). Spontaneous mutations, as well48

as standing genetic polymorphisms, typically display a strongly bimodal distribution49

of fitness effects (Dobzhansky 1970; Fudala and Korona 2009; Bell 2010). A class of50

lethal and sublethal mutations exists which on average in standing variation are nearly51

recessive; a second class mutations are mildly deleterious and moderately recessive52

(Simmons and Crow 1977; Willis 1999a,b; Vassilieva et al. 2000; Eyre-Walker and53

Keightley 2007; Charlesworth and Willis 2009). Homozygous lethal mutations usually54

act early in development to cause embryonic mortality, while mildly deleterious mu-55

tations tend to act later in development, influencing individual growth, survival, and56

fecundity (Hadorn 1961; Lande et al. 1994; Husband and Schemske 1996; Lande et al.57

1994; Bell 2010; Winn et al. 2011). Empirical evidence therefore justifies a life-history58

model of inbreeding depression due to a combination of recessive lethal mutations af-59

fecting embryo survival and mildly deleterious mutations affecting juvenile and adult60

survival and reproduction.61

The Kondrashov (1985) model is often used to describe the genomic evolution of62

deleterious mutations since with a few reasonable assumptions it accurately describes63

the population genetic complexities of mixed selfing and outcrossing, especially zygotic64

disequilibrium (explained below) (Charlesworth et al. 1990; Lande et al. 1994; Kelly65

2007; Porcher and Lande 2013, 2016). Based on empirical observations on ferns with66

a very high inbreeding depression, Ganders (1972) suggested that if nearly all selfed67

zygotes die before reproduction, then the adult population remains almost completely68

outcrossed, and selection against recessive deleterious alleles becomes ineffective. Lande69

et al. (1994) confirmed this idea analytically, showing that with high genomic mutation70

rates to nearly recessive lethals a process of selective interference among deleterious71

mutations creates a critical selfing rate, or purging threshold, below which a nearly72

constant mean number of heterozygous lethals is maintained and above which the73

equilibrium mean number of lethals decreases dramatically. Kelly (2007) demonstrated74
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that selective interference also operates among mildly deleterious moderately recessive75

mutations if they produce a substantial total inbreeding depression at low or moderate76

selfing rates.77

Mildly deleterious mutations are usually assumed to be unconditionally deleterious78

(Simmons and Crow 1977; Kondrashov 1985; Charlesworth et al. 1990; Vassilieva et al.79

2000; Charlesworth and Willis 2009). However, it is rather difficult to empirically dis-80

tinguish unconditional mildly deleterious mutations from quantitative genetic variation81

under stabilizing selection (Charlesworth 2013a,b). Stabilizing selection on a quanti-82

tative character with purely additive genetic variance produces allelic effects on fitness83

that are mildly deleterious and mildly recessive (Wright 1935; Manna et al. 2011),84

in agreement with general observations on mildly deleterious mutations. In contrast85

to models with unconditional deleterious mutations, an allele with an additive effect86

on a quantitative character under stabilizing selection may be either advantageous or87

deleterious depending on whether the mean phenotype is above or below the optimum,88

and alleles at different loci with opposite effects on the character may compensate each89

other in their effects on phenotype and fitness (Fisher 1930, 1958; Wright 1931, 1935,90

1969).91

Because inbreeding immediately increases the genetic variance of all quantitative92

characters simultaneously (Wright 1921, 1969), joint stabilizing selection on multi-93

ple characters can produce a substantial contribution to the total inbreeding depres-94

sion, possibly accounting for much or most of the inbreeding depression in fitness due95

to mildly deleterious mutations (Lande and Schemske 1985). Models of the mainte-96

nance of genetic variance in quantitative characters under stabilizing selection in large97

partially selfing populations demonstrate a similar purging threshold for quantitative98

genetic variance, which occurs by a different mechanism than that for uncondition-99

ally deleterious recessive mutations. For selfing rates below the purging threshold for100

quantitative genetic variance, the genetic variance remains nearly constant, close to101

that under random mating, because deviations from Hardy-Weinberg equilibrium are102

compensated by decreased genic variance and negative linkage disequilibrium, but for103

selfing rates above the purging threshold, this compensation mechanism breaks down104

and the total genetic variance becomes greatly reduced. The selfing rate at the purging105
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threshold for quantitative genetic variance depends on the total inbreeding depression106

produced by stabilizing selection on multiple characters (Lande and Porcher 2015).107

Here we investigate the evolutionary interaction of the two major components of108

inbreeding depression by modeling the maintenance of quantitative genetic variance109

and recessive lethal mutations in a large partially selfing population.110

111

The Models112

In large predominantly outcrossing animal populations, individuals typically carry a113

few nearly recessive heterozygous lethal or semi-lethal mutations, but the recessive114

lethal load tends to be somewhat higher in large, long-lived or partially asexual plants115

(Klekowski 1984, 1988, 1989; Lande et al. 1994; Muirhead and Lande 1997; Scofield116

and Schultz 2006). With typical karyotypes of many chromosomes, and genomic recom-117

bination length of several or many Morgans, even dozens heterozygous recessive lethals118

in any individual are unlikely to be closely linked, so that to a good approximation al-119

leles at lethal-producing loci can be assumed to segregate independently. Kondrashov’s120

(1985) model of unconditionally deleterious mutations at an infinite number of unlinked121

loci has been used to model inbreeding depression for fitness due recessive lethal muta-122

tions, or due to mildly deleterious mutations (Charlesworth, Morgan and Charlesworth123

1990; Lande et al. 1994; Kelly 2007). However, Kondrashov’s model assumes that all124

loci producing detrimental mutations have identical mutation rates and fitness effects,125

so it can not deal with two components of inbreeding depression unless generalized in126

some way, and in any case it can not handle compensatory mutations.127

Mixed mating systems, such as partial self-fertilization, produce variation among128

individuals in the degree to which they are inbred. Because inbreeding affects all loci129

in essentially the same way, variance in the inbreeding coefficient creates zygotic dis-130

equilibrium, the non-random association of homozygosity among loci. This presents131

serious complications for analytical modeling, and the Kondrashov (1985) model for132

unconditionally deleterious mutations is the only analytical genomic model that ac-133

counts exactly for zygotic disequilibrium. Zygotic disequilibrium can be measured by134

deviations from a Poisson distribution of number of heterozygous lethals in adults135

(Lande et al. 1994), and by the excess of standardized kurtosis in the distribution of136
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quantitative genetic variance, κ, compared to a normal distribution (κ = 3). The stan-137

dardized kurtosis of breeding value in the population is the weighted average fourth138

central moment within cohorts, divided by the square of the population variance in139

breeding value (Lande and Porcher 2015).140

We model a very large or infinite plant population reproducing by a mixture of141

self-fertilization and random outcrossing among unrelated individuals. The probability142

that new zygotes are formed by self-fertilization, r, is assumed to be the same for all143

plants and constant in time. In such a population, every individual can be classified by144

its selfing age, the number of generations in its immediate past since the last outcrossing145

event in its genetic lineage or pedigree (Campbell 1986; Schultz and Willis 1995; Kelly146

1999a,b; Lande and Porcher 2015).147

Kelly (2007) developed an approximate Kondrashov model with selfing age struc-148

ture, yielding results closely resembling those of the exact Kondrashov model, except149

near a purging threshold when artifactual limit cycles sometimes appeared. Roze (2015)150

derived another approximation to the Kondrashov model, allowing zygotic disequilib-151

rium only between pairs of loci; by comparison with the exact Kondrashov model152

he inferred that for nearly recessive mutations, or with high genomic mutation rates,153

inbreeding depression is strongly affected by multilocus zygotic disequilbria.154

We derive an exact version of the Kondrashov model for nearly recessive lethals155

(abbreviated as K) structured by selfing age. To reach robust conclusions concerning156

the total inbreeding depression, we combine the Kondrashov model for lethals (K) with157

two different models of inheritance for a quantitative character structured by selfing158

age. The infinitesimal model for selfing (IMS) for a very large but finite population159

involves an infinite number of unlinked loci with infinitesimal mutational variance.160

This model extends to inbreeding Fisher’s infinitesimal model for an infinite population161

with no mutation or selection and random or assortative mating (Fisher 1918; Bulmer162

1971). IMS accounts for the lower effective population size at higher selfing rates163

(Wright 1969; Charlesworth and Charlesworth 1995), and the resulting decrease in164

genic variance maintained by a balance between mutation and random genetic drift in165

the limit of large population size and small mutation rate. The Gaussian allele model166

(GAM) assumes an approximately normal distribution of additive allelic effects at each167
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of a finite number of linked loci maintained by a balance of mutation, recombination,168

and stabilizing selection in an infinite population (Kimura 1965; Lande 1975, 1977). In169

IMS only one stable equilibrium of the genetic variance exists at any selfing rate, but in170

GAM two stable equilibria exist for selfing rates below the purging threshold, termed171

the outcrossed equilibrium and the purged equilibrium (Lande and Porcher 2015). These172

two models of quantitative inheritance combined with the Kondrashov model for lethals173

are designated respectively as KIMS and KGAM.174

The combined models, KIMS and KGAM, neglect the excess kurtosis of breed-175

ing values, and the association of lethals with quantitative variation, within selfing176

age classes, but account for most of the zygotic disequilibrium in the population as a177

whole. Although we assume that nearly recessive lethal mutations and quantitative178

genetic variation are selected independently, these two components of inbreeding de-179

pression interact because both of them influence the fitnesses and hence the frequency180

distribution of selfing age classes that forms the framework for their joint evolution.181

As for most population genetic models, IMS and GAM are naturally expressed182

using quantities measured each generation in zygotes before selection. In contrast,183

the Kondrashov model for lethals, K, is expressed using the numbers of heterozygous184

recessive lethal mutations in adults. These models can be combined by recalling that185

homozygous lethal mutations typically act early in development to cause embryonic186

mortality, while mildly deleterious mutations tend to act late in development, influ-187

encing growth, survival and fecundity. Essential features of the IMS and GAM can be188

preserved when they are combined with K by enumerating genotypes at the subadult189

stage, after selection on homozygous and heterozygous effects of nearly recessive lethal190

mutations, but before selection on quantitative characters. The life cycle diagram in191

Table 1 defines the order of events designated by parenthetic symbols. Unless oth-192

erwise stated, the population is measured, and numerical results are graphed, at the193

subadult stage after selection on lethals but before selection on quantitative characters.194

195

[Table 1 about here.]196

197

SELFING AGES IN THE KONDRASHOV MODEL FOR LETHALS198
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We model an infinitely large partially self-fertilizing population with no genetic variance199

in selfing rate, such that each zygote has a probability r of being produced by self-200

fertilization and probability 1 − r of being produced by outcrossing to an unrelated201

individual. These probabilities are assumed to be the same for all plants and constant in202

time. We describe individuals from a lineage self-fertilized for τ consecutive generations203

since last outcrossing as being of selfing age τ .204

An infinite number of unlinked loci are assumed to undergo irreversible mutation205

to recessive lethal alleles with total genomic mutation rate U . Heterozygous lethal206

alleles at each locus have viability 1−h compared to nonmutant homozygotes, and act207

independently among loci implying multiplicative fitness effects for individuals with208

multiple heterozygous lethals.209

We define pτ (x) as the frequency in the population of subadult plants carry-210

ing x heterozygous recessive lethal alleles from lineages of selfing age τ , such that211 ∑∞
τ=0

∑∞
x=0 pτ (x) = 1. An individual with y heterozygous lethals reproducing by self-212

fertilization transmits to an offspring x ≤ y heterozygous lethal alleles with probability213 (
y
x

) (
1
2

)2y−x
, and contributes to outcrossed offspring a gamete carrying x recessive lethal214

alleles with probability
(
y
x

) (
1
2

)y
. Summing over all parental genotypes the recursion215

equations for transmission of lethals in the selfing lineages are216

p∗τ+1(x) = r
∞∑
y=x

p∗∗∗τ (y)

(
y

x

)(
1

2

)2y−x

for τ ≥ 0 (1)

where a triple asterisk ∗∗∗ denotes parental genotypes after selection on quantitative217

traits and a single asterisk ∗ denotes offspring genotypes before mutation (eq. 7a).218

The gamete pool contributed by all parents is219

g(x) =
∞∑
τ=0

∞∑
y=x

p∗∗∗τ (y)

(
y

x

)(
1

2

)y
(2a)

and outcrossing by random union of gametes produces offspring of selfing age 0,220

p∗0(x) = (1− r)
x∑
y=0

g(x− y)g(y). (2b)

Mutation, denoted by a double asterisk ∗∗, at a diploid genomic rate U per generation221
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is described by a Poisson process,222

p∗∗τ (x) =
x∑
y=0

p∗τ (x− y)
e−UUy

y!
for τ ≥ 0. (3)

Selection against heterozygous lethal alleles is described by a selection coefficient223

h assumed to be identical and to act independently among all loci, so that finally at224

the subadult stage of enumeration in the next generation, denoted by a prime ′, the225

distribution of numbers of heterozygous lethals by selfing age is226

p′τ (x) = (1− h)xp∗∗τ (x)/¯̄v (4a)

¯̄v =
∞∑
τ=0

∞∑
x=0

(1− h)xp∗∗τ (x) (4b)

where ¯̄v is the mean fitness of juveniles from selection on nearly recessive lethals.227

At enumeration in subadults the frequency of selfing age class τ is228

pτ =
∞∑
x=0

p′τ (x) (5)

which is employed in the model of quantitative genetic variation. The mean number229

of heterozygous lethals in the population is230

x̄ =
∞∑
τ=0

∞∑
x=0

xp′τ (x).

231

QUANTITATIVE GENETIC VARIANCE232

In a randomly mating diploid population the phenotype of an individual for a single233

character, z is assumed to be composed of a breeding value, a (the sum of additive234

genetic contributions of alleles at all loci), plus an independent environmental effect,235

e, so that z = a + e. Environmental effects are assumed to be normal with mean 0236

and variance E. Allelic effects are assumed to be purely additive, and hence the ge-237

netic variance in breeding value among individuals can be partitioned into two additive238

components G = V + C, where V is the genic variance (twice the variance of allelic239

effects on each character summed over all loci), and C is twice the total covariance240
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of allelic effects among loci within gametes due to linkage disequilibrium (nonrandom241

association of alleles between loci within gametes). In the absence of selection, inbreed-242

ing reduces within-family heterozygosity and additive genetic variance and covariance,243

and increases additive genetic variance and covariance among families (Wright 1921,244

1969, Crow and Kimura 1970). A subpopulation (or cohort) composed of individuals245

produced by τ generations of consecutive selfing since the last outcrossing event in246

their lineage have an inbreeding coefficient fτ that is uniform (the same for all such247

individuals). Uniform inbreeding within selfing age cohorts increases purely additive248

genetic variance by a fraction equal to the inbreeding coefficient (Wright 1921, 1969).249

The (co)variance of additive genetic effects of alleles from different gametes equals fτ250

times the (co)variance of allelic effects, whether or not the alleles are chosen from the251

same locus. Selfing age cohorts have total genetic variance Gτ = (1 + fτ )(Vτ +Cτ ) and252

phenotypic variance Pτ = Gτ + E.253

To describe stabilizing selection on the individual phenotype for a single quanti-254

tative character, z, the expected relative fitness of individuals, W (z) is given by a255

Gaussian function of their deviation from an optimum phenotype, θ,256

w(z) = exp

{
−(z − θ)2

2ω2

}
.

Assuming that the mean phenotype of the population is initially at the optimum,257

z̄ = θ, with purely additive genetic variability the phenotype distributions within258

selfing age cohorts, and in the population as a whole, will always be symmetric with259

mean phenotype at the optimum, as neither selection nor inbreeding will change the260

mean phenotype.261

Inbreeding depression in fitness due to stabilizing selection on a single quantitative262

character is likely to be small because the intensity of stabilizing selection typically is263

moderate or weak (Lande and Arnold 1983, Kingsolver et al. 2001). To produce realis-264

tic inbreeding depression in a constant environment we analyze stabilizing selection on265

multiple quantitative characters. For simplicity, we consider independent stabilizing266

selection on m identical genetically and phenotypically uncorrelated characters, each267

with the same genetic and phenotypic variances under the same strength of stabilizing268

selection. Nearly the same inbreeding depression would be produced by fewer char-269
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acters under stronger stabilizing selection. The main results for the maintenance of270

quantitative genetic variance, including the position of the purging threshold, still ap-271

ply when the characters have different parameters or are genetically correlated (Lande272

and Porcher 2015).273

Using the normal approximation for phenotypes and breeding values of each char-274

acter, the mean fitness of a cohort of selfing age τ is then275

w̄τ = (ω2/γτ )
m/2 (6)

where γτ = ω2+Pτ measures the strength of stabilizing selection acting on the cohort of276

selfing age τ (Lande and Arnold 1983). Stabilizing selection on quantitative characters277

of subadults changes the lethal heterozygote frequencies in the adult population as a278

whole by altering the probability distribution of selfing age classes,279

p∗∗∗τ (x) =
w̄τ
¯̄w
pτ (x) (7a)

where ¯̄w =
∑∞

τ=0 pτ w̄τ is the population mean fitness from stabilizing selection on280

all selfing age cohorts. Summing both sides of this equation over the distribution of281

numbers of heterozygote lethals within selfing age cohorts gives the cohort frequencies282

in adults after selection,283

p∗∗∗τ =
∞∑
x=0

p∗∗∗τ (x) =
w̄τ
¯̄w
pτ . (7b)

Recursion formulas for completely additive genetic variance under partial selfing284

are given in Lande and Porcher (2015) for two different models of inheritance. The285

infinitesimal model for selfing (IMS) assumes an infinite number of loci with infinites-286

imal mutation. The Gaussian allele model (GAM) assumes a Gaussian distribution of287

allelic effects at each of a finite number of loci with mutation. Both models assume288

the loci are unlinked and the population size is very large or practically infinite. The289

present IMS differs somewhat from that in Lande in Porcher (2015) in that here (1) we290

did not subdivide the outcrossed age class (selfing age 0) according to parental selfing291

ages, since numerical computations showed that (in contrast to GAM) the influence of292

this subdivision is negligible in IMS, and (2) instead of Wright’s formula for the mean293
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inbreeding coefficient in the population assuming selective neutrality, we use the actual294

mean inbreeding coefficient in the population to calculate how a larger selfing rate de-295

creases the effective population size and the equilibrium genic variance maintained by296

mutation (see Appendix). Complete dynamical systems for KIMS and KGAM, with297

ordering of events and notation as in the life cycle of Table 1, are given by eqs. (1)-(5)298

for K in the present paper combined with formulas for either IMS or GAM (Supporting299

Information; Lande and Porcher 2015), interacting through their joint influence on the300

selfing age distribution, eqs. (6)-(7).301

For numerical analysis it is necessary to truncate the distribution of selfing ages302

at an upper limit, so that the final class represents individuals selfed consecutively for303

L generations or longer (Supporting Information). For the Kondrashov model alone,304

this involves no further approximation because K is exact even without selfing age305

structure, and hence can be terminated at any number of selfing ages. However, as for306

IMS and GAM alone, the combined models may require a large number of selfing age307

classes for accurate results, as indicated by small excess kurtosis in the population at308

selfing rates below the purging threshold for quantitative genetic variance. For most309

parameter values, using 50 to 100 selfing age classes produced nearly the same results310

as with more age classes.311

312

TOTAL INBREEDING DEPRESSION AND ITS COMPONENTS313

Prout (1965, 1969) showed for a complex life cycle with selection at multiple stages314

that fitness must be measured starting at the beginning of the life cycle with unselected315

zygotes. The frequencies of selfing age cohorts in zygotes before selection are316

po0 = 1− r

poτ+1 = rp∗∗∗τ for τ = 0, 1, 2, . . .

The viability of selfing age class τ after selection on lethals but before selection on317

quantitative traits can be written, and the population viability after selection on lethals318
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(eq. 4b) can be rewritten, as319

v̄τ =
1

poτ

∞∑
x=0

(1− h)xp∗∗τ (x)

¯̄v =
∞∑
τ=0

poτ v̄τ .

The mean fitness of selfing age class τ through the complete life cycle, neglecting320

any association between lethal mutations and quantitative variation within selfing age321

classes, is then simply v̄τ w̄τ . From these formulas it can be shown that the mean total322

fitness in the population is323

¯̄v ¯̄w =
∞∑
τ=0

poτ v̄τ w̄τ =
∞∑
τ=0

∞∑
x=0

(1− h)xp∗∗τ (x)w̄τ .

The total inbreeding depression in the population, δ, is one minus the ratio of mean324

fitness of selfed individuals divided by the mean fitness of outcrossed individuals,325

δ = 1−
∑∞

τ=1 p
o
τ v̄τ w̄τ

(1− po0)v̄0w̄0

.

Components of the total inbreeding depression, due to nearly recessive lethal mutations326

and stabilizing selection on on quantitative genetic variation, can be defined as327

δv = 1−
∑∞

τ=1 p
o
τ v̄τ

(1− po0)v̄0
328

δw = 1−
∑∞

τ=1 pτ w̄τ
(1− p0)w̄0

and it can be shown that these combine to compose the total inbreeding depression as329

usual for a structured life cycle (Lande et al. 1994), 1 − δ = (1 − δv)(1 − δw). These330

formulas for inbreeding depression can be evaluated for selfing rates between zero and331

one, 0 < r < 1.332

333

PREVALENCE OF MULTIVARIATE STABILIZING SELECTION334

Stabilizing selection on quantitative characters was classically believed to be prevalent335

in natural populations (Fisher 1930, 1958; Wright 1931, 1935, 1969; Haldane 1954;336
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Simpson 1953). Significant stabilizing selection has frequently been observed in natu-337

ral populations (Lande and Arnold 1983; Kingsolver et al. 2001), but often it is weak338

and/or fluctuating in time (Lande and Shannon 1996; Siepielski et al. 2009; Engen et339

al. 2012; Chevin et al. 2015). It is therefore important to realize that directional selec-340

tion (as defined by Lande and Arnold 1983) also reduces quantitative genetic variance,341

and hence that, with a stationary distribution of environmental states, randomly fluc-342

tuating directional selection produces a net effect of stabilizing selection on quantitative343

characters (Lande 2007, 2008; McGlothlin 2010).344

In multivariate analyses the first few principle components often contain the great345

majority of the total variance, especially for sets of positively correlated characters346

such as morphological traits, but this applies to a lesser extent for sets of characters347

that are less closely integrated (Wright 1968; Lande and Arnold 1983; Blows 2006;348

Martin and Lenormand 2006; Arnold et al. 2008; Kirkpatrick 2009). Regarding a com-349

plex organism as a whole, many nearly independent combinations of morphological,350

behavioral, and physiological characters must be under stabilizing selection. Further-351

more, the strength of stabilizing selection on characters tends to be inversely related352

to their phenotypic and genetic variances, so the effective number of characters under353

appreciable stabilizing selection is likely to be considerably larger than the number of354

significant phenotypic principal components.355

356

HIGH GENOMIC MUTATION RATES TO LETHALS357

Large-scale experiments on Drosophila produced estimates of U = 0.02 and h = 0.02358

(Simmons and Crow 1977). Because plants lack a germ line, mutations can accumulate359

during many mitotic cell divisions between meioses, leading to high genomic mutation360

rates per generation, which may be associated with large adult size, long generations361

and vegetative reproduction (Klekowski 1984, 1988, 1989; Lande et al. 1994; Muirhead362

and Lande 1997; Scofield and Schultz 2006). Observations on spontaneous recessive363

chlorophyll deficiencies occurring at about 300 loci, and scaling these up to 10,000 ge-364

nomic loci mutating to recessive lethals (Simmons and Crow 1977; Bell 2010) produced365

estimates of about U = 0.02 for three annuals, barley, buckwheat and monkey flower,366

and an order of magnitude higher, U = 0.2, in mangrove trees (Klekowski and Godfrey367
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1989; Willis 1992; Lande et al. 1994).368

Perennial plants often set relatively few seeds on experimental self-pollination in369

comparison to outcrossing, implying either a high early inbreeding depression (EID)370

causing embryo mortality or late-acting self-incompatibility (LSI) (Seavey and Bawa371

1986; Gibbs 2014). LSI is often incomplete and/or variable in expression (Gibbs 2014),372

and in some species both EID and LSI may occur together (Dorken and Husband 1999;373

Hao et al. 2012). Extremely high EID occurs in conifer trees which generally are self-374

compatible and easily studied because embryo mortality produces an empty seed. For375

example coastal Douglas fir and other conifer trees have been estimated to harbor a376

mean of about 10 heterozygous lethal mutations per individual (Sorensen, 1969 1973;377

Franklin 1971; Bishir and Namkoong 1987). Perennial herbs of the genus Stylidium378

are fully self-compatible, with the average individual heterozygous for about 20 early-379

acting recessive lethals and some populations harboring mean numbers of heterozygous380

lethals up to 100 (Burbridge and James 1991). Assuming near recessivity of lethals,381

with h = 0.02 as estimated from Drosophila (Simmons and Crow 1977), these large382

mean numbers require high genomic mutation rates to lethals. At mutation-selection383

balance under random mating (or for selfing rates below the purging threshold for384

lethals) the mean number of heterozygous lethals in mature plants is x̄ = U(1− h)/h,385

so that with h = 0.02 values of x̄ = 10, 20 or 100 corresponds to U ≈ 0.2, 0.4 or 2.386

Similarly high values of U have been estimated for a variety of woody perennial species,387

based on apparent EID (Scofield and Schultz 2006), but in most species the potential388

role of LSI has not been investigated. Direct evidence of high genomic mutation rates389

to recessive lethals, up to U = 1 or larger, comes from studies of spontaneous partially390

recessive lethals produced during vegetative growth, estimated by comparing seed set391

from autogamous vs. geitonogamous selfing (Bobiwash et al. 2013).392

393

Results and Discussion394

To analyze the interaction of the two major components of total inbreeding depres-395

sion corresponding to the bimodal distribution of fitness effects, we modelled nearly396

recessive lethal mutations and stabilizing selection on quantitative characters acting,397

respectively, early and late in individual development. Strong interactions occur with398
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high genomic mutation rates to lethals and stabilizing selection on many characters,399

producing a high total inbreeding depression at equilibrium under low selfing rates, as400

often observed in perennial plants.401

402

ALTERNATIVE EQUILIBRIA403

We discovered that at a high genomic mutation rate to nearly recessive lethals (U = 0.5,404

h = 0.02), the Kondrashov model for lethals (K) by itself produces two alternative sta-405

ble equilibria with different mean numbers of heterozygous lethals for selfing rates in406

the range 0.320 ≤ r ≤ 0.417, as in Fig. 1A. The higher equilibrium mean number of407

lethals is found by starting at equilibrium under complete outcrossing (r = 0, a Poisson408

distribution of heterozygous lethals with mean x̄ = U(1 − h)/h), and increasing the409

selfing rate in successive increments using as the initial condition for each new value410

of r the equilibrium distribution of lethals from the previous value of r; the higher411

equilibrium is also reached from the initial condition of zero lethals at all selfing rates.412

The lower equilibrium mean number of lethals is found by starting at equilibrium un-413

der complete selfing (r = 1, a Poisson distribution of heterozygous lethals with mean414

x̄ = 2U(1− h)/(1 + h)), and decreasing the selfing rate in successive increments with415

the initial condition the equilibrium from the previous value of r. Lande et al. (1994)416

developed the Kondrashov model for lethals and investigated the genomic mutation417

rates to lethals U = 0.02, 0.2, 1 with h = 0.02, using both no lethals and equilibrium418

under complete outcrossing as initial conditions for all selfing rates, this missed alter-419

native equilibria that exist for U = 0.5 (Fig. 1A), and for also U = 1 in a very narrow420

range of selfing rates 0.516 ≤ r ≤ 0.520.421

422

[Fig. 1 about here]423

424

Using the Kondrashov model for lethals structured by selfing age, Fig. 1B,C il-425

lustrate the distributions of number of heterozygous lethals per individual, and the426

corresponding frequency distributions of selfing age, at the two alternative equilibria427

for U = 0.5 for selfing rate r = 0.4. At the higher equilibrium, selective interfer-428

ence among a large mean number of lethals prevents purging and maintains a high429
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inbreeding depression which produces a young distribution of selfing ages. The lower430

equilibrium has purged most of the lethals, maintaining a greatly reduced inbreeding431

depression and an older distribution of selfing ages.432

Because we assume weak stabilizing selection on each character, model K alone (no433

quantitative characters, m = 0) gives results for all variables (except genetic variance)434

close to those for a single character (m = 1). This can be seen for the mean number435

of heterozygous lethals, x̄, by comparing Fig. 1A (m = 0) with Figs. 2 and 3 middle436

panel top row (m = 1, black lines). We therefore do not plot m = 0 in subsequent437

figures, instead focusing on results with increasing number of characters producing438

higher inbreeding depression from stabilizing selection.439

Alternative stable equilibria for nearly recessive lethals still exist when evolving440

jointly with quantitative variation in a small or moderate number of characters under441

weak stabilizing selection. In KIMS (Fig. 2) with U = 0.5, inclusion of up to 10442

characters produces two alternative mean numbers of lethals resembling that in K alone443

for intermediate selfing rates. With 25 characters these alternative equilibria merge into444

a single equilibrium, but with 50 or 100 characters new alternative equilibria arise for445

selfing rates around the purging threshold for lethals.446

For all parameter values we examined across the entire range of selfing rates, in447

KIMS at most two alternative stable equilibria occurred at a given selfing rate. For448

U = 0.5 and m = 1 or 10, the alternative equilibria at intermediate selfing rates are449

clearly created by K. However, alternative equilibria appearing at selfing rates around450

the purging threshold for lethals, particularly at high U and large m, are caused by the451

interaction of numerous lethals with stabilizing selection on many quantitative char-452

acters. Fig. 2 shows that alternative stable equilibria for the mean number of lethals453

exist over some ranges of selfing rates for all values of U illustrated, but not at the454

lower value of U = 0.02 (not shown). In all cases where alternative stable equilibria455

exist at a given selfing rate, the equilibria differ far more in mean number of lethals456

than in the mean quantitative genetic variance.457

458

[Fig. 2 and Fig. 3 about here: align horizontally on facing pages]459

460
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In GAM alone, without lethals, a purged equilibrium exists at all selfing rates461

(r > 0) caused by the progressive buildup of genic variance and negative covariance462

due to linkage disequilibrium between loci produced by stabilizing selection in long-463

selfed lineages (Lande and Porcher 2015). This creates a large segregation variance464

in selfed or outcrossed F2 progeny following F1 outcrossing, leading to a negative in-465

breeding depression (also called outbreeding depression) in the population. The purged466

equilibrium with low total genetic variance in quantitative traits is stable even at inter-467

mediate or low selfing rates because strong outbreeding depression shifts the selfing age468

distribution toward older selfing lineages, maintaining a stable core of the population469

composed of long-selfed lineages. With the inclusion of recessive lethals in KGAM, this470

also produces a low mean number of lethal mutations in the long-selfed lineages, so471

that both quantitative variation and mean lethals remain purged across a wide range472

of selfing rates, as seen in Fig. 3.473

Thus at low or intermediate selfing rates, up to two alternative stable equilibria474

can occur in KIMS and up to three alternative stable equilibria can exist in KGAM. At475

high selfing rates in both KIMS and KGAM only the purged equilibrium exists, with476

low mean number of lethals and low quantitative genetic variance.477

478

INTERACTION OF LETHALS AND QUANTITATIVE GENETIC VARIANCE479

In KIMS (Fig. 2) the crossing of lines of different colors (for different numbers of480

characters) indicate that the interaction of the two components of inbreeding depres-481

sion, from nearly recessive lethals and quantitative genetic variance, are more complex482

than suggested by the simple notion of selective interference. These two components of483

inbreeding depression display both interference and facilitation in their mutual purg-484

ing processes. For example, at the lowest genomic mutation rate to lethals shown,485

U = 0.2, at selfing rates below about 0.4 increasing numbers of characters up to m = 50486

increases the equilibrium mean number of lethals, demonstrating that stabilizing se-487

lection on quantitative characters interferes with purging of lethals; but for m = 100488

at intermediate selfing rates 0.2 < r < 0.4 the equilibrium mean number of lethals489

is actually less that for the Kondrashov model alone, demonstrating that selection on490

the quantitative characters facilitates purging of lethals. Facilitation of purging reces-491
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sive lethal mutations by stabilizing selection on quantitative traits becomes the main492

pattern of interaction with higher m and U (Fig. 2 top row). Stabilizing selection on493

quantitative characters facilitates purging of recessive lethals when the purging thresh-494

old for quantitative variation alone is below the purging threshold for lethals alone.495

This happens because of the shift in the age distribution toward older selfing ages that496

occurs during the purging of quantitative variation, which in turn initiates the purging497

of recessive lethals. In contrast, recessive lethals have relatively little impact on the498

purging of quantitative genetic variance by selfing in KIMS, only slightly smoothing499

or perturbing the otherwise abrupt purging threshold for quantitative variation (Fig.500

2 second row).501

Fig. 4 illustrates for KIMS at a given selfing rate that increasing the number of char-502

acters under stabilizing selection (increasing the inbreeding depression due to mildly503

deleterious mutations) initially shifts the equilibrium distribution of selfing ages toward504

outcrossing, thus increasing the mean number of heterozygous lethals in the younger505

selfing ages (black vs. green lines), corresponding to selective interference between re-506

cessive lethals and mildly deleterious mutations. But sufficiently many characters (red507

line) lower the purging threshold for quantitative genetic variance. At selfing rates508

above the purging threshold for quantitative genetic variance this creates a class of509

long-selfed lineages with improved fitness, purged of both lethals and quantitative ge-510

netic variance, which reduces both components of inbreeding depression and shifts the511

selfing age distribution back toward selfing. This qualitative shift in the equilibrium512

distribution of selfing ages also occurs for a given set of parameters when increasing513

the population selfing rate across the purging threshold for quantitative genetic vari-514

ance in IMS and GAM without lethals (Lande and Porcher 2015), but not in K alone515

(Fig. 1), explaining why purging of quantitative genetic variance facilitates purging of516

lethals, but not vice versa. Qualitatively similar mechanisms operate in KGAM (not517

illustrated).518

519

[Fig. 4 about here]520

521

More complex patterns of equilibria arise in KGAM, shown in Fig. 3, because even522
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in the absence of recessive lethals it produces two stable equilibria at selfing rates below523

the purging threshold for quantitative genetic variance (Lande and Porcher 2015). In524

combination with the Kondrashov model for lethals KGAM can thus create up to three525

alternative stable equilibria at a given selfing rate. Aside from the additional purged526

equilibrium that exists for quantitative genetic variance in KGAM at selfing rates below527

the purging threshold, and given that the purging threshold for quantitative genetic528

variance is much sharper in GAM than in IMS (Lande and Porcher 2015), the over-529

all pattern of interaction of quantitative genetic variance with nearly recessive lethals530

resembles that in KIMS. That is, when the purging threshold for quantitative genetic531

variance alone exceeds that for recessive lethals alone, stabilizing selection on the quan-532

titative characters interferes with purging of lethals; but when the purging threshold for533

quantitative genetic variance alone is less than that for recessive lethals alone, stabiliz-534

ing selection on quantitative characters facilitates purging of lethals. Again, facilitation535

of purging recessive lethal mutations by stabilizing selection on quantitative traits be-536

comes the dominant pattern of interaction with more characters and higher genomic537

mutation rates to lethals (Fig. 3 top row). Aside from the purged equilibrium that538

usually reflects purging in both the lethals and quantitative genetic variance, it ap-539

pears that the main interaction is the influence of stabilizing selection on quantitative540

characters affecting the purging of lethals, whereas lethals have only a small impact541

on quantitative genetic variance. This interaction is again governed by the shape of542

the stable distribution of selfing ages among lineages, which with many characters is543

governed mainly by quantitative variation (Lande and Porcher 2015).544

Further complications arise in KGAM at a high genomic mutation rate to lethals545

(U = 0.5, 1) for an intermediate number of characters, such that two distinct purging546

thresholds exist for the equilibrium quantitative genetic variance which shifts back and547

forth between outcrossed and purged equilibria as the selfing rate increases. Results for548

these parameter values are plotted separately in the Supporting Information (Fig. S1).549

550

LIMIT CYCLES551

For a very narrow range of selfing rates in KIMS (only at U = 1, m = 10, r ≈ 0.54),552

stable limit cycles (or strange attractors) appeared, involving a single cycle or double553
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loop, with substantial sustained oscillations in mean lethals and quantitative genetic554

variance (Fig. 5). Changes in the total genetic variance in these cycles is entirely due555

to change in the negative covariance from linkage disequilibrium associated with oscil-556

lations in the age distribution of selfing lineages, since the genic variance at a given557

selfing rate remains constant in KIMS (see Appendix). The corresponding point in558

Fig. 2 represents the means of relevant variables averaged over the limit cycle.559

In Kelly’s (2007) approximate Kondrashov model structured by selfing age, limit560

cycles appeared as an artifact when the exact Kondrashov model produced transient561

damped oscillations at recombination rates near a purging threshold for lethals, where562

equilibrium deviations from a Poisson distribution of lethals are large (Lande et al.563

1994). Damped oscillations also appeared in IMS and GAM near a purging threshold,564

due to linkage disequilibrium created by stabilizing selection magnified by inbreeding,565

and its breakdown by outcrossing and recombination (Lande and Porcher, unpublished566

results). The interaction of these oscillatory tendencies can create a limit cycle in567

KIMS, but this was not observed in KGAM.568

569

[Fig. 5 about here]570

571

ROBUST RESULTS AND CONCLUSIONS572

Patterns of interaction between nearly recessive lethal mutations and stabilizing se-573

lection on quantitative characters that appear in both KIMS and KGAM models are574

considered to be robust results that do not depend on the particular details and approx-575

imations in either IMS or GAM (Lande and Porcher 2015). In the combined models576

strong interactions between nearly recessive lethals and additive genetic variance in577

quantitative characters occur for moderate to high genomic mutation rates to lethals578

and for weak stabilizing selection on multiple characters, such that in a randomly mat-579

ing population at equilibrium the total inbreeding depression would be very high. We580

found three robust results.581

(1) Alternative stable equilibria can exist for a given selfing rate over a considerable582

range of parameters. With a small number of characters under weak stabilizing selec-583

tion, alternative equilibria are produced by the Kondrashov model for lethals alone.584
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With many characters the interaction between lethals and quantitative characters cre-585

ates or magnifies the difference between alternative equilibria.586

(2) Stabilizing selection on quantitative characters usually exerts a stronger influ-587

ence on nearly recessive lethals than vice versa. When the selfing rate at the purging588

threshold for quantitative genetic variance in IMS or GAM exceeds that for nearly589

recessive lethals in K, in the combined models, KIMS and KGAM, stabilizing selection590

on quantitative characters shows selective interference with the purging of lethals, aug-591

menting the equilibrium mean number of lethals in comparison to K. Conversely when592

the selfing rate at the purging threshold for nearly recessive lethals in K exceeds that593

for quantitative genetic variance in IMS or GAM, in the combined models stabilizing594

selection causes selective facilitation in the purging of lethals, reducing the equilibrium595

mean number of lethals in comparison to K. Alternative equilibria at a given selfing596

rate, and the interactions between nearly recessive lethals and quantitative genetic597

variance, are mediated by shifts in the distribution of ages of selfing lineages in the598

population as illustrated for K alone (Fig. 1), for IMS and GAM (Lande and Porcher599

2015), and in the combined models (Fig. 4).600

(3) At high selfing rates above the purging threshold for quantitative genetic vari-601

ance in KIMS and KGAM, only the purged equilibrium exists, with low quantitative602

genetic variance and low mean lethals. Purging of quantitative genetic variance at high603

selfing rates implies that highly selfing populations may fail to adapt to changing envi-604

ronments, thus supporting the hypothesis of Stebbins (1957) that predominant selfing605

is an “evolutionary dead end” (see discussion in Lande and Porcher 2015).606

607

LIMITATIONS OF THE MODELS608

Results that are specific to one model may not be robust and their realism remains609

uncertain. These include limit cycles in KIMS, the purged equilibrium for quantita-610

tive genetic variance and lethals at all selfing rates in KGAM, and multiple purging611

thresholds for quantitative genetic variance with intermediate numbers of characters612

in KGAM. Because IMS and GAM represent extremes of a range of possible models613

for the maintenance of quantitative genetic variance, the realism of these features must614

be explored using intermediate models with different assumptions and approximations.615
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The main limitation of K is its assumption of no variance in the dominance coeffi-616

cients among nearly recessive lethal mutations, and the difficulty of measuring this617

and the genomic mutation rate to lethals (Simmons and Crow 1977). Among mildly618

deleterious mutations, basic parameters of the joint distribution of heterozygous and619

homozygous effects on fitness, as well as their dominance, epistasis and linkage, and620

mutation rates, remain poorly understood due to statistical limitations afflicting em-621

pirical measurements (Eyre-Walker and Keightley 2007; Manolio et al. 2009; Yang et622

al. 2010). Investigating these complexities of the interaction between the two major623

components of inbreeding depression, represented in the bimodal distribution of fitness624

effects, appears to require numerical simulations that themselves may be limited to625

populations of small or moderate size dominated by random genetic drift (Bersabe et626

al. 2016), rather than by selection.627
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Appendix818

MODIFICATION OF GENIC VARIANCE IN IMS819

The genic variance in infinitesimal model for selfing (IMS) is a limiting case of genetic820

variance maintained by purely additive mutational variance σ2
m in a finite population821

of effective size Ne under random mating, V (0) = 2Ne(0)σ2
m (Clayton and Robertson822

1955; Lande 1980), as Ne → ∞ and σ2
m → 0 such that their product is a constant of823

the same order as the environmental variance in a quantitative character. Lande and824

Porcher (2015) extended this to a population with selfing rate r and mean inbreeding825

coefficient f̄ = r/(2− r) of Wright (1921, 1969) for a selective neutral partially selfing826

population.827

Here, for increased accuracy when recessive lethals are included in the model, which828

can produce a high total inbreeding depression, we employ the actual mean inbreeding829

coefficient based on numerical calculation of the selfing age distribution,830

f̄ =
∞∑
τ=0

pτfτ (A1)

in concert with Wright’s more general formula for the effective size of an inbred pop-831

ulation with non-uniform inbreeding among individuals, Ne(r) = Ne(0)/(1 + f̄), such832

that at equilibrium for a given selfing rate833

V (r) = V (0)/(1 + f̄). (A2)

Numerical methods to achieve convergence to equilibrium are described in the Sup-834

porting Information.835
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Table 1. Life cycle with notation for early selection on nearly recessive lethals and836

late selection on quantitative characters.837

————————————————————————————————————838

reproduction → zygote → juvenile → subadult → adult →839

(o) (∗) (∗∗) (′) or () (∗∗∗)840

mating, recombination, selection on selection on enumeration selection on841

mutation, fertilization homozyg. lethals heterozyg. lethals & iteration quant. traits842

————————————————————————————————————843

844
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Figure captions845

Figure 1. Alternative equilibria in model K alone, the Kondrashov model for lethals846

structured by selfing age, represented by solid and dashed lines. (A) Equilibrium mean847

number of heterozygous lethals x̄, as a function of selfing rate r, with genomic mutation848

rate to lethals U = 0.5 and dominance coefficient h = 0.02. For alternative equilibria849

at selfing rate r = 0.4, equilibrium probability distributions of number of heterozygous850

lethals (B) and selfing age (C).851

852

Figure 2. Equilibrium mean number of heterozygous lethals x̄, mean genetic vari-853

ance Ḡ, mean total fitness ¯̄v ¯̄w, total inbreeding depression δ, and mean inbreeding854

coefficient f̄ at equilibrium in KIMS as functions of selfing rate r for different values855

of U . Colors of lines represent numbers of quantitative characters under stabilizing856

selection: m = 1(black), 10(blue), 25(green), 50(orange), 100(red). Alternative equi-857

libria are shown by solid and dashed lines. Parameters: h = 0.02, equilibrium genetic858

variance under random mating V (0) = 1, environmental variance E = 1, width of859

individual fitness function ω2 = 20.860

861

Figure 3. The same as Fig. 2 but for KGAM, where the mean genetic variance862

after selection on adults, Ḡ∗∗∗ is plotted instead of Ḡ (Lande and Porcher 2015). Al-863

ternative equilibria are shown by solid, dashed and long-dashed lines. Parameters:864

h = 0.02, mutational variance σ2
m = 10−3, number of loci per character n = 10, E = 1,865

ω2 = 20.866

867

Figure 4. Equilibrium total genetic variance G, mean number of heterozygous lethals868

x̄, mean total fitness v̄w̄, and log10 frequency as functions of log10 selfing age in869

KIMS at selfing rate r = 0.2 and U = 0.2, for different number of characters m =870

1(black), 25(green), 100(red). Other parameters as in Fig. 2. Selfing age is plotted on871

a log scale to help reveal rapid changes in these quantities during the first few genera-872

tions of continued selfing.873

874

Figure 5. Limit cycles for mean number of heterozygous lethals and mean genetic875
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variance Ḡ in KIMS. Points on the continuous curves represent sequential generations876

of a cycle of one or two loops. (A) r = 0.540, (B) r = 0.543. Blue and red colors in (B)877

distinguish the two loops. In successive cycles, the points would appear at slightly dif-878

ferent positions on the curves. Other parameters: U = 1, h = 0.02, m = 10, V (0) = 1,879

ω2 = 20.880

881
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