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Abstract: Recently, thiazolidinone derivatives have been widely studied as antiparasitic
agents. Previous investigations showed that fused 4-thiazolidinone derivatives (especially
thiopyranothiazoles) retain pharmacological activity of their synthetic precursors—simple
5-ene-4-thiazolidinones. A series of isothiochromeno[4a,4-d][1,3] thiazoles was investigated in an
in vitro assay towards bloodstream forms of Trypanosoma brucei brucei. All compounds inhibited
parasite growth at concentrations in the micromolar range. The established low acute toxicity of this
class of compounds along with a good trypanocidal profile indicates that isothiochromenothiazole
derivatives may be promising for designing new antitrypanosomal drugs.

Keywords: thiazolidinones; isothiochromenothiazoles; antitrypanosomal activity; Trypanosoma brucei;
SAR analysis

1. Introduction

African Trypanosomiasis or sleeping sickness is one of the so-called world’s neglected diseases
affecting population in sub-Saharan Africa. It is caused by the parasites Trypanosoma brucei gambiense
and Trypanosoma brucei rhodesiense and transmitted by the tsetse fly. Despite the fact that the number of
cases reported in recent years has significantly decreased [1], nearly 60 million people remain at risk
of infection. No new drugs for the African trypanosomiasis treatment have been approved since the
early 1990s. The latter along with the absence of a vaccine or drugs for prophylaxis, the toxicity and
the insufficient efficiency activity of the existing drugs, attest to the development of new efficient and
safe antitrypanosomal agents. American trypanosomiasis or Chagas disease is caused by Trypanosoma
cruzi transmitted by the triatomine bug. About 7 million people are infected by this parasite, mainly in
Latin America. Due to human migration, the potential spreading of Chagas disease to other continents
is alarming (e.g., transmission by blood transfusion). Our therapeutic arsenal against Chagas disease is
furthermore very limited, with toxic drugs. So, the need for new chemotherapeutics for the American
trypanosomiasis treatment is topical [2]. Moreover, it is worth mentioning that the discovery of highly
active antitrypanosomals is of special interest for the search for drugs against other parasitic diseases,
such as Leishmaniasis or Malaria [3,4]. This is argued by some phylogenetical similarities between
protozoan parasite targets, such as dihydropholate reductase [5] or topoisomerase I [6].
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Thiazolidinone core has been widely used in medicinal chemistry as a relatively easily
accessible and pharmacologically attractive scaffold [7–9]. Studies on 2,4-thiazolidinedione,
rhodanine (2-thioxo-4-thiazolidinone), 2-alkyl(aryl)-substituted, and 2-R-amino(imino)-substituted
4-thiazolidinone subtypes were dedicated to the search for new antimicrobial, antidiabetic,
anti-inflammatory and anticancer agents [10–12]. Recent investigations had proved 1,3-thiazoles
as well as 4-thiazolidinone derivatives to be interesting and promising structures for the design of
antitrypanosomal agents [2,13]. Thiazole core can be considered as a cyclic mimetic or bioisoster of
the highly active antiTrypanosoma cruzi pharmacophore—thiosemicarbazone [14,15], which inhibits
cruzain, an essential cysteine protease of Trypanosoma cruzi [16]. Moreover, some studies have showed
that cyclization of thioureas/thiosemicarbazides into thiazole/thiazolidine derivatives is beneficial
for Trypanosoma cruzi inhibition when compared to the antiparasitic activity of thiosemicarbazone
derivatives [17]. 4-Thiazolidinone derivatives have been studied as potent trypanocidals since
the 2000s, giving more active and less toxic lead compounds every year [18–22]. Our previous
findings showed good antitrypanosomal activity of thiazolidinone-pyrazoline hybrids [23,24].
On the other hand, the trypanocidal effect of isothiocoumarin derivatives obtained on the base
of 5-ene-4-thiazolidinones was too weak to warrant their further study [25]. Thiazolidinone
derivatives, especially 5-ene-rhodanines, are often claimed as pan-assay interference compounds
(PAINs) due to the conjugation of C5-exocyclic double with the C4 carbonyl group of thiazolidine
core and possible Michael acceptor properties. However, this formal approach useful for large-scale
screening campaigns is critically discussed in the literature [26]. In contrast, fused derivatives of
5-ene-4-thiazolidinones, namely thiopyranothiazoles retain the pharmacological profile of starting
thiazolidinones and are apparently devoid of Michael acceptor functionality, constituting promising
scaffolds for the development of antiparasitic agents. Earlier-established anticancer activity of
isothiochromenothiazoles [27] and related thiopyranothiazoles [28–30] became one more argument
for the study of their antitrypanosomal activity. Anticancer drugs such as bortezomib, aclarubicin,
doxorubicin, and mitoxantrone were studied towards Trypanosoma brucei showing trypanocidal
activities comparable to those of commercial antitrypanosomal drugs [31,32] within repurposing
strategy. This gives more opportunities to find new antiparasitic compounds among already discovered
agents or drugs with antiproliferative activity as well as to gain insight into the possible mechanisms
of action of the latter, or even to find new biotargets essential for parasites’ survival. The aim of the
present work was to study whether isothiochromeno[4a,4-d][1,3]thiazoles with anticancer activity and
their analogs possess antitrypanosomal activity.

2. Materials and Methods

2.1. Chemistry

All chemicals were of the analytical grade, commercially available and used without further
purification. The starting compound 1 was synthesized as described previously [33]. 1H and 13C NMR
spectra were determined with Varian Mercury 400 (400 MHz/100 MHz) spectrometer, in DMSO-d6

using tetramethylsilane as an internal standard. Elemental analyses (C, H, N) was performed at the
Perkin-Elmer 2400 CHN analyzer and were within ± 0.4% from the theoretical values. LC–MS spectra
were recorded on a Finnigan MAT INCOS-50 using electrospray ionization (ESI) technique. The purity
of the compounds was checked by thin-layer chromatography performed with Merck Silica Gel 60
F254 aluminum sheets.

2.2. General Procedure for the Synthesis of 3-N-Substituted (5aR,8R,9aR)-5,5,8-trimethyl-3,5,5a,6,7,8,9,9a-
octahydro-2H-isothiochromeno[4a,4-d][1,3]thiazol-2-ones (2–13)

Ethanol solution of potassium hydroxide (0.616 g, 0.011 mol) was added to the suspension of
compound 1 (2.69 g, 0.01 mol) in 30 mL ethanol; after the mixture was intensively stirred, appropriate
chloroacetamide (0.011 mol) and catalytically amount of KI (0.05 g) were added. Then the mixture was
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heated under reflux for 4–5 h and precipitated with water. Resulting precipitate was filtered off and
recrystallized from acetonitrile (2, 5, 10, 11), ethanol:water mixture (1:1) (3, 4, 12, 13), toluene:hexane
mixture (2:1) (9), isopropanol (6, 8), acetic acid:water mixture (1:1) (7).

2.2.1. 2-{5,5,8-Trimethyl-3,5,5a,6,7,8,9,9a-octahydro-2H-isothiochromeno[4a,4-d][1,3]thiazol-2-on-3-
yl}- acetamide (2)

Yield 83%, mp. 128–130 ◦C. 1H NMR (400 MHz, DMSO-d6), δ: 0.89 (d, 3H, J = 6.4 Hz, CH3CH),
0.98–1.03 (m, 3H), 1.29 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.48–1.60 (m, 1H), 1.68 (t, 1H, J = 11.0 Hz), 1.78
(d, 1H, J = 11.0 Hz), 1.90 (m, 2H), 2.20 (t, 1H, J = 9.4 Hz), 4.00 (d, 1H, J = 17.4 Hz, CH2CO), 4.15 (d, 1H,
J = 17.4 Hz, CH2CO), 7.15 (s, 1H, NH), 7.50 (s, 1H, NH); 13C NMR (100 MHz, DMSO-d6): 170.4, 167.8,
122.1, 106.0, 50.7, 48.4, 45.0, 42.4, 36.7, 34.9, 32.0, 27.6, 25.9, 23.4, 22.4. LC–MS (ESI) m/z 327 (M + H)+.
C15H22N2O2S2. Calculated, % C—55.18, % H—6.79, % N—8.58; Found, % C—55.40, % H—6.90, %
N—8.40.

2.2.2. N-(Phenyl)-2-{5,5,8-trimethyl-3,5,5a,6,7,8,9,9a-octahydro-2H-isothiochromeno[4a,4-d][1,3]
thiazol-2-on-3-yl}-acetamide (3)

Yield 93%, mp. 180–183 ◦C. 1H NMR (400 MHz, DMSO-d6), δ: 0.90–1.05 (m, 6H, CH3CH, CH3),
1.20 (bs, 6H, 2*CH3), 1.45–1.55 (m, 1H), 1.65 (m, 1H), 1.75 (m, 1H), 1.90 (m, 2H), 2.34 (m, 1H), 4.30 (bs,
2H, CH2CO), 6.90 (t, J = 8.4 Hz, 1H, arom.), 7.20 (t, J = 8.4 Hz, 2H, arom.), 7.45 (d, J = 8.4 Hz, 2H, arom.),
10.20 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): 171.1, 164.7, 139.0, 129.3, 124.0, 119.5, 113.7, 106.2,
50.7, 48.7, 45.8, 42.4, 36.7, 34.9, 32.0, 27.6, 25.9, 23.4, 22.4. LCMS (ESI) m/z 401 (M + H)+. C21H26N2O2S2.
Calculated, % C—62.65, % H—6.51, % N—6.96; Found, % C—62.80, % H—6.80, % N—6.70.

2.2.3. N-(4-Methylphenyl)-2-{5,5,8-trimethyl-3,5,5a,6,7,8,9,9a-octahydro-2H-isothiochromeno[4a,4-d]
[1,3] thiazol-2-on-3-yl}-acetamide (4)

Yield 75%, mp. 180–182 ◦C. 1H NMR (400 MHz, DMSO-d6), δ: 0.91 (d, 3H, J = 6.3 Hz, CH3CH),
0.98–1.05 (m, 3H), 1.27 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.46–1.58 (m, 1H), 1.66 (t, 1H, J = 11.4 Hz),
1.76 (d, 1H, J = 11.4 Hz), 1.89 (m, 2H), 2.25 (s, 3H, 4-CH3-C6H4), 2.33 (t, 1H, J = 11.1 Hz), 4.28 (d, 1H, J
= 17.1 Hz, CH2CO), 4.41 (d, 1H, J = 17.1 Hz, CH2CO), 7.12 (d, 2H, J = 8.1 Hz, 3-H, 5-H, 4-Me-C6H4),
7.58 (d, 2H, J = 8.1 Hz, 2-H, 6-H, 4-Me-C6H4), 10.20 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): 170.8,
164.5, 139.0, 129.2, 124.0, 119.4, 113.6, 106.2, 50.6, 48.8, 45.6, 42.4, 36.8, 34.9, 32.1, 27.7, 25.9, 23.5, 22.4,
21.2. C22H28N2O2S2. Calculated, % C—63.43, % H—6.77, % N—6.72; Found, % C—63.30, % H—6.90,
% N—6.80.

2.2.4. N-(3-Methylphenyl)-2-{5,5,8-trimethyl-3,5,5a,6,7,8,9,9a-octahydro-2H-isothiochromeno[4a,4-d]
[1,3] thiazol-2-on-3-yl}-acetamide (5)

Yield 69%, mp. 184–186 ◦C. 1H NMR (400 MHz, DMSO-d6), δ: 0.93 (d, 3H, J = 6.3 Hz, CH3CH),
0.99–1.08 (m, 3H), 1.29 (s, 3H, CH3), 1.33 (s, 3H, CH3), 1.52–1.63 (m, 1H), 1.67 (t, 1H, J = 10.8 Hz),
1.78 (d, 1H, J = 10.8 Hz), 1.88 (m, 2H), 2.29 (s, 3H, 3-CH3-C6H4), 2.35 (t, 1H, J = 8.1 Hz), 4.30 (d, 1H,
J = 17.1 Hz, CH2CO), 4.43 (d, 1H, J = 17.1 Hz, CH2CO), 6.90 (d, 1H, J = 7.5 Hz, 4-H, 3-CH3-C6H4),
7.21 (t, 1H, J = 7.8 Hz, 5-H, 3-CH3-C6H4), 7.33 (d, 1H, J = 8.1 Hz, 6-H, 3-Me-C6H4), 7.43 (s, 1H, 2-H,
3-Me-C6H4), 10.23 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): 170.5, 164.9, 152.7, 149.5, 138.9, 136.5,
129.1, 120.0, 114.7, 108.3, 50.7, 48.6, 47.0, 42.4, 36.7, 34.9, 32.0, 27.6, 25.9, 23.4, 22.4, 21.6. C22H28N2O2S2.
Calculated, % C—63.43, % H—6.77, % N—6.72; Found, % C—63.60, % H—6.80, % N—6.90.

2.2.5. N-(4-Isopropylphenyl)-2-{5,5,8-trimethyl-3,5,5a,6,7,8,9,9a-octahydro-2H-isothiochromeno[4a,4
-d][1,3] thiazol-2-on-3-yl}-acetamide (6)

Yield 68%, mp. 241–244 ◦C. 1H NMR (400 MHz, DMSO-d6), δ: 0.90 (d, J = 6.8 Hz, 3H, CH3CH),
1.00–1.05 (m, 3H), 1.16 (s, 3H, CH3), 1.19 (s, 3H, CH3), 1.29 (d, J = 12.9 Hz, 2*CH3, 6H), 1.45–1.55 (m,
1H), 1.65 (t, J = 12.0 Hz, 1H), 1.75 (d, J = 12.0 Hz, 1H), 1.90 (m, 2H), 2.34 (t, J = 8.0 Hz, 1H), 2.85 (m, 1H,
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CHMe2), 4.28 (d, J = 18.0 Hz, 1H, CH2CO), 4.38 (d, J = 18.0 Hz, 1H, CH2CO), 7.18 (d, J = 8.4 Hz, 2H,
arom.), 7.45 (d, J = 8.4 Hz, 2H, arom.), 10.19 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): 171.3, 164.0,
152.5, 150.0, 139.0, 136.3, 129.5, 119.1, 107.7, 50.6, 47.6, 42.8, 36.8, 35.0, 34.9, 32.2, 27.9, 26.1, 23.8, 23.6,
22.6. C24H32N2O2S2. Calculated, % C—64.83, % H—7.25, % N—6.30; Found, % C—64.60, % H—7.10,
% N—6.40.

2.2.6. N-(4-Sulfonamido-phenyl)-2-{5,5,8-trimethyl-3,5,5a,6,7,8,9,9a-octahydro-2H-isothiochromeno
[4a,4-d][1,3]thiazol-2-on-3-yl}-acetamide (7)

Yield 79%, mp. 111–114 ◦C. 1H NMR (400 MHz, DMSO-d6), δ: 0.88–0.92 (m, 3H, CH3CH);
0.97–1.03 (m, 3H), 1.27–1.32 (m, 6H, 2*CH3), 1.49–1.57 (m, 1H), 1.61–1.67 (m, 1H), 1.71–1.81 (m, 1H),
1.86–1.89 (m, 1H), 2.27–2.34 (m, 1H), 4.35 (d, J = 17.2 Hz, 1H, CH2CO), 4.43 (d, J = 17.0 Hz, 1H, CH2CO),
7.24 (s, 2H, NH2), 7,71 (d, 2H, J = 8,7 Hz, 2H, C6H4), 7,77 (d, 2H, J = 8,4 Hz, 2H, C6H4), 10.61 (s, 1H,
NH). 13C NMR (100 MHz, DMSO-d6): 170.5, 165.4, 141.8, 139.2, 127.3, 122.0, 119.1, 106.3, 50.4, 48.7,
45.9, 42.6, 36.6, 34.8, 32.0, 27.7, 25.8, 23.6, 22.4. C21H27N3O4S3. Calculated, % C—52.37, % H—5.65,
% N—8.72; Found, % C—52.50, % H—5.80, % N—8.60.

2.2.7. N-(4-Acetylamino-phenyl)-2-{5,5,8-trimethyl-3,5,5a,6,7,8,9,9a-octahydro-2H-isothiochromeno
[4a,4-d][1,3]thiazol-2-on-3-yl}-acetamide (8)

Yield 87%, mp. 259–263 ◦C. 1H NMR (400 MHz, DMSO-d6), δ: 0.94 (d, J = 6.8 Hz, 3H, CH3CH),
1.00–1.18 (m, 3H), 1.28 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.45–1.55 (m, 1H), 1.66 (m, 1H), 1.75 (m, 1H),
1.88 (m, 2H), 2.02 (s, 3H, CH3CO), 2.33 (m, 1H), 4.30 (d, J = 18.0 Hz, 1H, CH2CO), 4.40 (d, J = 18.0 Hz,
1H, CH2CO), 7.50 (bs, 4H, arom.), 9.91 (s, 1H, NH), 10.24 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6):
170.5, 168.4, 164.3, 135.6, 134.2, 122.1, 119.9, 106.2, 50.7, 48.6, 45.7, 42.4, 36.7, 34.9, 32.0, 27.6, 25.9,
24.3, 23.4, 22.3. LCMS (ESI) m/z 460 (M + H)+. C23H29N3O3S2. Calculated, % C—60.10, % H—6.36,
% N—9.14; Found, % C—60.00, % H—6.60, % N—8.90.

2.2.8. 4-[2-(5,5,8-Trimethyl-3,5,5a,6,7,8,9,9a-octahydro-2H-isothiochromeno[4a,4-d][1,3]thiazol-2-on
-3-yl)- acetylamino]-benzoic acid ethyl ester (9)

Yield 75%, mp. 196–198 ◦C. 1H NMR (400 MHz, DMSO-d6), δ: 0.93 (d, 3H, J = 6.4 Hz, CH3CH),
1.00–1.10 (m, 3H), 1.28 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.34 (t, 3H, CH3CH2O), 1.48–1.60 (m, 1H), 1.67 (t,
1H, J = 11.2 Hz), 1.80 (d, 1H, J = 11.2 Hz), 1.90 (m, 2H), 2.33 (t, 1H, J = 9.0 Hz), 4.48 (q, 2H, CH3CH2O),
4.30 (d, 1H, J = 17.1 Hz, CH2CO), 4.42 (d, 1H, J = 17.1 Hz, CH2CO), 7.67 (d, 2H, J = 8.0 Hz, 3-H,
5-H, 4-COOEt-C6H4), 7.90 (d, 2H, J = 8.0 Hz, 2-H, 6-H, 4-COOEt-C6H4), 10.53 (s, 1H, NH). 13C NMR
(100 MHz, DMSO-d6): 170.6, 165.7, 165.4, 143.3, 130.9, 125.1, 122.1, 119.0, 106.4, 61.0, 50.8, 48.8, 45.9,
42.4, 36.8, 34.9, 32.0, 27.6, 25.9, 23.5, 22.4, 14.7. C24H30N2O4S2. Calculated, % C—60.73, % H—6.37,
% N—5.90; Found, % C—60.50, % H—6.50, % N—5.70.

2.2.9. N-(4-Chlorophenyl)-2-{5,5,8-trimethyl-3,5,5a,6,7,8,9,9a-octahydro-2H-isothiochromeno[4a,4-
d][1,3] thiazol-2-on-3-yl}-acetamide (10)

Yield 78%, mp. 206–208 ◦C. 1H NMR (400 MHz, DMSO-d6), δ: 0.86 (d, J= 7.0 Hz, 3H,CH3CH),
0.91–1.03 (m, 3H), 1.23 (s, 3H, CH3), 1.27 (s, 3H, CH3), 1.40–1.49 (m, 1H), 1.54 (m, 1H), 1.71 (d, 1H,
J = 11.7 Hz,), 1.80 (m, 2H), 2.27 (t, 1H, J = 7.8 Hz), 4.32 (d, 1H, J = 16.6 Hz, CH2CO), 4.48 (d, 1H,
J = 16.7 Hz, CH2CO), 7.67 (d, 2H, J = 8.2 Hz, arom.), 7.80 (d, 2H, J = 8.1 Hz, arom.), 10.72 (s, 1H, NH).
13 C NMR (100 MHz, DMSO-d6): 170.8, 164.9, 138.7, 129.3, 124.3, 119.0, 113.5, 106.9, 50.6, 47.8, 42.7,
36.8, 35.1, 32.0, 27.6, 26.2, 25.0, 22.4. C21H25ClN2O2S2. Calculated, % C—57.72, % H—5.77, % N—6.41;
Found, % C—57.50, % H—5.90, % N—6.60.
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2.2.10. N-(3,4-Dichlorophenyl)-2-{5,5,8-trimethyl-3,5,5a,6,7,8,9,9a-octahydro-2H-isothiochromeno
[4a,4-d][1,3]thiazol-2-on-3-yl}-acetamide (11)

Yield 67%, mp. 210–212 ◦C. 1H NMR (400 MHz, DMSO-d6), δ: 0.89 (d, J = 7.3 Hz, 3H,CH3CH),
0.89–0.95 (m, 3H), 1.26 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.42–1.50 (m, 1H), 1.60 (m, 1H), 1.72–1.76 (m,
1H), 1.86–1.90 (m, 2H), 2.31 (t, 1H, J = 8.0 Hz), 4.37 (d, 1H, J = 17.1 Hz, CH2CO), 4.52 (d, 1H, J = 17.3 Hz,
CH2CO), 7.71(d, 1H, J = 8.3 Hz, arom.), 7.92 (d, 1H, J = 8.3 Hz, arom.), 8.01 (s, 1H, arom), 10.94 (s, 1H,
NH). 13C NMR (100 MHz, DMSO-d6): 170.5, 165.4, 139.0, 131.6, 131.3, 125.5, 122.0, 120.8, 119.6, 106.4,
50.8, 48.7, 45.8, 42.4, 36.7, 34.9, 32.0, 27.6, 25.9, 23.4, 22.4. C21H24Cl2N2O2S2. Calculated, % C—53.50, %
H—5.13, % N—5.94; Found, % C—53.70, % H—5.20, % N—6.00.

2.2.11. N-(2-Trifluoromethylphenyl)-2-{5,5,8-trimethyl-3,5,5a,6,7,8,9,9a-octahydro-2H-
isothiochromeno [4a,4-d][1,3]thiazol-2-on-3-yl}-acetamide (12)

Yield 91%, mp. 163–165 ◦C. 1H NMR (400 MHz, DMSO-d6), δ: 0.90 (d, 3H, J = 6.6 Hz, CH3CH),
0.95–1.08 (m, 3H), 1.27 (s, 3H, CH3), 1.34 (s, 3H, CH3), 1.45–1.60 (m, 1H), 1.67 (t, 1H, J = 11.3 Hz),
1.75 (d, 1H, J = 11.3 Hz), 1.90 (m, 2H), 2.32 (t, 1H, J = 9.0 Hz), 4.36 (d, 1H, J = 17.4 Hz, CH2CO), 4.47
(d, 1H, J = 17.4 Hz, CH2CO), 7.47 (t, 1H, J = 7.8 Hz, 5-H, 2-CF3-C6H4), 7.49 (d, 1H, J = 7.8 Hz, 3-H,
2-CF3-C6H4), 7.70 (t, 1H, J = 7.5 Hz, 4-H, 2-CF3-C6H4), 7.75 (d, 1H, J = 7.5 Hz, 6-H, 2-CF3-C6H4), 9.93 (s,
1H, NH). 13C NMR (100 MHz, DMSO-d6): 170.5, 166.0, 135.0, 133.6, 130.1, 127.3, 126.8 (q, J = 185 Hz),
125.0, 123.0 (q, J = 19.8 Hz), 122.0, 106.3, 50.8, 48.5, 45.3, 42.4, 36.8, 34.9, 32.0, 27.6, 25.9, 23.4, 22.4. LCMS
(ESI) m/z 471 (M + H)+. C22H25F3N2O2S2. Calculated, % C—56.15, % H—5.35, % N—5.95; Found,
% C—56.30, % H—5.60, % N—6.10.

2.2.12. N-(3-Trifluoromethylphenyl)-2-{5,5,8-trimethyl-3,5,5a,6,7,8,9,9a-octahydro-2H-
isothiochromeno [4a,4-d][1,3]thiazol-2-on-3-yl}-acetamide (13)

Yield 80%, mp. 182–184 ◦C. 1H NMR (400 MHz, DMSO-d6), δ: 0.92 (d, 3H, J = 6.2 Hz, CH3CH),
0.98–1.06 (m, 3H), 1.28 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.51–1.56 (m, 1H), 1.67 (t, 1H, J = 11.3 Hz), 1.75
(d, 1H, J = 11.3 Hz), 1.88 (m, 2H), 2.34 (m, 1H), 4.37 (d, 1H, J = 17.4 Hz, CH2CO), 4.47 (d, 1H, J = 17.1 Hz,
CH2CO), 7.43 (d, 1H, J = 7.3 Hz, 3-CF3-C6H4), 7.59 (d, 1H, J = 7.1 Hz, 2-CF3-C6H4), 7.72–7.74 (m, 1H,
3-CF3-C6H4), 8.09 (s, 1H, 3-CF3-C6H4), 10.74 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): 170.6, 165.5,
139.8, 130.7 (q, J = 20 Hz), 123.1 (q, J = 160 Hz), 122.0, 120.5, 114.6 (q, J = 5 Hz), 111.8, 109.3, 103.4, 50.8,
48.8, 44.0, 42.6, 36.8, 34.8, 32.0, 27.6, 25.9, 23.5, 22.4. LCMS (ESI) m/z 471 (M + H)+. C22H25F3N2O2S2.
Calculated, % C—56.15, % H—5.35, % N—5.95; Found, % C—56.00, % H—5.50, % N—5.70.

2.3. Pharmacology

2.3.1. Antitrypanosomal Activity Assay

Bloodstream forms of Trypanosoma brucei strain 90-13 were cultured in HMI9 medium
supplemented with 10% FCS (fetal calf serum) at 37 ◦C under an atmosphere of 5% CO2 [34].
In all experiments, log-phase parasite cultures were harvested by centrifugation at 3000× g and
immediately used. Drug assays were based on the conversion of a redox-sensitive dye (resazurin) to a
fluorescent product by viable cells as previously described [35,36]. Drug stock solutions were prepared
in pure DMSO. Trypanosoma brucei bloodstream forms (103 cells/well) were cultured in 96-well plates
either in the absence or in the presence of different concentrations of inhibitors in a final volume of
200 µL. After 72 h incubation, resazurin solution was added in each well at the final concentration
of 45 µM and fluorescence was measured at 530 nm and 590 nm absorbance after a further 4 h
incubation. The percentage of inhibition of parasite growth rate was calculated by comparing the
fluorescence of parasites maintained in the presence of drug to that of in the absence of drug. DMSO
was used as control. Concentration inhibiting 50% of parasite growth (IC50) was determined from the
dose–response curve with drug concentrations ranging from 10 to 0.625 µg/mL and presented in µM.



Sci. Pharm. 2018, 86, 47 6 of 10

2.3.2. Acute Toxicity In Vivo

The experiments were conducted on white male mice weighing 23–25 g. Compounds were
dissolved in saline solution (0.9% NaCl) with 1–2 drops of Polysorbate 80 (Tween-80®). After
dissolution, they were administered to mice via intraperitoneal route. The LD50 was evaluated
for 4 or 5 different doses each on 6 animals and calculated by the Litchfield and Wilcoxon method [37].

3. Results and Discussion

3.1. Chemistry

Isothiochromeno[4a,4-d][1,3]thiazoles 1–13 were synthesized (compounds 2, 4, 5,
9, 11, 13-resynthesized) according to the known synthetic protocol [27,38]. Starting
(5aR,8R,9aR)-5,5,8-trimethyl-3,5,5a,6,7,8,9,9a-octahydro-2H-isothiochromeno[4a,4-d][1,3]thiazole-2-one
1 was obtained in the Knoevenagel-hetero-Diels–Alder reaction of 3,7-dimethyloct-6-enal (citronellal)
and 4-thioxo-2-thiazolidinone (isorhodanine) in the presence of ethylenediamine diacetate in
acetonitrile medium at room temperature [33]. Target compounds 2–13 were synthesized in the
alkylation reactions of 1 potassium salt by different chloroacetamides in ethanol. The reaction goes in
situ through the stage of potassium salt formation which was not isolated (Scheme 1).
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Scheme 1. Target isothiochromeno[4a,4-d][1,3]thiazoles synthesis. Reagents and conditions:
(a) isorhodanine (1.0 equiv.), EDDA (0.15 equiv.), 3,7-dimethyloct-6-enal (1.3 equiv.), MeCN, rt, 24 h,
79% [33]; (b) appropriate chloroacetamide (1.1 equiv.), KOH (1.1 equiv.), KI (cat. amount), EtOH, reflux,
4–5 h, 67–93%.

Structure and purity of compounds were confirmed by NMR spectroscopy and chromatography
data (experimental part). Stereoconfiguration of compounds were assigned based on our previous
data (spectral data, X-ray analysis) [33].

3.2. Pharmacology

Synthesized isothiochromeno[4a,4-d][1,3]thiazoles inhibited the growth of Trypanosoma brucei
bloodstream forms with IC50 values in the micromolar range (Table 1) comparable to Nifutimox (IC50 =
2.39 µM). Increasing activity from the starting compound 1 (IC50 = 29.3 µM) as well as 2 (IC50 = 44.4 µM)
proves the necessity of aryl substituents in the N3 position of the main core for the trypanocidal activity.
Substituents in the aryl fragment also influence the antitrypanosomal activity. For example, halogen
atoms in the aryl moiety significantly increase the inhibition activity of derivatives 10–13 (IC50 ranging
from 2.97 to 8.50 µM). Interestingly, previously tested and structurally related thiopyranothiazoles
with a norbornane moiety and the same fragments in the N3 position of the thiazolidine core [29]
showed the same levels of IC50 values against Trypanosoma brucei. Probably, an acetamide moiety with
different substituents in the aryl ring has an impact on the spatial arrangement of atoms that increases
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the molecules affinity to the yet unknown biotarget. On the other hand, an ester moiety in the aryl ring
of 9 also highly contributes to the trypanocidal activity (IC50 = 1.55 µM).

Table 1. Antitrypanosomal and anticancer activity of target isothiochromeno[4a,4-d]thiazol-2-ones.

Compound R
Trypanosoma brucei

brucei,
IC50 (µM)

Anticancer Activity
DTP 60 Lines Assay1,2 [27]

Acute Toxicity
LD50 (mg/kg)
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4 4-Me 10.80
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cancer)—52.50%, NCI-H522 (non-small-cell lung
cancer)—58.10

5 3-Me 10.08

0.1–100 µM assay: GI50: CCRF-CEM (leukemia)—1.62
µM, MOLT-4 (leukemia)—5.94 µM, RPMI-8226
(leukemia)—5.69 µM, SR (leukemia)—12.1 µM,
HOP-92 (non-small-cell lung cancer)—2.13 µM,
NCI-H460 (non-small-cell lung cancer)—79.6 µM,
SK-MEL-5 (melanoma)—53.9 µM, PC-3 (prostate
cancer)—7.43 µM 2

6 4-i-Pr 14.17

7 4-SO2NH2 14.12

8 4-AcNH 18.28

9 4-COOEt 1.55 320

10 4-Cl 5.27 480

11 3,4-Cl2 4.67

10 µM assay: mean GP—85.89%; range of
growth—46.28–111.66%; HOP-92 (non-small-cell lung
cancer)—46.90%, HS 578T (breast cancer)—46.28%,
RPMI-8226 (leukemia)—46.87%, MOLT-4
(leukemia)—58.86%

12 2-CF3 8.50

10 µM assay: mean GP—84.74%; range of
growth—0.76–116.02%; MOLT-4 (leukemia)—36.02%,
OVCAR-8 (ovarian cancer)—28.87, UACC-257
(melanoma)—0.76%, MCF-7 (breast cancer)—56.32%

13 3-CF3 2.97 270
1 Anticancer screening data in one dose (10 µM). Activity is reported as the growth percent (GP) of treated
cells compared to untreated control cells. Most sensitive cell lines are indicated. 2 Anticancer screening data at
concentrations ranging from 0.1 to 100 µM. GI50—molar concentration of the compound that inhibits 50% net cell
growth. Most sensitive cell lines are indicated.

Establishment of any anticancer and antitrypanosomal activity correlation for
isothiochromenothiazoles was also an issue of the study. Previously, some of the synthesized
isothichromenothiazoles were studied for their anticancer activity within a Developmental
Therapeutic Program protocol (National Cancer Institute, Bethesda, MD, USA) [27]. Among
isothiochromeno[4a,4-d]thiazoles tested at a concentration of 10−5 M, selectivity towards melanoma
cell line UACC-257 was observed for N-(2-trifluoromethylphenyl)-2-{5,5,8-trimethyl-3,5,5a,6,7,8,9,9a
-oktahydro-2H-isothiochromeno[4a,4-d]thiazol-2-on-3-yl}-acetamide 12 (GP = 0.76%) and N-(p-tolyl)
-2-{5,5,8-trimethyl-3,5,5a,6,7,8,9,9a-oktahydro-2H-isothiochromeno[4a,4-d]thiazol-2-on-3-yl}-acetamide
4 (GP = 5.23%). These two derivatives also inhibited growth of more than 60% of cells of ovarian cancer
line OVCAR-8. Change of the trifluoromethyl moiety in the benzene ring to 3,4-dichlorobenzene did
not contribute to anticancer activity which was rather low. Worth mentioning is that the absence of
arylidene ring in the acetamide substituent in the N3-position significantly decreased the antitumor
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potential as well as the antiparasitic activity. This attests to the crucial role of aryl substituents
in the N3 position of the isothiochromeno[4a,4-d]thiazole core for the antiproliferative activity.
N-(3-Methylphenyl)-2-{5,5,8-trimethyl-3,5,5a,6,7,8,9,9a-oktahydro-2H-isothiochromeno[4a,4-d]thiazol-2
-on-3-yl}-acetamide 5 was tested in a range of concentrations from 0.1 to 100 µM and showed
the highest growth inhibitory levels (GI50) against cell lines of leukemia, non-small-cell lung
cancer and prostate cancer [27]. One more argument in favor of a dual action for the tested
derivatives is a significant decrease of trypanocidal potential and the absence of anticancer
activity (inhibition of cancer cells growth less than by 20%) for N-{5,5,8-trimethyl-3,5,5a,6,7,8,9,9a
-oktahydro-2H-isothiochromeno[4a,4-d]thiazol-2-on-3-yl}-acetamide 2.

For derivatives with the highest trypanocidal activity, 9, 10, and 13 and the starting compound 1,
the acute toxicity (mice) was studied and their LD50 were determined [35,36]. The stock solutions of
the compounds used in this study were prepared immediately before usage and increasing amounts
of substances (100–1000 mg/kg) were injected intraperitoneally. The LD50 values were calculated
according to Litchfield and Wilcoxon. These derivatives show a little acute toxicity in mice with LD50

values within the range of 240–480 mg/kg.

4. Conclusions

A series of isothiochromeno[4a,4-d][1,3]thiazole derivatives was synthesized and investigated in
an in vitro assay against Trypanosoma brucei brucei. Compounds showed inhibitory activity towards
the parasite growth at concentrations in the micromolar range. Structure–activity relationships reveal
the positive influence of N3-substituent for the trypanocidal activity. The same trend was found
for the anticancer activity of compounds. This is an additional argument in favor of the search for
compounds with dual action (antitrypanosomal and anticancer). Along with this, low acute toxicity
of compounds indicates that isothiochromenothiazoles may be used in further directed design of
antitrypanosomal agents.
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