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Aboveground vegetation, four belowground fauna groups and humus composition have been analyzed in order to inves-

tigate the links between autotrophic and heterotrophic communities in a Norwayspruce mountain forest in Tours-en-

Savoie (France). The aboveground plant community was recorded in small patches corresponding to contrasting micro-

habitats. Animal communities and humus layers were sampled within the same patches. The relationships between hu-

mus profile, faunistic and floristic compositional gradients were investigated by Multiple Factor Analysis (MFA) and, for 

the first time in ecology, a Hierarchical Multiple Factor Analysis (HMFA) was used to interpret differences among humus 

layers. The analysis revealed a pattern with three main groups of microhabitats. The thorough study of separate humus 

layers could explain this result. The interplay of plant–animal–soil interactions is likely to drive the ecosystem toward 

three alternative states supporting humus traditional classification between mull–mor–moder. HMFA revealed the impor-

tance of depth to explain this contrast among humus forms, using humus layers as diagnostic tools in both inert and living 

components. HMFA also showed contrast between unexploited and exploited parts of the forest, but the study of soil and 

vegetation indicate that this contrast does not only hold in forest management but also in geomorphology. RV-coefficients 

among the six groups of variables showed significant fauna–fauna relationships in almost all humus layers except Actin-

edida. Plant–soil interactions are not as strong as expected and are even weaker when the soil in question is deep. In ad-

dition, HMFA failed to show direct interactions between plant and soil fauna but, paradoxically, HMFA does suggest that 

indirect plant–fauna interactions are at the focus of the ecosystem strategy that leads to the differentiation of ecological 

niches within the forest mosaic. 

Introduction 

One of the main ecological challenges since the end of the 

last century has been to connect biodiversity with ecosys-

tem processes such productivity (Kareiva 1994; Tilman et 

al. 1997), stability (Bardgett and Cook 1998), dynamics 

(Siemann et al. 1999; Marra and Edmonds 2005; Salmon et 

al. 2008), biogeochemical cycling (Beare et al. 1995), and 

forest regeneration (Nagaike et al. 1999). On the one 

hand, the soil food web is fundamental to plant growth 

(Wardle 1999). On the other, plant debris is essential in 

the organization of humus communities (Lavelle et al. 

1993; Berg et al. 1998). Most studies have examined either 

the effect of plant diversity on soil processes (Spehn et al. 

2000; Zimmer 2002) or the effect of soil biotic diversity on 

soil fertility and plant productivity (King et al. 2002; 

Scherer-Lorenzen et al. 2003) without having confirmed 

any correlation between the diversity of the soil biota and 

plants (Hooper et al. 2000; Porazinska et al. 2003; Cole-

man and Whiteman 2005). 

The purpose of this work is to search for some connec-

tions between soil fauna and plant communities, and to 

discern processes that explain these correlations, if any 

exist. Our working hypothesis was that variations in the 

local composition of plant communities will influence the 

soil fauna through differences in litter composition (Ball et 

al. 2009). In turn, the soil fauna will regulate humus proc-

esses by controlling the rate of litter decomposition, the 

nature and chemical activity of soil organic matter and 

thus, will influence the conditions for fine-scale vegetation 

structure and dynamics (De Deyn et al. 2003; Crow et al. 

2009; Laganière et al. 2009; Mathieu et al. 2009). Humus 

composition is the meeting point of animal and plant com-

munities: the long-lasting effect of humus properties is 

able to influence plant and animal community composi-

tion, which then again influence humus composition and 

properties. These feedback loops are supposed to result 

in a spatial segregation of closely linked communities and 

humus forms. 

This hypothesis will be tested by comparing a set of mi-

crohabitats within a single forest. One major concern in 

investigating relationships among biotic communities is 

the question of appropriate scale (Huston 1999; Loreau 

2000). In our case, the vegetation has to be described at a 

scale of homogeneous units sufficiently small to allow soil 

fauna to discriminate (Tilman 2000; Mathieu et al. 2009; 

Doblas-Miranda et al. 2009). In forest ecosystems, the 

herb layer can be described as a mosaic of plant synusiae 

that are linked to contrasting microhabitats, indicating 

differences in edaphic and microclimatic conditions 

(Barkman 1978; Gillet and Gallandat 1996). Within the for-

est phytocoenosis, we can thus delimit multi-layered mi-
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Abstract 



Study site 
The subalpine forest under study covers 15 ha in the 

Toursen-  Savoie commune (western northern Alps, France: 

45◦40_40__N;  6◦27_57__E). Altitude ranges between 1575 

and 1750 m a.s.l., with  a south-west facing aspect. The 

bedrock is a mixture of micaceous  schists and albitic 

gneisses, the soil type is a Leptosol (IUSS Working  Group 

2006) and the vegetation belongs to Piceetum subalpinum  

myrtilletosum David 1979 according to traditional phytoso-

ciological  classification. The total annual rainfall varies 

between 1200 and  1600 mm with half this amount falling 

in the form of snow.  

The western part of the forest (8.5 ha) is more intensively  

and regularly exploited than the eastern part (6.5 ha). Thus  

we will call the western area E (exploited) and the eastern  

area U (unmanaged). Both parts of the forest were described  

as high-altitude coniferous forests in 1729 according to land  

registry and map of the Sardinian kingdom (http://www.

savoiearchives.  fr/index.php?id=1233). From 1729 to 1891, 

logging was frequent. The U area was entirely clear-cut in 

1830-35 (Eynard-  Nachet, personal communication). The E 

area was probably  partially clear-cut during the same pe-

riod. Landslides creating hollows  crossing the slope and 

denuding little cliffs are common in the  U area but rare in 

the E area. The slope of the U area is consistently  steep 

(35◦) compared to E area (20–30◦). 
 

Vegetation sampling 
To investigate the fine-scale plant–fauna–humus interac-

tions we selected three phytocoenoses within the Tours-en-

Savoie forest, with homogeneous conditions for tree-age 

structure, slope, and geomorphology. 

Phytocoenosis E2 is under sylviculture regime. It shows 

contrasts between spruce-shaded Prenanthes purpurea and 

Oxalis acetosella synusia (microcoenosis E2-PO) and 

spruce-shaded Vaccinium myrtillus synusia (microcoenosis 

E2-PV). This phytocoenosis also exhibits a contrast be-

tween moist O. acetosella synusia shaded by maple 

(microcoenosis E2-AO), sunny dry, species-poor or species-

rich V. myrtillus heath (microcoenoses E2-Vp and E2-Vr, 

respectively) and sunny moist microhabitats with Athyrium 

filixfemina and Rubus idaeus as dominant plant species 

(microcoenosis E2-R). 

Phytocoenosis U8 developed under unmanaged conditions 

and shows a simple forest mosaic of tree and ericaceous 

heath elements (microcoenoses U8-P and U8-Vp, respec-

tively). 

Phytocoenosis U10 (unmanaged conditions) exhibits com-

plex interactions between Luzula nivea synusia shaded by 

spruce (microcoenosis U10-PL), O. acetosella synusia 

shaded by maple (microcoenosis U10-AO) and sunny mi-

crohabitats dominated by Agrostis agrostiflora and R. idaeus 

(microcoenosis U10-AgR). 

In a given phytocoenosis, each component of the forest mo-

saic (i.e., each microcoenosis) was sampled using a list of 

plant species with their cover ratio code according to Braun–

Blanquet’s 6-level dominance scale (classes +, 1, 2, 3, 4, 5, 

based on visual estimation of the percentage cover through all 

vegetation layers). The vegetation survey was carried out in a 

20-m2 area inside each of the 11 microcoenotic forest units 

during the 1999 summer season. The semi-quantitative domi-

nance code was replaced by the central percentage cover of 

the corresponding class for further statistical analyses. 

Ecological preferences of plant species with respect to pH, 

soil water and light were recorded according to a 3-level scale. 

For example: a strict acidophilic species was reported as aci-

dophilic = 2 and basophilic = 0; a plant species more frequent 

in acidic condition is quoted as acidophilic = 2 and basophilic 

= 1. The plant database was taken from Aeschimann et al. 

(2004). In a given forest microcoenosis, the mean ecological 

preference of the plant species, weighted by dominance, pro-

vides an ecological indicator of microhabitat condition. 

 

Humus profile and soil fauna 
The eleven microcoenotic forest units were sampled for hu-

mus layers and soil fauna. Humus layer sampling followed the 

microstratified method of Ponge (1984) and Bernier and 

Ponge (1994). First, a column of undisturbed humus material, 

with an area of 25 cm2 and a maximum depth of 15 cm, was 

isolated from the surroundings by progressively excavating 

the material around it using a sharp knife, scissors and pruning 

shears. Second, humus layers were separated manually with 

scissors from top to bottom; the humus layers were immedi-

ately fixed in 95% (v/v) ethyl alcohol. We measured the depth 

of each layer with an accuracy of 0.5 cm and a short, visual 

description was done. The sampling process was complete 

once the bedrock was reached given that Leptosols were very 

shallow. Humus composition was estimated at 40× magnifica-

tion under a dissecting microscope using a seven-level ordinal 

scale. Each eleven humus profile showed layers with different 

thickness. For statistical reasons, 4 depth limits were chosen 

(1, 2, 3 and 5 cm below surface) regardless of layer composi-

tion. As a consequence, reference to the nature of layer was 

only considered a posteriori for interpretation needs. Humus 

typology follows Baize et al. (2009). 

Soil animals were separated by hand under the dissecting mi-

croscope within the same humus material. It was often neces-

sary to dissect plant fragments and humus aggregates that 

could possibly enclose animals. Among the fauna, only Nema-

todes and Protozoa were not counted given their small size 

and transparency. All specimens were identified to species for 

springtails (Collembola), to genera for Oribatid mites, to fam-

ily for Actinedida mites and to supra-family taxonomical lev-

els for the rest of the fauna. 

 

Data analysis 

Multiple Factor Analysis (MFA) (Escofier and Pagès 1994) 

was used to link symmetrically six different groups of descrip-

tors, that is the four soil fauna groups, flora and humus com-

ponents, and a passive supplementary group of data (diversity 

indices, forest management and plant ecology). Moreover, 

Hierarchical Multiple Factor Analysis (HMFA) was used to 

explore interactions between habitats and depths (Le Dien and 

Page 2 Structural relationships among vegetation, soil fauna and humus form in a subalpine forest 

Materials and methods 

crocoenoses (Barkman 1978), each including a distinct 

herb synusia and the superposed vegetation layers 

(shrubs and trees). Given the small-scale organization of 

humus components, the scale of plant microcoenosis is 

still large for soil fauna but it represented the appropri-

ate level of description to determine a shared structure 

between flora, fauna and humus compartments. 



Plant and soil fauna communities 
Plant species richness in the eleven studied microcoenoses 

ranged between 3 and 29 species (Appendix A). 

We identified 28,608 animals from the eleven humus cores 

encompassing 116 taxa (Appendix B). The mean density 

was slightly more than 106m−2. The highest animal density 

was reached in the U8-P spruce unit (3.6 × 106m−2) and 

the lowest in the U10-AO Acer/Oxalis unit (0.4 × 106m−2). 

Oribatida were the most numerous fauna (56%), followed 

by Collembola (14%), Enchytraeidae (10%), Actinedida 

(9%) and Protura (3%). We distinguished four soil fauna 

groups: Collembola, Oribatida mites, Actinedida mites and 

supra-family fauna taxa. They were considered independent 

active groups in MFA and HMFA since each describes a 

distinct and homogeneous taxonomical level (Appendix B). 

 

Humus composition 

We identified 41 humus components encompassing plant 

fragments (spruce, bilberry, moss, herb or fern litter re-

mains), animal feces (organic or a mixture of organic and 

minerals) and soil material (Appendix C). Humus form var-

ied from mor and dysmoder (abundance of both litter and 

holorganic feces) to mull (low litter abundance together 

with high content of earthworm organomineral feces). 

 

MFA 
We first performed five MFAs on separate humus layers 

and one MFA combining all layers, each with the six inde-

pendent groups of variables including a total of 55 plant 

Results 

 Collembola Oribatida Actinedida Fauna Flora Humus 

MFA 0 1 2 3 5t 0 1 2 3 5t 0 1 2 3 5t 0 1 2 3 5t 0 1 2 3 5t 0 1 2 3 5t 

Collembola       3 2 2 1 2 3 1 1 2 3 3 3 2 1 3  1 2 2 1 2

Oribatida 7 7 8 6 5 7  1 2 1 3 3 2 1 2 2  2 2 3 2 2 3

Actinedida 3 5 8 6 7 8 3 5 6 4 6 6 1 1 1 2 2  1 1 2

Fauna 7 7 7 7 6 8 9 9 7 6 6 7 4 5 7 7 8 7  2 3 1 1 2 3

Flora 4 4 5 4 5 5 4 5 5 4 4 4 4 5 6 5 5 5 4 5 6 7 6 6     2 2 2

Humus 6 6 7 7 6 7 7 7 7 7 7 7 4 6 7 5 7 7 6 7 7 7 7 8 8 8 7 6 6 7      

 
Table 1 
Pairwise RV coefficients (×10) (down-leftward) between groups of variables and the corresponding P-values (up-rightward) (1: P ≤ 0.05; 2: P ≤ 
0.01; 3: P ≤ 0.001) for the six MFAs (MFA 0: 0–1 cm depth; MFA 1: 1–2 cm; MFA 2: 2–3 cm; MFA 3: 3–5 cm; MFA 5: >5 cm; MFA t: total). 

Pagès 2003). 

Popular asymmetric constrained ordination methods, such as 

CCA (Canonical Correspondence Analysis) or RDA 

(Redundancy Analysis), were not applicable here since hypothe-

ses were drawn on the relationship between soil fauna, flora and 

humus form without assuming a priori any causal relationship, 

and because the number of objects was very low compared to the 

number of descriptors in each group (Dray et al. 2003). Among 

the variety of symmetric ordination methods that are available for 

the linking of ecological data tables, MFA was chosen because it 

allows the simultaneous coupling of several groups or subsets of 

variables defined for the same objects (Escofier and Pagès 1994; 

Borcard et al. 2011). MFA is a simple variant of co-inertia analy-

sis, which seeks the common structures present in all or some of 

these subsets. As this method, to date mainly used in sensory 

evaluation and chemistry, is not familiar to ecologists, we provide 

the following summary of its principles.  

If all variables are numerical (as it is the case for all active data in 

our study), then MFA is basically a Principal Component Analy-

sis (PCA) applied to the whole set of variables in which each sub-

set is weighted. Qualitative variables may be used in MFA but 

need to weight the proportions between modalities. The use of 

weights balances inertia between the different groups and thus 

balances their influences. Each group of variables can get the 

status ‘active’ or ‘passive’: a passive (or illustrative) group does 

not contribute to the construction of axes. 

MFA is performed in two steps. First, a PCA is performed on 

each subset, which is then normalized by dividing all of its ele-

ments by the first eigenvalue obtained from its PCA. Second, the 

normalized subsets are merged to form a unique matrix, which is 

subjected to a global PCA. The individual subsets are then pro-

jected onto the global analysis to analyze commonalities and dis-

crepancies. 

Various graphical displays are available for MFA: objects, vari-

ables, groups or PCA axes. The interpretation of objects (point 

position) and variables (arrow length and angle) is the same in 

PCA. In the superimposed display of objects, each object appears 

as a cloud of several points: one ‘partial’ point for each active 

group, which gives the position of the object from the point of 

view of this group, and one average point, which is the center of 

gravity of the partial ones.  

The similarity between the geometrical representations derived 

from each group of variables is measured by the RV-coefficient, 

ranging from 0 to 1 (Robert and Escoufier 1976). RV-coefficients 

can be tested by permutations (Josse et al. 2008). 

Prior to MFA, raw dominance or abundance of taxa and humus 

components were transformed by ln(y + 1) to avoid placing too 

much importance to extreme values. Contrary to site profiles, spe-

cies or double profiles commonly used in community ecology 

(Legendre and Gallagher 2001; Dray et al. 2003), this sim-

ple log-transformation does not remove important informa-

tion about absence and relative quantities among objects or 

descriptors. For this reason, no standardization was applied 

to any subset of active variables in the MFA. However, 

quantitative and binary variables of the passive group were 

centered and scaled since they were not dimensionally ho-

mogeneous. 

HMFA is a generalization of MFA integrating several hier-

archical levels (Le Dien and Pagès 2003). This method is of 

high potential interest in ecology given the complexity of 

the systems under study. All computations were performed 

with R 2.10.1 (R Development Core Team 2009) and the 

FactoMineR package (Lê et al. 2008; Husson et al. 2009). 
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species, 37 supra-family fauna taxa, 37 Collembola species, 

43 Oribatida mite genera or morphotypes, 33 Actinedida 

families or morphotypes and 41 humus components. Taxo-

nomic richness and Shannon diversity of each community 

(using abundance for fauna and cover for plant species), 

forest regime and plant ecology were added as supplemen-

tary variables in a passive group. Variance associated with 

the three first axes of separate PCAs ranged from 75.2 to 

79.7% for Collembola, 75.7 to 87.9% for Oribatida mites, 

68 to 85.9% for Actinedida mites, 66.4 to 87.7% for supra-

family fauna, 51.9 to 71.6% for humus components and 62 

to 69.9% for the passive supplementary variables. The 

unique flora matrix used for the six MFAs showed a cumu-

lative percentage of variance of 62.4%. The three first axes 

of the six MFAs accounted for 54.4–59.2% of the total vari-

ance, with axis 1 alone accounting for 24.3–31.5%. 

RV-coefficients among the six groups of variables (Table 1) 

ranged between 0.3 and 0.9. Animal groups showed signifi-

cant relationships with other groups in almost all humus 

layers except Actinedida notably in the top layer. In contrast 

flora showed only significant links with humus variables in 

the two uppermost layers. Humus descriptors were well cor-

related to Oribatida and supra-family fauna taxa, but to a 

lesser degree to Collembola and Actinedida. 

The six MFAs were closely related (Table 2). Axis 1 of the 

four uppermost layers showed contrast between spruce and 

herb habitats, whereas heath habitats were often discrimi-

nated along axis 2. Contrast between the E and U part of the 

forest was evident for the whole humus profile (along axis 

2) and for various depths: 0–1 cm (axis 4), 3–5 cm (axis 2) 

and below 5 cm (axis 2). In the six MFAs, E2- Vr (species-

rich Vaccinium vegetation) positioned itself between herb 

and heath habitats but closer to herb habitats, whereas E2-PV 

(Vaccinium habitat shaded by spruce) was closer to heath than to 

spruce habitats. 

Passive data explained the contrast between spruce and herb habi-

tats by both light and acidity levels as depicted by plant ecology 

(Appendix C). When focusing on plant species, MFA axis 1 

showed a strong correlation with species richness and diversity 

(in the direction of the herb branch) (Appendix A). In contrast, 

spruce and heath branches were mainly correlated with Picea 

abies and V. myrtillus, respectively. Additional passive data indi-

cated that heath branches discriminate both dry and sunny condi-

tions for these bilberry communities (Appendix C). Management 

(positive side of MFA axis 2) promotes a few heliophilous spe-

cies such as V. myrtillus, Anthoxanthum odoratum, Knautia dip-

sacifolia, P. purpurea and Phyteuma betonicifolium. The unman-

aged part of the forest promotes Agrostis schraderiana, A. filix-

femina, Calamintha grandiflora, Dryopteris filixmas, Rosa pendu-

lina and R. idaeus, which are known to be frequent in rock-slide 

and moist habitats (Aeschimann et al. 2004). Those preferences 

suggest that the difference between the U and E part of the forest 

not only holds for forest management but also fir geomorphology. 

In contrast to what was observed with plant species, fauna disper-

sion along the three first MFA axes was not strongly unbalanced 

(Appendix B). Thirty-seven taxa among the 99 shown in Appen-

dix B were placed on the spruce side of axis 1, 14 taxa on the 

herb side of axis 1 and 20 taxa toward the heath branch of axis 3. 

Those results could not be explained by the grouping of fauna 

Fig. 2. Position of plant groups (arrow head) compared to the bary-
centre (arrow basis) for the 11 habitats in the two first axes of HMFA. 

depth 0-1 cm -1-2 cm -2-3 cm -3-5 cm below – 5 cm total 

axis 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

spruce 3.0    2.2 -1.8   2.8 -1.2   2.7    2.4  -0.9  2.9    

heath  1.6    1.3 1.0   1.8     -1.7   -1.2 0.9 -0.8   1.4  

herb -1.9    -2.0    -1.9    -1.7       0.8 -1.7    

E    0.7          -1    -1.0    -1.0   

m
e
a
n

U    -0.9  1.1  -0.7      1.1    1.2    1.2   

 

Table 2 
Mean of site scores grouped by vege-
tation type and part of the forest for the 
six MFAs (spruce: E2-PO + U8-P + 
U10-PL; heath: E2-PV + E2-Vp + U8-
Vp; herb: E2-AO + E2-Vr + E2-R + 
U10-AO + U10-AgR). Only mean va-
lues farthest from the axis origin are 
shown. 

Fig. 1. Scatter plot of the 352 sampling points in the two first 
axes of HMFA for the 11 habitats. 
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abundance by main taxa, which was significantly higher in 

spruce habitat, but only in terms of richness and diversity. 

Spruce habitat only had higher Collembola richness whereas 

herb habitat had higher levels of Oribatida and supra-family 

fauna diversity. On the other hand, heath habitat (positive side 

of MFA axis 3) promoted Oribatida and Actinedida richness as 

well as Actinedida diversity. 

 

HMFA 
The similarity between the six MFAs justified the need to per-

form HMFA with two hierarchical levels. On the one hand, in-

teractions within fauna groups and between fauna and humus 

components may be independent of depth but on the other hand, 

depth exerts an influence on every humus component. This 

asymmetry defined hierarchy. The upper level involved five sets 

of variables, one for each depth of belowground humus layers 

and one additional set for aboveground vegetation. The lower 

level consisted of the six groups of variables previously used 

for the six MFAs. The five depth-specific matrices (four for 

fauna and one for humus components) were used for the 

belowground data sets. The clouds of 352 dots (32 sets and 

groups × 11 habitats) in the plane of HMFA axes 1 and 2 

showed 3 elongation axes matching with spruce, herb and 

heath habitats (Fig. 1). The three first axes of HMFA ac-

counted for 51.7% of the total variance, axis 1 alone account-

ing for 24.9%, similar to MFA results. Discrepancies be-

tween vegetation and the barycentre were partially confirmed 

with the weak discrimination of U8-P and the high discrimi-

nation of E2-PV and U10-AO by vegetation data (Fig. 2). 

This result has to be reconciled with the low RV coefficients 

for vegetation in the six MFAs (Table 1). 

The three spruce habitats showed three different interactions 

among fauna, humus composition and depth for the eleven 

habitats in the plane of HMFA axes 1 and 2; U8-P (pure 

spruce habitat, unexploited forest) was the furthest (Fig. 3). 

Every subset followed loops in the plane of axes 1 and 2 ex-

cept Actinedida whose influence increased constantly with 

depth. Spruce direction was characterized by large amounts 

of leaf material and feces (Appendix C). For the U8-P habi-

tat, these latter features were emphasized in both superficial 

and deep layers. This abundance of litter and feces in deep 

layers is consistent with the dysmoder humus form (Baize et 

al. 2009). Oxalis shaded in the spruce habitat (E2-PO) also 

showed a significant but different interaction with depth (Fig. 

3). Shallow layers were placed in the moder area of HMFA, 

but with increasing depth, habitats and animals converged 
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Fig. 3. Position of spruce habitats in the two first axes of HMFA accor-
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progressively toward those found in mull side. This trend 

was repeated itself regardless of the animal subset. Thus, 

E2-PO consisted of a typical moder habitat near ground 

level, but a mull habitat with depth. This also happens to 

be the description of the amphimull humus form (Baize et 

al. 2009). Lastly, Luzula shaded by spruce (U10-PL) only 

showed a poor interaction with depth. 

Heath habitats had a poor dispersion around the bary-

centre (i.e., a weak interaction with depth; data not 

shown). E2-Vr (heath habitat rich in plant species) was 

found considerably left of the barycentre near the herb 

position, which is in agreement with the six MFAs analy-

sis. This humus form was the only one among ericaceous 

habitats to show interactions with depth, being similar to 

what was observed for heath at layers below 3 cm and for 

herbs at the ground-level layer. HMFA placed E2-PV 

(bilberry heath shaded by spruce) in the heath area, just 

slightly closer to origin along axis 2. 

The Acer-Oxalis habitats showed poor dispersion around 

the barycentre, confirming the lack of interactions with 

depth (data not shown). In contrast, Rubus and Agrostis 

habitats showed interactions with depth. Fig. 4 suggests 

that despite plant discrimination (Fig. 2), Rubus and 

Fig. 5. Top: position of humus group in the plane of axes 1 and 3 
of HMFA (same legend as Fig. 3). Bottom: mean and confidence 
interval of scores of the four animal groups in the third axis of 
HMFA grouped by first axis (3 classes) and forest parts (U or E). 
Numbers are size of each class. 
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(cf. Appendix B) on the correlation circle to illustrate the variety of interac-
tions with depth. 

Agrostis habitats had the same humus characteristics. Near-

ground-level samples were furthest in the herb direction and with 

increasing depth samples fell closer to the origin. Similarity be-

tween Rubus and Agrostis underground habitats was very high for 

Collembola and Oribatida even though the spreading around the 

barycentre was low for Collembola. For Actinedida and supra-

family groups, similarity between the two habitats was high for the 

uppermost humus layers but weaker for deeper layers. This trend 

was also observed for humus composition but with depth the con-

trast was higher for U10-Ag than for E2-R. 

As for several MFAs, the third HMFA axis showed contrast be-

tween unexploited and exploited parts of the forest (Fig. 5). For 

both humus and fauna, the contrast was higher on the herb side of 

axis 1 compared to the spruce side. Fig. 5 also shows that interac-

tions between humus or animals groups and depth varied. For hu-

mus components, the contrast between U and E is highest at the 1 

and 2 cm depth. For fauna, the contrast between U and E was 

greatest for habitats below 3 cm. 

Animal taxa distribution showed two different trends. Animal taxa 

may be exclusive of a given habitat regardless of depth or may 

vary with depth (Fig. 6). Achipteria, Mesaphorura tenuisensilata 

and Sciaridae larvae are examples of dysmoder specific taxa. Iso-

toma saltans is a moder specific taxa while Tectocepheus illustrates 

a mor specific taxa (except in the deepest layers). The herb side of 

HMFA exhibited some nearly exclusive taxa such as Oncopodura 

crassicornis, Malaconothrus or Chironomidae larvae. For numer-

ous taxa, animals discern mull from other humus forms, but only in 
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Discussion 

Among the various ordination methods available in the lit-

erature, MFA has rarely been used in ecology and the pre-

sent study is the first application of HMFA to analyze struc-

tural relationships within complex ecological data. In con-

trast with frequently used multivariate methods, HMFA is 

concerned with both the symmetric relationship among ho-

mogeneous groups of variables and structural hierarchy 

among samples. This approach is motivated by the need to 

encompass the high number of interacting components 

within an ecosystem. The complexity of belowground sub-

systems is present in several ways such as scale, horizontal 

and vertical structure, diversity, and time relationships 

(Wardle 2002). In HMFA, variable groups provide an oppor-

tunity to be analyzed with coexisting components of the eco-

system but at individual scales or taxonomic groups. Hierar-

chy among sets recognizes the relative importance of the 

structural forces of the ecosystem such as depth gradient and 

spatial patterning. We demonstrate that, because of this type 

of resolution, HMFA simultaneously shows a broad and de-

tailed view of interactions within an ecosystem using a low 

number of samples and a high number of descriptors. In-

deed, given the low number of samples, our study is not ade-

quate to study spatial heterogeneity, but our purpose was 

only to seek a common structure among matrices using 

HMFA. Combining HMFA with Fischerian methods such as 

spatially explicit sampling and structural equation modeling 

could help explain spatial structure. 

Very few studies reported such high soil animal density as 

we did – 3.6 × 106m−2 (Forsslund 1948 in Ducarme et al. 

2004: 2.9 × 106m−2; Ducarme et al. 2004: 0.9 × 106m−2). 

In agreement with Ducarme et al. (2004), we found that the 

density of arthropods is underrated by Berleze-Tullgren fun-

nels, the technique used in most studies. MFA and HMFA 

show substantial consistency among plant community, soil 

fauna community and humus form that supports classical 

humus classification by Müller (1889), and confirmed by 

Hartmann (1944), Kubiena (1953), Klinka et al. (1981), 

Bernier and Ponge (1994) and Ponge (2003), namely, mull, 

moder and mor. For both plants and soil animals, mor humus 

does not represent the traditionally-held “extreme” humus 

form beyond moder, instead as suggested by Ponge et al. 

(2000), the “extreme” beyond moder is dysmoder. Although 

HMFA lends support to the mull–moder–mor model, our study 

also shows that plant–soil interactions are not as strong as ex-

pected compared to soil–soil interactions. Plant–soil interactions 

are even weaker when the soil component in question is deep. In 

addition, no evidence for plant–animal interaction was found 

(see RV coefficients, Table 1). The inconsistency between plant 

communities and humus habitats found in this study may be ex-

plained by the short-term variability of plant cover compared to 

belowground processes. The contrast that HMFA found between 

herb and spruce humus forms supports Ponge’s (2003) point of 

view concerning “the pattern (strategies) for capture and use of 

resources by ecosystems”. The richness in secondary metabo-

lites (e.g., lignin, tannins, terpenes) is tightly linked to the life 

span of a plant or organ (Grime et al. 1997; Grime 1998; Aerts 

1999; Aerts and Chapin 2000; Preston and Trofymow 2000). 

Mull is the habitat for a high number of plant species that are 

short-lived such as individuals or organs either present alive or 

as debris (Appel 1993; Schimel et al. 1996; Aerts and Chapin 

2000). A consequence of the softness and high palatability of 

herb tissues is the high mineralization rate and the rapid incor-

poration of the humified fraction within hemiorganic casts (via 

earthworm or Enchytraeidae). Herbs and broadleaved trees pro-

duce an “improvable” litter (Fassnacht and Gower 1999; Preston 

and Trofymow 2000) and the humus form is typically a mull. In 

contrast, plant species (or organs) with extended turnover time 

such as spruce, accumulate secondary metabolites in their tis-

sues (Aerts 1997) and produce a “detrimental” litter and a 

moder or dysmoder humus form. Rate and richness in plant sec-

ondary metabolites rather than plant diversity drives under-

ground processes (De Bruyne et al. 1999). Single-species plant 

litter is able to support a food web as complex as mixed litter, 

which does not support the idea of an additive effect of litter on 

soil biodiversity (Hansen and Coleman 1998; Ball et al. 2009). 

Confirming the review by Schneider et al. (2004), we notice that 

Oribatida promoted in spruce litter are mostly primary decom-

posers (e.g., Adoristes, Liacarus, Achipteria, Carabodes, Hoplo-

phthyracarus). In contrast, herbs promote habitants belonging to 

the organo-mineral food web such as Tardigrada, Copepoda, 

and Pauropoda that mostly feed on microfauna and bacteria. De-

spite observations by Ducarme et al. (2004) that in forest eco-

systems few taxa are exclusive to mineral horizons, mull habitat 

is not species poor. We hypothesize that animals are frequently 

enclosed within hemiorganic microporosity in mull humus, their 

extraction efficiency using Berleze-Tullgren method is lower 

compared to animals extracted from moder or mor humus types. 

This ultimately results in distortion. 

In contrast to previous studies (Ponge 1993; Sadaka and Ponge 

2003) and probably because of hierarchy, HMFA did not devote 

an axis to depth gradient. Nevertheless, careful examination of 

results shows that depth is a key criterion in distinguishing 

among humus forms (axis 1 and 2) and in understanding the fac-

tors involved in differentiating between exploited and preserved 

part of the forest. Indeed, HMFA is not a tool to describe the 

vertical structure of a single humus profile. Using U10Pl as an 

example, HMFA considered, with a limited distinction of 

depths, that OL, OF, OH and OA layers are characteristic of eu-

moder irrespective of the difference between layers and sharp-

ness of transitions. However, at closer investigation, the relative 

rightward position of the 2–3 cm depth layer (see U10Pl humus 

profile, Fig. 3) highlights that the OF layer exhibits a higher di-

agnostic value. Regarding this result, HMFA supports findings 

of Green et al. (1993) who proposed the OF layer as a major 

the deepest humus layers (e.g., Pauropoda, Copepoda, Tar-

digrada). HMFA showed differences on the mull side be-

tween humus layers (Fig. 4) and animals (Fig. 6). Near-

ground humus layers were the furthest in the herb direc-

tion, but this mull branch is better characterized by deep-

soil living fauna. The contrast between U and E parts of the 

forest corroborates this result. HMFA showed that mull 

was both characterized by its richness in minerals in upper 

layers and by the high level of biological activity in deeper 

layers. Except for the mull branch, interactions between 

humus form and depth were complex and mostly taxa spe-

cific. The optimum range moved toward dysmoder with 

increasing depth for Oppiella, but moved away from dys-

moder for Phyllhermania. Several taxa, such as Ceratozetes 

mites, showed a complex relationship between depth and 

habitat. Lastly, some taxa like Enchytraeidae worms 

formed a curve from moder (ground level) by mor (at mid-

dle depth) to mull (below 5 cm depth). 
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diagnostic layer for moder because it is the place of litter trans-

formation into animal fecal pellets. The diagnostic ability of 

HMFA may be refined focusing on one among the multiple 

factor of the analysis. For example, dysmoder litter (U8P) is 

specific in terms of both habitat and inhabitants except for Ac-

tinedida that partially shared populations with mull humus 

forms. With respect to mull humus forms, we suggest that di-

agnostic horizons could distinguish between habitats (the 1–2 

cm layers) and inhabitants (the 3–5 cm layers for most of 

them) (Figs. 4–6). The discrepancy between fauna and humus 

groups indicates that the deepest humus layers were only mini-

mally described. 

Ponge et al. (2002) put forward a one-dimensional index to 

assess humus biological activity: the humus index. It focuses 

on the mull–moder contrast only. The mor humus form was 

discarded from this dichotomous perspective. In our study, we 

foresee numerous connections between the three humus forms. 

Thus, mor humus form is not a “dead-end.” HMFA showed 

that few soil fauna taxa are exclusively confined to a single 

humus form: most taxa are involved in several humus forms. 

The distinction between humus forms applies mostly in the 

vertical amplitude of habitat. For example, Enchytraeidae 

worms are abundant in moder humus but most are near the sur-

face; they are restricted to the middle depths in mor humus and 

only thrive in the lower depths of mull humus. Changes in hu-

mus form may bring both modification of habitat and in the 

food regime for a given taxa as confirmed by feces composi-

tion. Those modifications may or not be species specific. 

Our study documents that the mull–moder–mor strategies of 

ecosystem may coexist at the small scale. A similar small-

scale pattern was already found in mountain and subalpine for-

ests (Bernier and Ponge 1994; Sagot et al. 1999) and also to a 

lesser extent in temperate forests (Ponge and Delhaye 1995; 

Aubert et al. 2006; Chauvat et al. 2007). We confirm the find-

ing of Kallimanis et al. (2002), which shows that forest re-

gional biodiversity stems largely from mechanisms of patch 

coexistence. Our results suggest that a high proportion of be-

low- and above-ground diversity may depend on the variability 

of humus conditions within a forest mosaic (51.7% of the vari-

ance in our study) compared either to the variability below a 

single 25 cm2 soil area (Giller 1996) or to the variability be-

tween two forests one kilometer away. Given its fine-scale 

structure, local diversity must be reallocated in the course of 

forest development (Christensen and Emborg 1996; Dufour et 

al. 2006). Our study strongly suggests that habitats are more 

continuous than expected for many animal taxa despite con-

trasting humus forms. Immigration-emigration fluxes among 
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Bernier 1996; Ponge et al. 1998; Meiners et al. 2004) could 

still be key processes but this all-or-nothing perspective is 
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face of forest dynamics. 

In conclusion, HMFA demonstrates strong structural relation-

ships between the six forest floor components investigated in 

this study. However, this result, supported by a small-size 

sample, now needs to be confirmed considering forest variabil-

ity. HMFA did not show direct interactions between plant and 

soil fauna. However, paradoxically, HMFA also supported 

conclusions made by Wardle (2002) that indirect plant–fauna 

interactions are at the focal point of the ecosystem strategy that 

leads to the differentiation of ecological niches within the for-

est mosaic. Although limited, our analysis supports that among 

determinisms, humus form is central. Soil animals are known 

to be crucial for humus profile build-up, feeding either on litter 

and excreting hemiorganic fecal pellets (epigeic fauna) or 

feeding on soil and excreting mineral fecal pellets (endogeic 

fauna) (Zachariae 1965; Bernier and Ponge 1994). Vegetation 

also controls the humus form and the soil fauna via litter depo-

sition and root absorption and exudation (Handley 1954; 

Northup et al. 1995; Hobbie 2000). Moreover, plants produce 

secondary metabolites (Robbins et al. 1987; Appel 1993) or 

shorten their biological cycle (Grime et al. 1997) to face inter-

specific competition or herbivory. In addition, soil animals 

have to cope with such an aggressive phytochemical environ-

ment (Provenza et al. 2003). The key question is whether or 

not the same set of molecules (i.e., the products of the secon-

dary plant metabolism) governs plant–plant, plant–fauna and 

also fauna–fauna interactions (Ponge et al. 1998). Our work 

suggests that humus form may be at the center of all theses 

interactions as suspected by Ponge (2003). Consequently, hu-

mus form is a key component of the ecosystem and should be 

considered to a greater extent in future studies on the funda-

mentals of diversity. 
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Athyrium filix-femina       + +  2 4  4   3 

Blechnum spicant  + + +  +           

Calamintha grandiflora  +       1 +      6 

Campanula rhomboidalis  +  + 1   +   +  4    
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Ranunculus platanifolius  1  + 1    1 + 1  5    

Rosa pendulina         2 2      8 
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Rubus idaeus     +  1 + 2 2 4  4   5 

Rumex acetosa  +   +            
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Vaccinium myrtillus + 2 1 4 1 5 5 5   1   5 7  

Viola riviniana  +  + 1        3    

Species richness 3 19 16 24 26 12 10 21 16 17 29  6    

Shannon diversity 1.0 4.1 5.0 5.6 7.9 3.3 2.5 5.6 4.2 7.2 8.0  8    

 

Appendix A. Floristic composition of the sampled sites and correlations between MFA axes (i.e., all humus layers toge-
ther) and species or supplementary variables (only correlations farthest from the axis origin are shown). Dominance 
codes are given according to Braun–Blanquet’s scale. All data are active in MFA with all humus layers together, except 
plant species richness and Shannon diversity. 
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Alicorhagiidae 18.6 19.0 8     

Anystidae spp.1 0.3 0.3 5     

Anystidae spp.2 0.3 0.4   5   

Anystidae spp.3 0.7 1.3   3 6  

Bimichaeliidae 2.9 1.7 5    4 

Ereynetidae 0.3 0.2      

Eupodidae spp.1 6.2 3.6 9     

Eupodidae spp.2 0.3 0.3   5 5  

Eupodidae spp.3 4.3 2.9 5     

Nanorchestidae 5.7 3.8  5   5 

Rhagidiidae spp.1 7.2 5.2 10     

Rhagidiidae spp.2 4.0 3.1 9     

Scutacaridae 0.9 0.8      

Tarsonemidae 0.2 0.3  3  5  

Tetranychidae 1.0 1.0   5 6  

Tydeidae spp.1 16.1 21.1 6    4 

Tydeidae spp.2 5.1 3.3    7  

Tydeidae spp.3 0.7 0.6      

Tydeidae spp.4 0.3 0.4   6   

Tydeidae spp.5 13.1 17.4 6    5 

Actinedida: total density 89.3 67.2 9     

Actinedida: richness 13.9 1.6   4  5 
A
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Actinedida: diversity 7.9 1.2   5  4 

Acaridae spp.1 1.0 0.9  3    

Acaridae spp.2 0.7 0.3      

A
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a 

A
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Acaridae spp.3 0.6 0.5     6 

Gamasina 22.3 10.4 7   6  

miscellaneous 5.5 1.5    8  

A
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a 

G
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Uropodina 0.3 0.3    4  

Diplopoda 0.3 0.3    6  

Pauropoda 9.0 4.2      

M
yr
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da
 

Symphyla 2.3 2.2  4   4 

Cecidiomyidae 2.3 1.8 6     

Chironomidae 1.0 1.3  5    

Empididae 0.5 0.5 5     

Sciaride 5.5 5.8 6    4 

D
ip

te
ra

 (
la

rv
ae

) 

miscellaneous 0.5 0.2    4  

Araneae 0.3 0.2 5  3 4  

Crustacea, Copepoda 3.7 4.5  3  7  

Hexapoda, Diplura 1.1 1.3 7    4 

Hexapoda, Protura 32.7 19.4 7     

Olichochaeta, Enchytreidae 103.9 46.6   8   

Olichochaeta, Lombricidae 0.5 0.5     3 

Platyhelpinthes, Turbellaria 0.6 0.6    4  

Tardigrada 12.0 9.2  5    

Coleoptera (larvae) 0.9 0.4 5     

Homoptera (aphids) 10.8 7.7 6   5  

Thysanoptera 0.3 0.2   5   

In
s
e
c
ta

 

Diptera (imago) 1.0 0.6 6     

fauna: Total density 1050.3 564.8 9     

fauna: supra-familly richness 22.3 2.1     5 

fauna: supra-familly diversity 5.5 1.1  6  5  

Appendix B. Mean fauna density and correlations between MFA (i.e., all humus layers together) and taxa or supplementary 
variables (only correlations farthest from the axis origin are shown). Taxa with density <200 m−2 and detail for each sampled 
site are not shown. All data are active in MFA-total except total density, species richness and Shannon diversity. 
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lichen 2           7     

intact needle 2 4 10  1 1 1  1 2  7    3 

bleach needle 3  7    1     7  4   

perforated needle 2 2 8  1       7     

fragmented needle 13 6 12 3 2 1 1  1  2 7     

twig 3 1 2 1      1  6     

bark 10 1 1 14 1 2 2  1 1  9     

scale 5 1 3 2  1 1   1  8     

sp
ru

ce
 

roots 20 8 24 11 1 8 4 2 3 5 1 9     

moss   2 9 1 3 1 1 3 4 1  3 5  4 

intact leaves       1       7   

leaves nervures   1   1 5 1 2     9   

twig      3 2 3      7 4  

b
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roots   1   9 8 6   1   7 4  

Herb litter    1 5  2  19 16 0  4  6  

Herb roots    2 6 3 2 7 24  4  6 4   

Fern litter          3 14  4    

diptera larvae 28           7     

diplopoda 2 1 2 1   6  1 1  5    3 
hemiorganic 

faeces 
enchytreid 5 1 24 9  5 15  5 6  6  5  3 

enchytreid  14 2 20 5 10 21 24 7 19 5  7    Mineral 

faeces earthworm 1 37  15 37 12 1 27 11 15 26  7    

compact mineral material  2  2 4 19 5 6 3  7  6  5  

stone  21  9 34 12 14 21 4 4 20  8  5  

exploited    8  
forest regime 

unmanaged     8 

basophilic  8    

acidophilic 9     

hygrophilous  7    

xerophilous   7   

heliophilous  7 6   
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plant ecology 

sciaphilous 7     

 

Appendix C. Humus composition of the sampled sites (% in volume), supplementary variables and correlations with MFA axes (i.e., all 
humus layers together). Only correlations farthest from the axis origin are shown. All data are active in MFA except *. 
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