Explainable Anomaly Detection for Context Semantic Awareness - Données et Connaissances Massives et Hétérogènes
Poster De Conférence Année : 2024

Explainable Anomaly Detection for Context Semantic Awareness

Résumé

We introduce an explainable neural network for Unsupervised Video Anomaly Detection (UVAD). Video Anomaly Detection (VAD) is a critical area of research with extensive applications, especially in surveillance and security systems deployed in public spaces such as roads, factories, and shopping malls. The significance of VAD lies in its capacity to enhance safety and security measures by identifying unusual events or activities without requiring manually labeled abnormal videos for training.
Fichier principal
Vignette du fichier
Demo__summary (1).pdf (2.61 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04521991 , version 1 (26-03-2024)

Identifiants

  • HAL Id : hal-04521991 , version 1

Citer

Hui Yang, Mostepha Redouane Khouadjia, Nacéra Bennacer Seghouani, Yue Ma, Serge Delmas. Explainable Anomaly Detection for Context Semantic Awareness. Workshop HyCHA (Hybridation Connaissances, Humain et Apprentissage Statistique), Mar 2024, Gif sur Yvette, France. ⟨hal-04521991⟩
351 Consultations
50 Téléchargements

Partager

More