Hardware Integration of a Neural Network onto FPGA and its Application to Sound Source Localization - LAAS-Robotique
Communication Dans Un Congrès Année : 2024

Hardware Integration of a Neural Network onto FPGA and its Application to Sound Source Localization

Résumé

Sound Source Localization algorithms estimate the Direction of Arrival of one or multiple (moving) sound sources in a 3-D space. Potential applications include environment acoustic mapping, spatial filtering of relevant sources out of acoustic clutter and noise, and headset-free human-robot speech interaction. Deep Learning algorithms have been widely used, with many solutions relying on Feedforward Neural Networks, convolutional kernels, or attention mechanisms derived from the Transformer. In this paper, the hardware implementation of a Deep Learning model for Sound Source Localization is proposed on FPGA evaluation board (Digilent Zybo-7020). This enables Artificial Intelligence inference directly onto a FPGA with acceptable performances (70 % accuracy for an error < 10 °) through an energy-efficient full hardware implementation, without resorting to usual processing units (e.g., CPU, GPU, DSP, etc.) nor soft-core processor with hardwired accelerators/co-processors.
Fichier sous embargo
Fichier sous embargo
0 2 3
Année Mois Jours
Avant la publication
mardi 11 mars 2025
Fichier sous embargo
mardi 11 mars 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04831805 , version 1 (11-12-2024)

Identifiants

  • HAL Id : hal-04831805 , version 1

Citer

Emily Holmes, Gaël Loubet, Patrick Danès, Daniela Dragomirescu. Hardware Integration of a Neural Network onto FPGA and its Application to Sound Source Localization. 31st IEEE International Conference on Electronics Circuits and Systems (ICECS), Nov 2024, Nancy, France. ⟨hal-04831805⟩
0 Consultations
0 Téléchargements

Partager

More