Nebula - Méthodes et Ingénierie des Langues, des Ontologies et du Discours
Communication Dans Un Congrès Année : 2024

Nebula

Résumé

When engaging in collaborative tasks, humans efficiently exploit the semantic structure of a conversation to optimize verbal and nonverbal interactions. But in recent "language to code" or "language to action" models, this information is lacking.

We show how incorporating the prior discourse and nonlinguistic context of a conversation situated in a nonlinguistic environment can improve the "language to action" component of such interactions. We finetune an LLM to predict actions based on prior context; our model, Nebula, doubles the net-action F1 score over the baseline on this task of Jayannavar et al. (2020). We also investigate our model's ability to construct shapes and understand location descriptions using a synthetic dataset.

Fichier principal
Vignette du fichier
emnlp_conversational_builder-2.pdf (837.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04829269 , version 1 (10-12-2024)

Licence

Identifiants

  • HAL Id : hal-04829269 , version 1

Citer

Akshay Chaturvedi, Kate Thompson, Nicholas Asher. Nebula. EMNLP 2024, Association of Computational Linguistics, Nov 2024, Miami (FL), United States. p. 6431-6443. ⟨hal-04829269⟩
0 Consultations
0 Téléchargements

Partager

More