Efficient error-correcting codes for the HQC post-quantum cryptosystem
Résumé
The HQC post-quantum cryptosystem enables two parties to share noisy versions of a common secret binary string, and an error-correcting code is required to deal with the mismatch between both versions. This code is required to deal with binary symmetric channels with as large a transition parameter as possible, while guaranteeing, for cryptographic reasons, a decoding error probability of provably not more than 2 -128 . This requirement is non-standard for digital communications, and modern coding techniques are not amenable to this setting. This paper explains how this issue is addressed in the last version of HQC: precisely, we introduce a coding scheme that consists of concatenating a Reed-Solomon code with the tensor product of a Reed-Muller code and a repetition code. We analyze its behavior in detail and show that it significantly improves upon the previous proposition for HQC, which consisted of tensoring a BCH and a repetition code. As additional results, we also provide a better approximation of the weight distribution for HQC error vectors, and we remark that
Domaines
Informatique [cs]Origine | Fichiers produits par l'(les) auteur(s) |
---|